Authentication II

ECE 4156/6156 Hardware-Oriented

On Security and Trust

Spring 2025

Assoc. Prof. Vincent John Mooney III

Georgia Institute of Technology

Reading Assignment

- Take good notes during this lecture!
- Introduction to Modern Cryptography, 3rd Edition, Chapter 11
- Introduction to Modern Cryptography, 2nd Edition, Chapter 10
- R. Needham and M. Schroeder, "Using Encryption for Authentication in Large Networks of Computers," Communications of the ACM, Volume 21, Number 12, Dec. 1978, pp. 993-999
- G. Lowe, "An attack on the Needham-Schroeder public-key authentication protocol," Information Processing Letters, Volume 56, Issue 3, Nov. 1995, pp. 131-133.

Protocols

- A protocol is a series of steps involving two or more parties designed to accomplish a task.
 - Everyone involved in the protocol must know the protocol and all of the steps to follow in advance
 - Everyone involved in the protocol must agree to follow it
 - The protocol must be unambiguous, the steps must be well defined, and there must be no change of misunderstanding
 - The protocol must be complete, i.e., there must be a specified action for every possible situation

First Attempt to Communicate Securely

- Alice and Bob agree on a cryptosystem
- AES
- Alice and Bob agree on a symmetric key
- Alice takes her plaintext message and encrypts it using the encryption algorithm and the key, creating a ciphertext message
- Alice sends the ciphertext to Bob
- Bob decrypts the ciphertext message with the same algorithm and key and reads it

Threat Scenario

- Server sends Alice a random humber (a "nonce") in plaintext
- Alice encrypts the nonce with her private key and sends it back to the server along with her name
- The server uses Alice's public key to decrypt the message and verify that the nonce sent by Alice is correct
- Now the server can proceed with the next steps, e.g., by sending Alice a session key (e.g., a 128-bit AES key) encrypted with Alice's public key

Actually...

• The previous slide presented one-way authentication, e.g., Alice authenticated herself to the server

• What about communication pretending to be from the server but

really from another entity?

Two-way authentication

Server authenticates Alice

Alice authenticates the server

Then the next steps proceed...

 $= N_{S}$ $= N_{S} (N_{S}) \longrightarrow Dec_{p}$ N_{S}

NS, NA DECRIVE

©Georgia Institute of Technology, 2018-2025

A Second Attempt to Communicate Securely

- A public key cryptosystem infrastructure is made widely available
- Alice obtains Bob's public key from the infrastructure
 - E.g., using a Certificate Authority (CA) or a Trusted Third Party (TTP)
- Alice encrypts her message using Bob's public key and sends the message to Bob
- Bob then decrypts Alice's message using his private key

Vincepub Needhann Schroeder Sym. Koy Protoca Olovyesym Georgia Institute of Technology, 2018-2025 11

Treat has all symmetric keys Needham-Schroeder (1978)

Kerberos

- Alice sends Trent her identity and Bob's: A,B
- - $E_A(T,L,K,B)$; $E_B(T,L,K,A)$
- Alice then uses K to send Bob her identity and timestamp, plus Trent's message T, L, K
 - $E_K(A,T)$; $E_B(T,L,K,A)$
- Bob creates a message consisting of the timestamp plus one, encrypts it in *K*, and sends it to Alice
 - $E_{K}(T+1)$

An Attack on Needham-Schroeder

- Mallory obtains an old session key K
- Mallory to Bob: $E_B(K,A)$
- Bob to Alice: $E_K(N_B)$
 - Mallory intercepts this message and decrypts it with K
- Mallory to Bob: $E_K(N_B-1)$

RECALL!

Alice to Trent: A, B, N_A

Trent to Alice: $E_{K_A}(N_A, B, K, E_{K_R}(K, A))$

Alice to Bob: $E_{K_R}(K,A)$

Bob to Alice: $E_{\kappa}(N_B)$

Alice to Bob: $E_{\kappa}(N_{B}-1)$

Public-Key Needham-Schroeder

```
• Alice to Trent: A, B
• Trent to Alice: E_{T_{priv}}(B_{pub}, B)
• Alice to Bob: E_{B_{pub}}(N_A, A)
• Bob to Trent: B, A
• Trent to Bob: E_{T_{priv}}(A_{pub}, A)
• Bob to Alice: E_{A_{pub}}(N_A, N_B)
• Alice to Bob: E_{B_{pub}}(N_B)
```

- Assumption: Alice talks to Mallory
- 1.1 Alice to Trent: A, M
- 1.2 Trent to Alice: $E_{T_{priv}}(M_{pub}, M)$
- 1.3 Alice to Mallory: $E_{M_{pub}}(N_A, A)$
- 2.3 Mallory(Alice) to Bob: $E_{B_{pub}}(N_A, A)$
- 2.4 Bob to Trent: B, A
- 2.5 Trent to Bob: $E_{T_{priv}}(A_{pub}, A)$
- 2.6 Bob to Mallory(Alice): $E_{A_{pub}}(N_A, N_B)$
- 1.4 Mallory to Trent: M, A
- 1.5 Trent to Mallory: $E_{T_{priv}}(A_{pub}, A)$
- 1.6 Mallory to Alice: $E_{A_{pub}}(N_A, N_B)$
- 1.7 Alice to Mallory: $E_{M_{DUD}}(N_B)$
- 2.7 Mallory(Alice) to Bob: $E_{B_{pub}}(N_B)$

RECALL!

