
HOST PUF-Based Authentication Protocols ECE 525

PUF-Based Authentication Protocols
The simplest mechanisms called challenge-response entity authentication exchange
cleartext bitstrings directly, i.e., no cryptographic primitives are used

A PUF whose inputs and outputs can be accessed directly is said to have unprotected

interfaces

Prover (token hti with IDi) Verifier (server)

(Server gens. challenges cj and stores CRPs in DB[IDi])

IDi

r j = PUFc j

E
n

ro
llm

en
t

iDBID c r

A
ut

h
en

ti
ca

ti
on

n n
(Server selects cn)

cn
rn = PUFcn

(PUF generates response r’n with errors) rn

ECE UNM 1 (3/24/18)

n = n – 1
(CRP is deleted from DB)

?
HDintrarn rn

Accept if match has HDintra
less than noise margin

c j r j with j 1n and c j TRNG()

c j r j DBIDi

HOST PUF-Based Authentication Protocols ECE 525

Protocol 1: Strong PUF with Unprotected Interface
• Enrollment: In a secure environment between token, A and verifier, B

Verifier B generates a sequence of randomly-chosen challenges, ci, which are

applied to token A and applied to the PUF

The PUF responses, ri are recorded in a secure database as challenge-response

pairs, crpi, along with a unique identifier, htID for the token

• Authentication: In the field
The token A requests authentication by transmitting ID, htID, to the verifier B

Verifier B selects challenge(s) from DB using htID and transmits to fielded token

Token A applies ci to the PUF to generate ri’, which is transmitted to B

B compares ri with ri’and accepts if they match within tolerance, HDintra

Verifier B removes the crpi from DB as a countermeasure to replay attacks

ECE UNM 2 (3/24/18)

HOST PUF-Based Authentication Protocols ECE 525

Protocol 1: Strong PUF with Unprotected Interface
NOTE: The ID transfer step is optional and, instead, exhaustive search of the DB can
be carried out, as a mechanism to make it privacy preserving

Benefits:
It is simple to implement and is very lightweight for the token

The inability of the PUF to precisely reproduce the response ri makes it neces-

sary to implement a error-tolerant matching scheme with HDintra > 0

Drawbacks:
Large values of HDintra increase the chance of impersonation, and act to reduce

the strength of the authentication scheme

A large number of CRPs must be recorded during enrollment
This increases the storage requirements for the verifier, since the worst-case

usage scenario must be accommodated

Or requires periodic re-enrollment at the secure facility

ECE UNM 3 (3/24/18)

HOST PUF-Based Authentication Protocols ECE 525

Protocol 1: Strong PUF with Unprotected Interface
Drawbacks:

The protocol lacks resistance to denial of service attacks, whereby adversaries

purposely deplete the server database

It lacks mutual authentication

It is susceptible to model-building attacks, and therefore is secure only when a
truely strong PUF is used

A growing list of proposed protocols address these short-coming by incorporating
cryptographic primitives on the prover and verifier side

The inclusion of cryptographic primitives enable significant improvements to the

security properties of the protocols

And additionally enable mutual authentication and more efficient methods to
preserve privacy

ECE UNM 4 (3/24/18)

HOST PUF-Based Authentication Protocols ECE 525

Protocol 2: Controlled PUF

Prover (token hti with IDi) Verifier (server)

c j TRNG()
(Server gens. challenges cj)

IDi

E
nr

ol
lm

en
t

i n n nDBID c r hd

A
ut

he
nt

ic
at

io
n(Server selects cn)

n = n – 1
(tuple is deleted from DB)n nc hd

rn = HashRepPUF Hashcn hdn Hashcn

ECE UNM 5 (3/24/18)

rn ?
rn = rn

(Accept if match)

c j r j hd j with j 1n
(Server stores tuples in DB[IDi])

(PUF generates response which is error-
corrected by Rep using helper data hdn)

c j

hd j = GEN r j

(Server computes helper data hdj)

jr = PUFHashc r j

c j hd j

r j = HashRepPUF Hashc j hd j Hashc j

r j

j
(one-time interface provides access

to unprotected output of PUF)

(PUF generates response which is error-
corrected by Rep using helper data hdj)

B. Gassend, D. E. Clarke, M. van Dijk, S. Devadas,
“Controlled Physical Random Functions",
Conference on Computer Security Applications,
2002, pp. 149-160.

