
©Georgia Institute of Technology, 2020 1

ECE 4130/6130 FPGA Project 
Summer 2020  

 
Professor Vincent J. Mooney III 

School of Electrical and Computer Engineering 
Georgia Institute of Technology, Atlanta, GA 

 
1. Introduction 

 
The ECE 4130/6130 project for the Summer 2020 semester will focus on the design and 
implementation of a scalable traditional (fine-grained) reconfigurable logic chip known as a Field 
Programmable Gate Array (FPGA).  The FPGA design will target fabrication at 45nm; potentially, 
some students will also design in more recent chip technology using rules available under a non-
disclosure agreement (NDA).  Alternatively, a free 15nm design library is available but re quires 
installation (which is nontrivial…); please ask Prof. Mooney if this interests you. 
 
Reconfigurable Logic Architectures 
 
Reconfigurable logic families including FPGAs are devices with programmable logic blocks and 
programmable interconnect.  Figure 1 shows an example of an island-style FPGA. 
 

 

 
 

Figure 1.  Sample Reconfigurable Logic “Island” Architecture 
 
The FPGA is comprised of a large amount of programmable basic logic elements capable of 
implementing arbitrary Boolean equations with reconfigurable interconnect to wire them together.  



©Georgia Institute of Technology, 2020 2

There is a seemingly endless design space for implementing reconfigurable logic, so for the purpose 
of this project, we will use an SRAM1-based island architecture with three block types as shown in 
Figure 1: Combinational Logic Block (CLB), Switch Block (S-Block) and Connect Block (C-
Block).  CLBs are configurable logic blocks which contain the programmable logic elements.  C-
Blocks connect CLBs to the rows and columns of the interconnect, and S-Blocks comprise the space 
where the rows and columns meet and allow signals to pass or make turns or to not pass at all. 
 
A single CLB is composed of multiple “Basic Logic Elements” (BLEs).  A single BLE comprises 
a k-input Look-Up Table (LUT) and a Flip-Flop (FF).  The k-input LUT in essence is a 2k to one 
multiplexer with “k” select lines.  Any arbitrary logical function of k variables can then be 
implemented as the output of the multiplexer by statically setting the 2k inputs to the functionally 
correct values and then using the “k” select lines as the variable inputs.  The output of each BLE is 
either registered or not registered by a bypassable FF; see Figure 2.    
 

 

 
 

Figure 2. The k-input BLE. 
 
The target Combinational Logic Block (CLB) design contains N BLEs producing “N” outputs from 
“I” inputs.  These I inputs along with the N outputs are shared and multiplexed (using Log2 (I + N) 
SRAM bits per multiplexor) amongst the k*N BLE inputs as shown in Figure 3. 
 

  

                                                 
1 SRAM may be misleading, as the memory is not necessarily random access at all times.  We will explore exactly how 
to implement a 6T-based reconfigurable array in this class.  In any case, “SRAM-based FPGA” is the industry standard 
name for this type of device. 



©Georgia Institute of Technology, 2020 3

 
 
Figure 3. A Single CLB 
 
The result is that k*N multiplexers are needed where each multiplexer takes in I+N inputs and 
produces one output bit.  Clearly, not all values possible of I, k and N make sense.  The feedback 
lines allow feedback between the local BLEs; also, the feedback lines keep this local routing out of 
the C-block matrix. 
 
The CLBs, when arranged in an array with row and column based interconnect, form the basis of 
an island or mesh style traditional reconfigurable logic architecture as shown earlier in Figure 1 and 
repeated on the next page as Figure 4 for convenience.  The inputs and outputs from each CLB are 
connected to the rows and columns of interconnect by C blocks.  Signals can be passed along the 
rows and columns or turned from a column to a row and vice versa by S blocks.  One S block, two 
C blocks, and a CLB form the unit that tiles and becomes the majority of the fabric of the FPGA as 
shown in Figure 5.  Due to lack of time, we will not design the “corner” and “NSEW” (north-south-
east-west) side tiles.  Thus, for example, we will not consider how to connect to I/O pads. 
 