- 1.1 Alice to Trent: A, M
- 1.2 Trent to Alice: $E_{T_{priv}}(M_{pub}, M)$
- 1.3 Alice to Mallory: $E_{M_{pub}}(N_A, A)$
- 1.4 Mallory to Trent: M, A
- 1.5 Trent to Mallory: $E_{T_{priv}}(A_{pub}, A)$
- 1.6 Mallory to Alice: $E_{A_{pub}}(N_A, N_M)$
- 1.7 Alice to Mallory: $E_{M_{pub}}(N_M)$
- 2/1 Alice to Trent: A, B
- 2.2 Trent to Alice: $E_{T_{priv}}(B_{pub}, B)$
- 2.3 Alice to Bob: $E_{B_{DUb}}(N_A, A)$
- 2.4 Bob to Trent: B, A
- 2.5 Trent to Bob: $E_{T_{priv}}(A_{pub}, A)$
- 2.6 Bob to Alice: $E_{A_{pub}}(N_A, N_B)$
- 2.7 Alice to Bob: $E_{B_{pub}}(N_B)$

©Georgia Institute of Technology, 2018-2025

- Assumption: Alice talks to Mallory
- 1.1 Alice to Trent: A, M
- 1.2 Trent to Alice: $E_{T_{priv}}(M_{pub}, M)$
- 1.3 Alice to Mallory: $E_{M_{pub}}(N_A, A)$
- 2.3 Mallory(Alice) to Bob: $E_{B_{pub}}(N_A, A)$
- 2.4 Bob to Trent: *B*, *A*
- 2.5 Trent to Bob: $E_{T_{priv}}(A_{pub}, A)$
- 2.6 Bob to Mallory(Alice): $E_{A_{pub}}(N_A, N_B)$
- 1.4 Mallory to Trent: M, A
- 1.5 Trent to Mallory: $E_{T_{priv}}(A_{pub}, A)$
- 1.6 Mallory to Alice: $E_{A_{pub}}(N_A, N_B)$
- 1.7 Alice to Mallory: $E_{M_{pub}}(N_B)$
- 2.7 Mallory(Alice) to Bob: $E_{B_{nub}}(N_B)$

Ssume

Fast

lenient

ovation

1.1 Alice to Trent: A, M

1.2 Trent to Alice: $E_{T_{priv}}(M_{pub}, M)^{\circ}$

1.3 Alice to Mallory: $E_{M_{pub}}(N_A, A)$

1.4 Mallory to Trent: M, A

1.5 Trent to Mallory: $E_{T_{priv}}(A_{pub}, A)$

1.6 Mallory to Alice: $E_{A_{pub}}(N_A, N_M)$

1.7 Alice to Mallory: $E_{M_{pub}}(N_M)$

2.1 Alice to Trent: A, B

2.2 Trent to Alice: $E_{T_{priv}}(B_{pub}, B)$

2.3 Alice to Bob: $E_{B_{pub}}(N_A, A)$

2.4 Bob to Trent: B, A

2.5 Trent to Bob: $E_{T_{priv}}(A_{pub}, A)$

2.6 Bob to Alice: $E_{A_{pub}}(N_A, N_B)$

2.7 Alice to Bob: $E_{B_{pub}}(N_B)$

An Attack on Public-Key Needham-Schroeder

• Assumption: Alice talks to Mallory

• RECALL!

• 1.1 Alice to Trent: A, M

• 1.2 Trent to Alice: $E_{T_{priv}}(M_{pub}, M)$

• 1.3 Alice to Mallory: $E_{M_{pub}}(N_A, A)$

1.1 Alice to Trent: A, M

1.2 Trent to Alice: $E_{T_{priv}}(M_{pub}, M)$

1.3 Alice to Mallory: $E_{M_{nub}}(N_A, A)$

- Assumption: Alice talks to Mallory
- 1.1 Alice to Trent: A, M
- 1.2 Trent to Alice: $E_{T_{priv}}(M_{pub}, M)$
- 1.3 Alice to Mallory: $E_{M_{pub}}(N_A, A)$
- 2.3 Mallory(Alice) to Bob: $E_{B_{pub}}(N_A, A)$
- 2.4 Bob to Trent: *B, A*
- 2.5 Trent to Bob: $E_{T_{priv}}(A_{pub}, A)$
- 2.6 Bob to Mallory(Alice): $E_{A_{DUD}}(N_A, N_B)$

1.1 Alice to Trent: A, M

1.2 Trent to Alice: $E_{T_{priv}}(M_{pub}, M)$

1.3 Alice to Mallory: $E_{M_{pub}}(N_A, A)$

SIM Jah POUS

2.3 Alice to Bob: $F_{B_{pyb}}(N_A, A)$

2.4 Bob to Trent: B, A

2.5 Trent to Bob: $E_{T_{nriv}}(A_{nub}, A)$

2.6 Bob to Alice: $E_{A_{pub}}(N_A, N_B)$

2.7 Alice to Bob: $\bar{E}_{B_{pub}}(N_B)$

Esporb(NA, A)