HOST PUF-Based Authentication Protocols ECE 525

Protocol 2: Controlled PUF
The hash of the challenge prevents chosen-challenge attacks

This is true because the hash is a one-way-function (OWF), which makes it
computationally infeasible to control the bits applied to the PUF inputs

Similarly, by hashing the output of the PUF, correlations that may exist among differ-

ent challenges are obfuscated

This increasing the difficulty of model-building even further

The main drawback of using a OWF on the PUF responses as shown is a requirement

that the responses from the PUF be error-free

This is true because even a single bit flip error in the PUF’s response changes a

large number of bits in the output of the OWF (avalanche effect)

The functions Gen and Rep are responsible for error-correcting the response, using

algorithms that were described earlier

ECE UNM 7 (3/24/18)

HOST PUF-Based Authentication Protocols ECE 525

Protocol 3: Reverse Fuzzy Extractor
Reversed secure sketching is designed to address authentication in resource-con-
strained environments

The protocol uses the syndrome technique for error correction but reverses the roles

of the prover and verifier

Here, the prover (resource-constrained token) performs the lighter-weight Gen proce-

dure while the verifier (server) performs the compute-intensive Rep procedure.

Note that sketch produces a bitstring with bit flip errors every time it is executed on

the token

In order to authenticate, the verifier is required to correct the original bitstring stored

during enrollment to match each of the regenerated bitstrings

This requires helper data produced by the token to be is transmitted to the veri-

fier

ECE UNM 8 (3/24/18)

HOST PUF-Based Authentication Protocols ECE 525

Although not shown, enrollment involves the verifier generating challenges and stor-

ing the PUF responses ri for hti in a secure database

Protocol 3: Reverse Fuzzy Extractor

Prover (token hti with IDi) Verifier (server)

i ihd = r HT

(Helper data hdi computed)

n1 TRNG()

(Nonce n1 generated)

PUFi ri
(PUF produces r’i)

DBIDi ri
(Server looks up ri)

ri = Repri hdi
(And error corrects it to r’’i)

n2 TRNG()
(Nonce n2 generated)

m1 = hIDi hdi ri n1 n2
(Unkeyed hash of protocol vals)

1 2m n

i i 1ID hd n

?
hIDi hdi ri n1 n2 = m1

(Accept if match, else abort)

ECE UNM 9 (3/24/18)

2m = hID r n
m2

i i 2

?
hID r n = m2

(Accept if match, else abort)

A
ut

he
nt

ic
at

io
n

i i 2
(Unkeyed hash of protocol vals)

A. Van Herrewege, S. Katzenbeisser, R. Maes, R. Peeters, A.-R. Sadeghi, I. Verbauwhede,
and C. Wachsmann, “Reverse Fuzzy Extractors: Enabling Lightweight Mutual Authentication
for PUF-enabled RFIDs”, Vol. 7397 of Lecture Notes in Computer Science, 2012, pp. 374-389

HOST PUF-Based Authentication Protocols ECE 525

Protocol 3: Reverse Fuzzy Extractor
Here, only a single CRP is stored for each token, which is indexed by IDi in the

server’s database, and then the interface is permanently disabled on the token

The authentication process begins with the token on the left generating the bitstring

response again as r’i

r’i is then multiplied by the parity-check matrix HT of the syndrome-based linear

block code to produce the helper data hdi

A random number generator is used to produce nonce n1 that is exchanged with the

verifier as a mechanism to prevent replay attacks

The tuple IDi, hdi and n1 is transmitted over an unsecured channel to the verifier

The verifier looks up the response bitstring ri generated by this token during enroll-

ment in the secure database

ECE UNM 10 (3/24/18)

HOST PUF-Based Authentication Protocols ECE 525

Protocol 3: Reverse Fuzzy Extractor
It then invokes the Rep routine of the secure sketch error correction algorithm with ri

and the transmitted helper data hdi

If the r’i and hdi are within the error-correcting capabilities of the secure sketch

algorithm, the output r”i of Rep will match the r’i generated by the token

A second nonce, n2, is generated to enable mutual authentication

The server computes a hash of the IDi, helper data hdi, the regenerated response bit-

string r”i and both nonces n1 and n2 to produce m1

The hash m1 conveys to the token that the server has knowledge of the response

r’i for server authentication

The same process is carried out by the token but using its own version of r’i and com-

paring the output to the transmitted m1

If r’i equals r”i, and the token accepts, otherwise server authentication fails

ECE UNM 11 (3/24/18)