The I inputs and N outputs from each CLB are connected to a fraction (Fc2) of the total number of 
lines, W, of the C block through switches (denoted as circles in the figures).  The terminations of 
the rows and columns are the FPGA IO blocks connected through C blocks. 
 
  

                                                 
2 “Fc” is fractional connect.  This is a ratio between 0 and 1 which represents what percentage of C-Block routing has 
connections to the CLB MUX input. 



©Georgia Institute of Technology, 2020 4

 

 
 

Figure 4.  Reconfigurable Logic “Island” Architecture 
 
 
Whenever a vertical and a horizontal channel intersect, there is an S block.  In this architecture, 
when a wire enters an S block, there are three programmable switches that allow it to connect to 
three other wires in adjacent channel segments.  This type of S block architecture is called the planar 
or domain-based switch box topology.  In this switch box topology, a wire in track number one 
connects only to wires in track number one in adjacent channel segments, wires in track number 2 
connect only to other wires in track number 2, and so on, please see Figure 5.  This arrangement 
allows each signal to switch directions (but not to switch lines). 
 
The state of every look-up table (LUT), every multiplexer, and every switch is held in SRAM.  The 
contents of SRAM, called the bitstream, controls the operation of the FPGA and its implemented 
design. 
 



©Georgia Institute of Technology, 2020 5

 
Figure 5. CLB, S Block, and C Block 
 

Pin/Wire List 
 
The following is a pin/wire list of the currently specified pins/wires with the active state in 
parenthesis if specified.  There may be several Ground pins/wires. 
 

 bypass clock signal / program clock 
 bypass clock enable 
 program enable 
 bitstream in 
 bitstream out 
 sleep (high) 
 global reset (low) 
 VDD1, e.g., 0.8 volts 
 VDD2, e.g., 1.1 volts 
 VDD Pad, e.g., 2.5 volts 
 Ground 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



©Georgia Institute of Technology, 2020 6

2. Project Description 
 
Each student in this class will design an entire CLB, C-block, S-block tile with the choice of one of 
the following two approaches: (1) ultra low power (ULP) and high speed (2) super high speed 
(SHS) and low power.  (Note that some students may have arranged a specialized project and thus 
may have customized goals.)  However, each student will participate in a competition where 
intermediate designs will be shared with the entire class, but the “competition” will be greater for 
students adopting the same approach.  Those choosing super high speed will optimize their design 
for high speed first while maintaining low power; for ultra low power, minimizing energy 
consumption will be the metric of choice while also maintaining high speed.  Students are free to 
use any logic families or digital tricks of their choice; furthermore, students are encouraged to 
explore the design space to come up with their best solution.  All designs will be verified using 
HSPICE for speed and power. 
 
This project is worth 30% of each student’s final grade and will also include approximately two 
thirds of the lab grade.  As such, it needs to be carried out with efforts proportional to approximately 
half of a course grade.  Given the importance of properly interconnected intermediate design results, 
together with a need for efficiency, we will use the following guidelines. 
 
Every class will be held every Monday/Wednesday with very few exceptions.  In each class, some 
lecture material may be presented by Professor Mooney; furthermore, a few students will briefly 
report their status in each class by using a schedule organized by Prof. Mooney. 
 
Each week for the first few weeks, each student will turn in an architecture and schematic of the 
basic elements (refer to project schedule and deliverables section) along with a writeup of what are 
the next steps planned.  A written report (handwritten is not acceptable) of no less than three and 
no more than 10 pages (including figures) must be turned in.  The lowest level allowed in the report 
(and also required to be in the report) is transistor-level. Gate-level and higher-level 
schematics/diagrams should also be presented in the report.  Any assumptions should be clearly 
stated up front.  Please do not expect questions to be answered on a continuous, ongoing, daily 
basis.  Email questions may or may not be answered (email is typically a very inefficient method 
of communication for open-ended technical discussions about VLSI).  Additional due dates will be 
posted/explained as the project progresses.  Roughly, every four days or so some item will be due. 
 