HOST PUF-Based Authentication Protocols ECE 525

Protocol 3: Reverse Fuzzy Extractor
The token then demonstrates knowledge of r’i by hashing it with its IDi and nonce n2

and transmitting the result m2 to the server

The server then authenticates the token (token authentication) using a similar process

by comparing its result with m2

Note that the helper data in this scheme changes from one run of the protocol to the

next

This is true b/c the number and position of the bit flip errors will likely be differ-

ent for each regeneration

Helper data leaks some information about the response ri, as discussed previously in

relation to fuzzy extractors

Further, variations in the helper data string may reveal additional information that the

adversary can use in attack models

ECE UNM 12 (3/24/18)

HOST PUF-Based Authentication Protocols ECE 525

Protocol 4: Slender PUF Protocol
Majzoobi et al. proposed an authentication protocol based on compact models and
substring matching

A significant benefit of their protocol is that it eliminates all types of cryptographic

functions on the token, including hashing and error correction functions

Therefore, it is well suited for for resource-constrained environments

The proposed protocol is demonstrated using a 4-XOR arbiter PUF

The enrollment process involves building compact models of the arbiter PUFs using a

one-time interface with direct control/access over the PUF inputs and outputs

A compact model is a mathematical representation similar to what an adversary

would construct when model-building the PUF

The benefit of storing the compact models is the ability to estimate the response of

the 4-XOR Arbiter PUF for any arbitrary challenge

ECE UNM 13 (3/24/18)

HOST PUF-Based Authentication Protocols ECE 525

Protocol 4: Slender PUF Protocol
This capability is required in the proposed protocol because the challenge is com-
posed of two parts

• One part generated by the prover
• One part generated by the verifier (using TRNGs)

This ‘on-the-fly’ random challenge generation requires the verifier to generate a

‘simulated’ PUF response from the compact model

And the response MUST closely matches that produced by the actual PUF on

the token

The token’s contribution to the concatenated challenge makes it impossible for an

adversary to carry out a chosen-challenge attack

A third feature of the protocol relates to the manner in which authentication is per-

formed

A seeded LFSR is used to generate a sequence of challenges that are applied to

the 4-XOR Arbiter PUF to produce a response bitstring

ECE UNM 14 (3/24/18)

HOST PUF-Based Authentication Protocols ECE 525

Protocol 4: Slender PUF Protocol
The prover then selects a fixed length substring randomly from PUF-generated
response bitstring and transmits it to the verifier

The verifier authenticates the token if it can find the substring (within a predefined

noise tolerance) in the compact model estimate of the response bitstring

Revealing only part of the response bitstring adds again to the difficulty of model-

building

The compact model is built during enrollment in a secure environment
A sequence of CRPs applied to the individual arbiter PUFs, which are accessible

only during enrollment

The access mechanism is then disabled by blowing fuses

ECE UNM 15 (3/24/18)

HOST PUF-Based Authentication Protocols ECE 525

Protocol 4: Slender PUF Protocol

Prover (token hti with IDi) Verifier (server)

E
nr

ol
lm

en
t

A
u

th
en

ti
ca

ti
on

r j PUFc j
c j

cV cV TRNG()
(Verifier generates 1/2 of challenge)cP TRNG()

(Prover generates 1/2 of challenge)

V P
 c r PUFc

(Concatenate challenges and generate r)

i TRNG()
(Randomly select an index i < | r |)

r Substringr i
(Select substring from r’, wrapping to beginning

of r if needed) cP r

ECE UNM 16 (3/24/18)

r PUF ModelcV cP
(Compute response from compact model)

?
HDintrar Substringr

(Accept if r’ found in r” with HDintra
less than noise margin

r j

c j TRNG()

PUF Model built with j 1n

M. Majzoobi, M. Rostami, F. Koushanfar, D. S. Wallach, and S. Devadas, “Slender PUF
Protocol: A Lightweight, Robust, and Secure Authentication by Substring Matching”, Sympo-
sium on Security and Privacy Workshop, 2012, pp. 33-44.

HOST PUF-Based Authentication Protocols ECE 525

Protocol 4: Slender PUF Protocol
Authentication begins with the generation of cV and cP by the verifier and prover

These are concatenated and applied to the PUF to produce response r

A random index i is then generated that serves as the starting index into bitstring r for

extraction of a substring r’, which is returned to the verifier along with challenge cP

The verifier uses the compact model to generate an estimate of the PUF response r”
using the same concatenated challenge (cV | cP)

Authentication succeeds if the verifier can locate the substring r’ as a substring in r”
within an error tolerance of

Drawback: The level of model-to-hardware-correlation attained in the compact

model must be very high and may require considerable time and effort at enrollment

Note PUFs that are easily modeled simplifies the development of compact models

But they also represents somewhat of a contradiction to their required resilience

to model-building attacks

ECE UNM 17 (3/24/18)

HOST PUF-Based Authentication Protocols ECE 525

Protocol 5: A Privacy-Preserving, Mutual Authentication Protocol
Aysu et al. proposed and implemented a privacy-preserving and mutual PUF-based
authentication protocol for resource-constrained environments

They use the ’reverse fuzzy extractor’ approach described above

The protocol ensures that an adversary is not able to identify or trace the tokens, even

if the adversary reads out the contents of the token’s non-volatile memory

The protocol is designed to minimize the functional operations that are to be carried

out by the token

But given the privacy goal, the protocol requires the token to implement 4 cryp-

tographic primitives

• The Gen operation of the fuzzy extractor algorithm
• A symmetric encryption algorithm Enc
• A random number generator TRNG
• A pseudo-random function PRF

ECE UNM 18 (3/24/18)

HOST PUF-Based Authentication Protocols ECE 525

Protocol 5: A Privacy-Preserving, Mutual Authentication Protocol
Moreover, the token makes use of an NVM to store information between authentica-
tions, in particular, a secret key sk1 and a PUF challenge c1

However, the protocol is designed such that leakage of this stored information can-

not be used by an adversary to impersonate the token

• The stored challenge is used to allow the token to reproduce the PUF response
• The secret key is used to encrypt helper data produced by the fuzzy extractor’s

Gen operation on the token

The encryption of the helper data prevents the adversary from reverse engineering the

helper data in an attempt to learn the PUF response to the NVM-stored challenge c1

Another feature of the protocol is a novel key update mechanism
The key stored on the token and in the server’s database is updated after each

successful authentication by using a new CRP for the PUF (chained)

A copy of the state information to be replaced is maintained as a countermeasure

to de-synchronization, and subsequent denial-of-service, attacks

ECE UNM 19 (3/24/18)

ECE 525HOST PUF-Based Authentication Protocols

Protocol 5: A Privacy-Preserving, Mutual Authentication Protocol
The Enrollment operation is carried out in a secure environment, as usual

The server generates a secret key sk1 and a challenge c1 that is stored in NVM on the

token

The token generates a response r1 from the PUF and provides it to the server through

a one-time interface

The server stores two copies of the sk1 and r1 in its secure database

The combination of sk1 and r1 is used to derive an ID for the token, as discussed

later

Prover (token hti with IDi) Verifier (server)

E
n

ro
llm

en
t

ECE UNM 20 (3/24/18)

r1 PUFc1

sk1 c1 sk1 c1 TRNG()

(Verifier generates secret key, sk1, and
PUF challenge c1)

NVMwritesk1 c1

r1 DBsk r sk r 1 1 1 1
(Server stores two copies for DB[IDi])

HOST PUF-Based Authentication Protocols ECE 525

Protocol 5: A Privacy-Preserving, Mutual Authentication Protocol

Prover (token hti with IDi) Verifier (server)

r1 PUFc1
(PUF regenerates r’1 using stored c1)

z1 hd Genr1
(Token distills entropy to z’1 and gens helper data h)

hdenc = Encsk1 hd
(Token encrypts h with stored key sk)

n2 TRNG()
(Token generates nonce n2)

t1 t5 = PRFz1 n1 n2
(PUF-keyed pseudo-random-function of nonces to produce a set of keys tx)

c2 TRNG()
(Token generates challenge c2)

r2 PUFc2
(PUF regenerates r2 for next authentication)

r2_enc = r2 t2
(Token XOR encrypts r2 with t2)

m = PRFt3 hdenc r2_enc
(Token computes MAC on encrypted values using t3)

hdenc n2 t1 r2_enc m

n1

ECE UNM 21 (3/24/18)

n1 TRNG()

NVMsk1 c1 DBsk1 r1 skold rold
(Token has available sk1 and challenge c1)

(Server generates nonce n1)

A
ut

he
nt

ic
at

io
n

to verifier

A. Aysu, E. Gulcan, D. Moriyama, P. Schaumont, and M. Yung,
“End-to-end Design of a PUF-based Privacy Preserving
Authentication Protocol", CHES, 2015.