Anyone can make any suggestion at any level (circuit, architecture, etc.) at any time.  Prof. Mooney 
will give feedback on which suggestion to take/follow.  Arguments are welcome but need to be 
carried out in a discussion.  There will be some evolution – perhaps significant! – of the 
specification and expectations; this will be taken into account in grading the final project.   
 
The design requirements of CLB, C-Block and S-Block are described in the following sections in 
detail. 
 
 
 
 
 



©Georgia Institute of Technology, 2020 7

CLB Design 
 
The FPGA architecture of choice is the island style or mesh based architecture shown in 
Figures 1 and 4.  It consists of “islands” of combinational logic blocks surrounded by a “sea” of 
interconnect.  Each student will be responsible for designing and laying out a functional CLB of 
functional design shown in Figure 3 with the following parameters: K = 4, N = 4, I = 10.  The logic 
Flip Flop in the BLE should have an active low global asynchronous reset. 
 
S Block Design 
 
While CLB designs are about designing the islands of the FPGA, S Block and C Block Designs 
are responsible for the “sea” or the interconnect.  A planar style S Block is detailed functionally in 
Figure 6, with a possible but not mandatory switch implementation.  The number of vertical and 
horizontal tracks or wiring paths should be W = 24; the percentage of tracks that each input is 
connected to should be Fc_in = 0.5 (so 12 of the 24 lines are connected), while each output has 
Fc_out = 0.25 (so every 4th line is connected).  The S-Block line junction proposed in Figure 6 
produces the desired function at a junction; however, other appropriate solutions may exist and 
should be explored.  As can be seen in the figure, the S-Block can only switch the direction of 
signals, so the remaining ways to fan-out an output would be by routing in either the CLB or the 
C-Block. 
 

 
Figure 6. A possible S block line junction 
 



©Georgia Institute of Technology, 2020 8

C Block Design 
 
While the S-Block can only switch the direction of signals, C Blocks connect the signals between 
CLBs.  Functionally, the C-Block will supply 10 input lines and 4 output lines from the CLB as 
shown in Figures 5 and 7. 
 
 

 
 
Figure 7.  C Block, doglegging, no doglegging 
 
 

 

 
 

Figure 8.  Doglegging on outputs allows multiple lines to be routed to the next input 
 
Doglegging is a way to switch lines, or fan-out a connection.  It is required that no doglegging will 
be allowed on input pins in the C block; however, doglegging is allowed on the output pins.  One 



©Georgia Institute of Technology, 2020 9

output from the CLB may be tied to multiple lines in the doglegged scheme as shown in Figures 7 
and 8.  Furthermore, the input/output lines from each CLB must be exclusive to that CLB.  Adjacent 
CLBs should not share input or output lines across a C-Block. 
 
Much of the FPGA literature alludes/implies that designs do not allow doglegs between tracks off 
of the switches to the input pins, a feature that would allow signals to switch tracks in a C block 
and therefore would provide more routing options; instead, it seems that most FPGAs opt for a 
faster design where the inputs are buffered off of the tracks and multiplexed into the input pins. 
 
SRAM Design 
 
Not explicitly shown in the figures are the SRAM bits required to hold the configuration of every 
CLB, S-Block and C-Block.  The state of every switch, connection, LUT, as well as every 
multiplexer in the CLB will have to be held in SRAM.  The SRAM should be organized as 1-bit 
modified “flip-flops” or “registers” as shown in Figure 9.  So, in addition to the logical and routed 
inputs and outputs of the CLB, there are word lines and bit lines from an address decoder (not part 
of your design) for read/write operations of the SRAM that holds the bitstream.  Therefore, the S-
Block or C-Block will have to provide word lines and bit lines in and out; of course, the word and 
bit line must properly tile. 

WL

bit

 

Figure 9: an SRAM cell 

Critical Path Selection 
 
The critical paths in the tile are from the output of the flip flop in one BLE to the input of the flip 
flop in another BLE inside a different CLB.  The paths may go through several BLEs in other CLBs 
through the connections of C Blocks before arriving at the destination flip flop as shown in 
Figure 10. 