HOST PUF-Based Authentication Protocols ECE 525

A
ut

he
nt

ic
at

io
n

PRFt3 hdenc r2_enc = m

If t1 = t1 verify:
?

If verified:
r2 = r2_enc t2

If t4 = t4
NVMt5 c2

(Replace (sk1, c1) with (t5, c2) in NVM)

Protocol 5: A Privacy-Preserving, Mutual Authentication Protocol

Prover (token hti with IDi) Verifier (server)

For i in DB
(Search DB for match: t1 = t’1 where

t’1 is computed from sk1 and r1 stored
in the DB using the following operations)

hd Decski hdenc
(Server decrypts hdenc with DB key ski)

z = Repri hd
(Build noisy PUF response from ri)

t1 t5 PRFz n1 n2
(Generate tx and check for match to t1)

(Recover r2)

DBt5 r2 sk1 r1
(Update DB)

If NOT found, repeat search with
skoldi roldi

If all searches fail:
t4 TRNG()

t4

ECE UNM 22 (3/24/18)

ECE 525HOST PUF-Based Authentication Protocols

Protocol 5: A Privacy-Preserving, Mutual Authentication Protocol
The server authentication process is as follows:
• Generate a nonce n1, which is transmitted to the token

ECE UNM 23 (3/24/18)

• The token’s challenge c1 is read from the NVM and used to generate a noisy PUF

response r’1

• The Gen component of the fuzzy extractor produces z’1 (an entropy distilled version

of r’1) and helper data hd

• Helper data hd is encrypted using the key sk1 from the NVM to produce hdenc

• The token then generates a nonce n2

• The PUF-generated key z’1 and the concatenated nonces (n1||n2) are used as input to

a pseudo-random function PRF to produce a set of unique values t1 through t5

These are used as an ID, keys and challenges in the remaining steps of the proto-

col

HOST PUF-Based Authentication Protocols ECE 525

Protocol 5: A Privacy-Preserving, Mutual Authentication Protocol
• A second response r2 is obtained from the PUF using a new randomly generated

challenge c2

This will serve as the chained key for the next authentication (assuming this one

succeeds)

• It is XOR-encrypted as r2_enc for secure transmission to the server

• PRF’ is then used to compute a MAC m using t3 as the key, over the

concatenated, encrypted helper data and new key (hdenc||r2_enc)

This will allow the server to check the integrity of hdenc and r2_enc

• The encrypted values hdenc and r2_enc plus n2, t1 and m are transmitted to the

server The nonce n2, as usual, introduces ‘freshness’ in the exchange,

preventing replay attacks

• The ID t1 is the target of a search in the server database during the server side

exe- cution of the protocol

ECE UNM 24 (3/24/18)

HOST PUF-Based Authentication Protocols ECE 525

Protocol 5: A Privacy-Preserving, Mutual Authentication Protocol
The verifier process:
• The server does an exhaustive search of the database, carrying out the

following operations for each entry in the DB

• Decrypt helper data hdenc using the current DB-stored ski to produce hd”

• Construct z” using the fuzzy extractor’s Rep procedure and helper data hd”

• Compute t’1 through t’5 from PRF(z”, n1||n2) and compare token

generated value t1 with t’1

If a match is found, then the server verifies that the token’s MAC m matches

the PRF’(t’3, henc||r2_enc) computed by the server

If they match, then the token’s PUF-generated key r2 is recovered using (r2_enc

XOR t’2),

And the database is updated by replacing (sk1, r1, skold, rold) with (t’5, r2,

sk1, r1)

ECE UNM 25 (3/24/18)

ECE 525HOST PUF-Based Authentication Protocols

Protocol 5: A Privacy-Preserving, Mutual Authentication Protocol

ECE UNM 26 (3/24/18)

If the exhaustive search fails, then the entire process is repeated using (skoldi,

roldi)

If both searches fail, the server generates a random t’4 (which guarantees fail-

ure when the token authenticates)

Otherwise, the t’4 produced from a match during the first or second search is

transmitted to the token

The token compares its t4 with the received t’4

If they match, the token updates its NVM replacing (sk1, c1) with (t5, c2)

Otherwise, the old values are retained

HOST PUF-Based Authentication Protocols ECE 525

Protocol 5: A Privacy-Preserving, Mutual Authentication Protocol
Note that the old values are needed for de-synchronization attacks where the adver-
sary prevents the last step, i.e., the proper transmission of t’4 from server to token

In such cases, the server has authenticated the token and has committed the update to

the DB with (t’5, r2, sk1, r1) but the token fails to authenticate the server

So the token retains its old NVM values (sk1, c1)

In a subsequent authentication, the first search process fails to find the t’5, r2 compo-

nents but the second search will succeed in finding sk1, r1

This allows the token and server to re-synchronize

The encryption of the helper data hd, as mentioned, prevents the adversary from

repeatedly attempting authentication to obtain multiple copies of the helper data

And then using them to reverse engineer the PUF’s secret

Note that encryption does not prevent the adversary from manipulating the helper

data, and carrying out denial-of-service attacks, so MAC is needed

ECE UNM 27 (3/24/18)

HOST PUF-Based Authentication Protocols ECE 525

Protocol 5: A Privacy-Preserving, Mutual Authentication Protocol
The weakest part of the algorithm is the very limited amount of PUF response infor-
mation maintained by the server, i.e, effectively only one PUF response

Circuit countermeasures must be used to prevent the PUF response from being

extracted from the token using, e.g., DPA

If, for example, the token’s z’1 is extracted, a clone that impersonates the token can

be easily constructed (one that does not even need to embed a PUF)

And once it authenticates successfully the first time, the authentic token is
barred forever from succeeding (denial-of-service)

The very limited amount of PUF response information stored on the server, makes it

vulnerable to this type of de-synchronization attack

Other issues relate to the requirement for NVM and the not-so-light-weight encryp-

tion function, which work against the low-cost, resource-constrained objective

ECE UNM 28 (3/24/18)

HOST PUF-Based Authentication Protocols ECE 525

entity sbox_mixedcol is
port (

clk_in1: in std_logic;
clk_in2: in std_logic;
FCLK_CLK0: in std_logic;
...

Protocol 6: Enrollment Operations for HELP Authentication Protocol

VHDL description of Entropy source

Cadence synthesisGlitch-
free
std. cell
library

Netlist

Automatic Test
Pattern Generation

Challenges

001010100101...
110001010001...
001001010001...

Hazard-free conversion

Characterization

C1
C2
C3

Secure Server Database

PNRxPNR0 PNR1 PNR2 PNF0 PNF1 PNF2 PNFx

C1
C2
C3

Cn

276.2328.0328.0364.0288.0366.9294.8380.1

286.1337.1334.6374.3278.6352.7282.8366.6

282.3338.0336.4372.7280.8355.7288.4366.3

272.1323.7325.18362.9292.3373.5301.2387.5

Enrollment of all chips at 25oC, 1.00V

Subset of 30 chips

PNR0 PNRn PNF0 PNFm

Analysis of TVN and WID, challenge set selection

PNR0 PNRn PNF0 PNFm

C30

25oC, 1.00V 100oC, 1.05V

ECE UNM 29 (3/24/18)

HOST PUF-Based Authentication Protocols ECE 525

Protocol 6: HELP Distribution Effect

Storing x PNR and PNF per token allows x2 PNDs to be created

Distribution Effect + Path-Select-Masks make x2 a much larger exponential

Group processing by TVCOMP makes it possible for one PND to generate up to

100 or more different PNDc, each with nearly equal probability of producing 0 or 1

The bit value produced by a PNDc is impossible to predict without knowing the

values of the other 2047 PND used in the bitstring generation process

TVComp’s group processing yields PNDcx of -9.0 and -11.0, dependent on which

PND are selected by the Path-Select-Masks

5% 95%

MaskSetA PND distribution MaskSetB PND distribution
chip = 0.0 chip = 1.0

5% 95%

Rngchip = 90

PNDx = -9.0

Rngchip = 100

standardize

zPNDx = (-9.0 - 0.0)/100 = -0.09 zPNDx = (-9.0 - 1.0)/90 = -0.11

reference
transform

PNDcx = -0.09*100 + 0.0 = -9.0 PNDcx = -0.11*100 + 0.0 = -11.0

ref = 0.0, Rngref = 100

Chip Number
1 2 3 4 5

40

35

30

25

20

15

10
0

1

0

1

0

1

Modulus 10 bit value assignment

P
N

D
cx

0 to 1

stays 1

stays 1

1 to 0

stays 0

stays 1

stays 1

1 to 0

ECE UNM 30 (3/24/18)