BLE 0

BLE 1

BLE 2

BLE 3

BLE

D Q

LUT

BLE

D Q

LUT

0

1

2

CLB 2

0

1

2

C Block 1 C Block 2CLB 1 CLB 3  

Figure 10: Critical Path 



©Georgia Institute of Technology, 2020 10

Clock Routing and Buffers 
 
Even though global clock routing and clock generation are not major concerns of your design, each 
student is responsible for clock routing in the tile.  Since there is no restriction on the metal layers 
to be used in your design, in order to employ the clock distribution scheme shown in Figure 11, one 
vertical and two horizontal routing spaces should be reserved for clock routing. Hence, the CLB 
block should have 10 input lines and 4 output lines from the C-Block as well as two non-overlapping 
clock lines from the clock routing. 
 
In addition, due to the grid size for the entire chip and the clock distribution scheme as shown in 
Figure 11, spaces need to be left in a regular grid fashion for the clock distribution buffers that 
appear at every branch in the clock tree.  It is required to leave channels for clock routing and spaces 
for inserting the clock buffers. 
 
 

 
Figure 11. H Bar Clock Tree  
 
 
General Design Considerations 
 
As all of the individual components will be integrated to form a functional FPGA, the following 
general design rules apply to all projects. 
  

 Metal layers, intents and metal related decisions should be specified and documented. 



©Georgia Institute of Technology, 2020 11

 The state SRAM/Flip Flops, which hold MUX state (i.e., the select input bits of all muxes 
are inputs from SRAM) and the logic of the LUTs, should have a program enable line which 
is active high.  This line will be tied to ground during normal operation to ensure that 
erroneous programming will not occur during operation in the programmed, running state. 

 Floating lines should be avoided whenever possible, and extra bits may be used to tie lines 
to known states. 

 A global reset, which is active low, should be connected to all clockable Flip Flops in the 
BLE. 

 The functioning of the FPGA blocks should be considered from the point of view of runtime.  
Optimize for the run condition and not the programming condition. 

 MUX designs where a floating input is possible should have the ability to tie line to a known 
state.  This is primarily a concern in the CLB, but this should be considered in other blocks 
as well. 

 Area guideline: 
You can roughly trade off area for power/speed percent to percent (e.g., 50% power decrease 
at a cost of 50% area increase). Hence, it is not allowed to trade off large area increase (50%) 
for small percent (10%) of power/speed improvement (e.g., a ratio of 5 to 1).  However, 
what exactly is "in-between" equal percentage to equal percentage and a ratio of 5 to 1 is 
debatable; do not focus on exactly what is the precise tradeoff ratio you have achieved; 
instead, justify/explain/rationalize your choices with qualitative and quantitative reasons 
(both are needed). 

 
Specific Design Considerations: Super-High Speed (SHS) vs. Ultra Low Power (ULP) 
 
Among many super high speed design options, one is to use pass transistors such as pass nFETs 
with the gate voltage increased to VDD + VtN instead of using T-gates to save area while achieving 
high speed.  Student choosing SHS should investigate the pros and cons of this option. 
 
For students choosing ultra low power, one of the low power design options is to design a scheme 
to turn partial or entire design into a low power mode.  For example, a disable bit for each BLE and 
C-Block is used to turn the entire block off when not used.  In such a case, an SRAM bit within the 
block is programmed to set the disable bit.  Another example is that a global “sleep” mechanism or 
signal, which is active-high and should be present in all cells, will trigger the design to enter low-
power mode.  Student choosing ULP should look into the advantages and disadvantages of these 
options. 
 
Brainstorm any other super high speed or ultra low power architecture and design implementation 
ideas for SHS or ULP, respectively.  Each student should include the following into the final report: 

 At least “top two” super high speed ideas for SHS or at least “top two” ultra low power 
ideas for ULP. 

 The analysis of the pass nFET with increased voltage option for SHS, or the analysis of 
utilizing a disable bit and a sleep signal options for ULP.  Discuss the pros and cons. 

 Compare your SHS or ULP solutions to the corresponding option described above. 
 