HOST PUF-Based Authentication Protocols ECE 525

Protocol 6: HELP Authentication Protocol: Dual Helper Data Algorithm
The Dual Helper Data method can be used to improve reliability for authentication
when both the token and server maintain shared secrets

Dual Helper Data extends the Single Helper Data method described earlier for HELP

Here, both the token AND server generate helper data, with the server’s helper

data derived from modPNDco computed from the PN stored in the secure DB

The helper data bitstrings are bitwise AND’ed and used to double the effectiveness of

the Margin technique

10 15 18
0

10

20

m
od

P
N

D
c

s s w w s w w w s w s w s w s w s s
0 1 1 1 0 1 1 0 0 0 1 0 1 0 0 0 0 0

strong 1

Index of modPNDc for chip C1

15
100101010000010011

Verifier HelpD

1 5 1010 15
011001000000010111

Token HelpD

1 5

000001000000010011
15

1010

15
000001010001001110

Token

001010 1

Token RespBS

1 5 10 15
000011011010101110

Verifier

=
Token StrongBS

Verifier
Database

bitwise AND’ed HelpD

1 5 10
Verifier RespBS

1 5 10

Verifier StrongBS
? Matched

0010110

weak

ECE UNM 31 (3/24/18)

weak

strong 0

weak

1 5

Using the Single Helper Data scheme, if this
enrollment value was a 0 (instead of a 1), then a
bit-flip error occurs. Using Dual Helper Data, it is
eliminated effectively doubling the protection
provided by the Margin

HOST PUF-Based Authentication Protocols ECE 525

PNy = PUFcx
cx

PNy

PN j

ckPN j = PUFck ck Server

IDi ServerGenID()

DBIDi PN j

i xSelectATPGID c

i x yDBID c PN

ID Phase

Authen Phase

n

For i in DB[IDi]

n1 TRNG()

m n1 n2

bss h SHBGmPNDco j Mar. bss h

?

(Search for match)

n TRNG()

1
ck Ok

Mod S ref Rngref Mar. SelParamm

mPNDco j APPUFck S ref Rngref Mod Ok

bss = bss

IDi

mPNDco ji
 APPN ji

S ref Rngref Mod Ok

i
bss bss DHBGmPNDco j Mar. bss h

Protocol 6: HELP Authentication Protocol

Prover (token hti with IDi) Verifier (server)

ID Phase

m n1 n2
Mod S ref Rngref Mar. SelParamm

E
n

ro
llm

en
t

A
ut

he
nt

ic
at

io
nn2

If match is found, proceed to
verifier authentication

ECE UNM 32 (3/24/18)

2
ck Server

Ok Server

HOST PUF-Based Authentication Protocols ECE 525

Protocol 6: HELP Authentication Protocol
In ID Phase of enrollment, automatic test pattern generation (ATPG) is used to select
a set of test vector sequences, {ck}

These are used as a common set of challenges for all tokens in the ID phase

The number of vectors depends on the security requirements regarding privacy

The sbox-mixedcol functional unit produces 40 PNs on average per 2-vector

sequence

Therefore, a set of 1000 vectors would produce approx. 40K timing values

The common challenges are transmitted to the token in a secure environment during

enrollment and applied to PUF

The token generated PN are transmitted to the verifier, annotated as {PNj} in the fig-

ure

The verifier generates an internal identifier IDi for each token using VerifierGenID()

and stores the set {PNj} under IDi in the secure database

ECE UNM 33 (3/24/18)

HOST PUF-Based Authentication Protocols ECE 525

Protocol 6: HELP Authentication Protocol
A similar process is carried out during the Authen Phase of enrollment except that a
token-specific set of ATPG-generated challenges are selected via SelectATPG(IDi))

The number of testable paths in sbox-mixedcol is approx. 8 million paths, making it

possible to create minimally overlapping sets for each token

Some overlap is desirable for privacy reasons as discussed below

Although the task of generating 2-vector sequences for all paths is difficult, it is

practical to use ATPG to target random subsets of paths

The set of PNs, {PNy}, generated in the Authen Phase are also stored, along with the

challenge vectors that are used, in the secure database under IDi

The fielded token authenticates using a 2 or optionally, a 3-phase process
• Phase 1 is token identification (TokenID) (can also serve as token authentication)
• Phase 2 is verifier authentication (VerifierAuthen)
• Phase 3 is optionally token authentication (TokenAuthen)

ECE UNM 34 (3/24/18)

HOST PUF-Based Authentication Protocols ECE 525

Protocol 6: HELP Authentication Protocol
The ID phase phase is shown in the graphical illustration of the protocol

The other two phases are nearly identical, with differences as noted below

The server generates and transmits nonce n2 to the token

Note that token can initiate authentication by sending a ’request to authenticate’

which is not shown

The token generates and transmits nonce n1 to the server

They both compute m = (n1 XOR n2)

The server selects a set of challenges {ck} and (optionally) computes a set of Offsets,

{Ok}

Both are transmitted to the token

Note that the selected challenges are typically only a subset of those applied

during enrollment

ECE UNM 35 (3/24/18)

HOST PUF-Based Authentication Protocols ECE 525

Protocol 6: HELP Authentication Protocol
They both compute SelParam(m) to obtain a set of HELP parameters Mod, S, ref,

Rngref and Mar. using bit-fields from m

The parameter S represents the two LFSR seed parameters for HELP, which are

derived directly from bit-fields in m

The remaining parameters are derived using a lookup-table operation as a means of

constraining them to specific ranges

For example, Mod(ulus) is lower bounded by the Mar(gin) and is constrained to

be an even number typically less than 24

Similarly, ref and Rngref parameters are constrained to a range of fixed-point

values determined from the range of values observed during characterization

ECE UNM 36 (3/24/18)

HOST PUF-Based Authentication Protocols ECE 525

Protocol 6: HELP Authentication Protocol
The HELP operations discussed in earlier screen casts are then applied:
• The challenges {ck} generate timing values {PN’j} from the PUF given as PUF({ck}

• PNDiff, TVComp, (optionally) Offset and Modulus operations are applied to the
{PN’j} to generate the set {mPNDco’j} given as ApplyParameters (AP)

• Bitstring generation using the SingleHelperData scheme (SHBG) is then

performed by the token using the Margining process

SHBG returns both a strong bitstring bss’and a helper data bitstring h’, which

are both transmitted to the verifier

• The verifier carries out an exhaustive search process by applying AP to each of

its stored token data sets {PNj}i using the same parameters

However the DualHelperData scheme, denoted DHBG, is used instead

DHBG modifies the token’s bitstring bss’ to bss” and simultaneously generates

the verifier’s strong bitstring bss for the current token

The verifier then compares bss with bss” and authenticates if a match occurs

ECE UNM 37 (3/24/18)

HOST PUF-Based Authentication Protocols ECE 525

Protocol 6: HELP Authentication Protocol
Note that this is a compute-intensive operation for large databases because AP and
DHBG must be applied to each stored {PNj}i in the database

However, the search operation can be carried out in parallel on multiple CPUs

given the independence of the operations

As indicated, the search terminates when a match is found or the database is

exhausted

• In the latter case, authentication terminates with failure at the end of the

TokenID Therefore, the TokenID also serves as a gateway that prevents an

adversary from depleting a token’s CRPs on the verifier in a denial-of-service

attack

• In the former case, the IDi of the matching verifier data set is passed to

VerifierAu- then

Here, the same process is carried out except the token and verifier roles are

reversed and the search process is omitted

Also, the challenges used in the TokenID can be re-used and only SelParam run

using two new nonces (n3 XOR n4)
ECE UNM 38 (3/24/18)

HOST PUF-Based Authentication Protocols ECE 525

Protocol 6: HELP Authentication Protocol
The optional TokenAuthen is similar to TokenID in that the token is again authenti-
cating to the verifier

Here, a ‘token specific’ set of challenges {cx} are used, and again the search pro-

cess is omitted

Note that token privacy is preserved in the TokenID because, with high probability,

the transmitted information bss’ and h’ will be different for each authentication

This is true because of the diversity of the parameter space provided by the Mod,

S, ref, Rngref, Margin parameters

This diversity is exponentially increased by the Path-Select-Mask and Distribution

Effect discussed earlier

Moreover, by creating overlap in the challenges used by different tokens in the Toke-

nAuthen phase, tracking is prevented in this phase as well

ECE UNM 39 (3/24/18)