 
 



©Georgia Institute of Technology, 2020 12

Schedule and Deliverables 
 
Part 1: Critical Path Analysis (Due June 22) 
 
We start our project with the paper analysis of a sample FPGA critical path using logical effort. The 
sample critical path, which is only a small portion of the complete critical path in Figure 10, is from 
the input of a BLE to the input of the LUT of the next BLE through the connection of a C Block.  
The entire path consists of multiplexers, flip-flops, LUTs and inverters/buffers as shown in Figure 
12 below.  However, Figure 12 is a functional diagram only.  You are free to optimize the entire 
critical path by using any logic structures and/or high-speed circuits of your choice.  In other words, 
you are free to choose any implementation of gates and topology.  We will pay particular attention 
to whether or not these decisions are thought through and explained in the report you turn in. 
 

k0 0

1

2

1-to-6
demux

C Block

k3

BLE

D Q

LUT

BLE

D Q

LUT

S Block 1

12-to-1 mux

S Block 0

0
k1
k2

CLB 0 CLB 1

I+N

K

1

1
5

14-to-1
mux

 

Figure 12: Sample Critical Path 

 
Turn in a written report including the following: 

1) Logical effort analysis of the critical path 
2) Functional block diagrams 
3) Hierarchical transistor schematics 

 Note: 
      No layouts at all 
      No floorplan 
      No stick diagrams 
 
Part 2: SPICE to Logical Effort and Power Analysis (Due June 26) 
 
Use SPICE simulation for gate characterization and power analysis on the sample critical path. 
Compare your results of simulation with those of hand calculations from the previous week. 
 
Turn in a written report including the following:  

1) SPICE simulation results 



©Georgia Institute of Technology, 2020 13

2) Comparison between results from SPICE and Logical Effort 
3) Power analysis 

Note: 
      No layouts 
      No floorplan 
      No stick diagrams 
 
Part 3: CLB/S-Block/C-Block Design (Due July 1) 
 
Brainstorm CLB, S-Block and C-Block architecture ideas and optimize the entire CLB, S-Block 
and C-Block tile by using any logic structures and/or high-speed/low power circuits of your choice.  
Please refer to the CLB/S Block/C Block Design Section for design requirements. 
 
Turn in a written report including the following: 

1) At least “top two” CLB, S-Block and C-Block architecture ideas 
2) Functional block diagrams 
3) Schematics 
4) Stick diagrams 

Note: 
1) No layouts 
2) No floorplan 

 
Part 4: Path Characterization (Due July 6) 
 
Use SPICE to calculate the logical effort and analyze power of the entire CLB, S-Block and C-
Block tile.  Compare your results of SPICE simulation with the results of hand calculations from 
previous weeks.  Finalize the architecture, functional block diagram, logic family and the circuit 
types of the entire CLB, S-Block, and C-Block tile. 
 
Turn in a written report including: 

1) SPICE simulation results 
2) Functional block diagram 
3) Schematics 
4) Stick diagrams 

Note: 
1) No layouts 
2) No floorplan 

 
Part 5: Individual Layouts and Floorplan (Due July 10) 
 
By now each student should have a complete list of individual “cells” – NAND gates, INV gates, 
Flip-Flops, wide MUXes, “SRAM” or “FF” LUT bits, etc. – needed to implement the entire CLB.  
We have been holding back on layout to reduce wasted effort on layout.  Now that each student has 
a more-or-less complete view (and justification) for the target architecture, functional block 
diagram, logic family and the circuit types of the entire CLB, we now proceed to lay out individual 
cells and DRC/LVS at the individual cell level only for this week’s turn-in.  Note that for each 



©Georgia Institute of Technology, 2020 14

“cell” a stick diagram must be done first; furthermore, prior to implementing layout, the stick 
diagrams must be used to derive “rectangles” which form a floorplan for your CLB, S-Block and 
C-Block tile.  Please assume Phi1-Phi2 clocking signals are available from an external, unspecified 
source; include these CLK signals in your floorplan in a way that tiles correctly. 
 
Due to the small class size and the remote usage of Cadence tools this summer, you are only 
required to provide a layout for the CLB (including, of course, all cells).  However, you are also 
required to have a floorplan for the entire design (CLB, S-Block and C-Block). 
 
Turn in a written report including the following: 

1) A complete list of “cells” comprising your entire design (CLB, S-Block and C-Block) 
2) For each cell, stick diagram(s) (Note: multiple stick diagrams may be needed if various 

aspect ratios – ratios of height to width – are needed for the floorplan) 
3) A floorplan for your tile (i.e., CLB, S-Block and C-Block tile) 
4) For each cell in the CLB, a layout which passes DRC and LVS 

Note: 
1) No DRC or LVS is required for “multi-cell” combinations; instead, however, layout + DRC 

+ LVS is required for each individual cell in the CLB 
2) For incomplete work from prior weeks, additional work may need to be provided in the 

report (e.g., additional SPICE simulations may have to be carried out) 
 
Part 6: Full Layout and Verification of CLB Tile (Due July 15) 
 
For this week all “cells” must be combined into a full layout of your CLB tile.  This week’s work 
may be what most engineers and the general public think about when they hear the term “VLSI.”  
This will result in a multi-color layout which dwarfs the complexity and effort put into lab2!   
 
Please note that in going from individual cells to multi-cell combinations it is commonly advised 
to add at most 10 additional wire connections prior to re-running DRC and/or LVS.  In other words, 
aim for incrementally putting your tile together and checking for correctness. 
 
Turn in a written report including: 

1) All information from prior weeks 
2) Updated stick diagrams 
3) Updated floorplan for your tile 
4) Portions of your layout (i.e., parts of the CLB) which pass DRC and LVS 
5) A complete layout which passes DRC and LVS 

Note: 
1) Please DO NOT attempt any major changes to what you decided at the end of Part 4; instead, 

for new approaches potentially resulting in improved design, add a “lessons learned” and/or 
“future work” section to your report in which you NOTE (but do not DO) new approaches 
which you believe will improve your design in some metric or metrics (speed, power, area, 
etc.)  

2) For incomplete work from prior weeks, additional work may need to be provided in the 
report (e.g., additional SPICE simulations may have to be carried out) 

 



©Georgia Institute of Technology, 2020 15

Part 7: Post-Layout Critical Path Timing Analysis (Due July 20) 
 
Use Cadence tools to re-verify the timing of the specified critical path.  Do NOT focus on other 
paths; instead, focus on the identified critical path.  Extracting accurate parasitics should result in 
non-trivial insights into your design.  Add comments on how you could improve your CLB tile to 
the “lessons learned” and/or “future work” sections of your report.  At this point, do not make any 
major changes to your design. 
 
Turn in a written report including the following: 

1) All information from prior weeks 
2) A “high-level” view of what you learned about your layout due to insights from extracting 

proper SPICE models; e.g., what parasitics or other issues caught you off guard? 
3) SPICE simulation results based on extraction 

Note: 
1) Please emphasize having a complete, working (DRC + LVS) tile for your final report; it is 

NOT ACCEPTABLE to say “we tried to add X and Y optimizations to our tile; as a result, 
our final CLB tile does not fully DRC, LVS or extract” 

2) Place extra effort on EXPLAINING your design and your design decisions; Prof. Mooney 
and any graduate students who may help to grade your project are not omniscient!  Please 
write down even points which you think may be obvious.  Place extra effort on writing and 
rewriting your report.  It is best if you write a mostly complete report by the day before the 
due date; then, go to sleep; then, wake up and spend an hour or an hour and a half slowly 
re-reading your report and adding clarity/grammar/etc. 

 
 
FINAL REPORT AND PRESENTATION 
 
Between the last turn-in (Project Part 7 above) and the final exam time (Wednesday July 29 from 8am 
to 10:50am) you will be expected to iterate on your written report to improve it as well as produce a 
powerpoint slide deck to present your design on July 29.  Final reports and powerpoint slide decks are 
due prior to 7:30am on Wednesday July 29, 2020.  Please note that the format for the presentation must 
be powerpoint and not some other format such as a Google version (the problem in the past has been 
that the translation from free on-line document programs to powerpoint results in strange fonts and 
messed up pictures).  The final report may be in pdf or MS-DOC. 