Esporb(NA, M)

Esporb(NA, M)

April

©Georgia Institute of Technology, 2018-2025

- Assumption: Alice talks to Mallory
- 1.1 Alice to Trent: A, M
- 1.2 Trent to Alice: $E_{T_{priv}}(M_{pub}, M)$
- 1.3 Alice to Mallory: $E_{M_{pub}}(N_A, A)$
- 2.3 Mallory(Alice) to Bob: $E_{B_{pub}}(N_A, A)$
- 2.4 Bob to Trent: *B*, *A*
- 2.5 Trent to Bob: $E_{T_{priv}}(A_{pab}, A)$
- 2.6 Bob to Mallory(Alice): $E_{A_{pub}}(N_A, N_B)$
- 1.4 Mallory to Trent: M, A
- 1.5 Trent to Mallory: $E_{T_{priv}}(A_{pub}, A)$
- 1.6 Mallory to Alice: $E_{A_{pub}}(N_A, N_B)$
- 1.7 Alice to Mallory: $E_{M_{pub}}(N_B)$
- 2.7 Mallory(Alice) to Bob: $E_{B_{nub}}(N_B)$

RECALL!

- 1.1 Alice to Trent: A, M
- 1.2 Trent to Alice: $E_{T_{priv}}(M_{pub}, M)$
- 1.3 Alice to Mallory: $E_{M_{pub}}(N_A, A)$
- 1.4 Mallory to Trent: M, A
- 1.5 Trent to Mallory: $E_{T_{priv}}(A_{pub}, A)$
- 1.6 Mallory to Alice: $E_{A_{DUD}}(N_A, N_M)$
- 1.7 Alice to Mallory: $E_{M_{pub}}(N_M)$
- 2.1 Alice to Trent: A, B
- 2.2 Trent to Alice: $E_{T_{priv}}(B_{pub}, B)$
- 2.3 Alice to Bob: $E_{B_{nub}}(N_A, A)$
- 2.4 Bob to Trent: B, A
- 2.5 Trent to Bob: $E_{T_{priv}}(A_{pub}, A)$
- 2.6 Bob to Alice: $E_{A_{pub}}(N_A, N_B)$
- 2.7 Alice to Bob: $E_{B_{pub}}(N_B)$

©Georgia Institute of Technology, 2018 2025

- Assumption: Alice talks to Mallory
- 1.1 Alice to Trent: A, M
- 1.2 Trent to Alice: $E_{T_{priv}}(M_{pub}, M)$
- 1.3 Alice to Mallory: $E_{M_{pub}}(N_A, A)$
- 2.3 Mallory(Alice) to Bob: $E_{B_{pub}}(N_A, A)$
- 2.4 Bob to Trent: *B*, *A*
- 2.5 Trent to Bob: $E_{T_{priv}}(A_{pub}, A)$
- 2.6 Bob to Mallory(Alice): $E_{A_{pub}}(N_A, N_B)$
- 1.4 Mallory to Trent: M, A
- 1.5 Trent to Mallory: $E_{T_{priv}}(A_{pub}, A)$
- 1.6 Mallory to Alice: $E_{A_{pub}}(N_A, N_B)$
- 1.7 Alice to Mallory: $E_{M_{pub}}(N_B)$
- 2.7 Mallory(Alice) to Bob: $E_{B_{pub}}(N_B)$

RECALL!

- 1.1 Alice to Trent: A, M
- 1.2 Trent to Alice: $E_{T_{priv}}(M_{pub}, M)$
- 1.3 Alice to Mallory: $E_{M_{pub}}(N_A, A)$
- 1.4 Mallory to Trent: M, A
- 1.5 Trent to Mallory: $E_{T_{priv}}(A_{pub}, A)$
- 1.6 Mallory to Alice: $E_{A_{pub}}(N_A, N_M)$
- 1.7 Alice to Mallory: $E_{M_{pub}}(N_M)$
- 2.1 Alice to Trent: A, B
- 2.2 Trent to Alice: $E_{T_{priv}}(B_{pub}, B)$
- 2.3 Alice to Bob: $E_{B_{nub}}(N_A, A)$
- 2.4 Bob to Trent: B, A
- 2.5 Trent to Bob: $E_{T_{priv}}(A_{pub}, A)$
- 2.6 Bob to Alice: $E_{A_{nub}}(N_A, N_B)$
- 2.7 Alice to Bob: $E_{B_{pub}}(N_B)$

Predent!

Solution to PK Needham-Schroeder Attack

- Include identities with nonces.
- 2.6 Bob to Mallory(Alice): $E_{A_{pub}}(B, N_A, N_B)$
 - 1.3 Alice to Mallory: $E_{M_{pub}}(N_A, A)$
 - 2.3 Mallory(Alice) to Bob: $E_{B_{pub}}(N_A, A)$
 - 2.6 Bob to Mallory(Alice): E_{Apub}(B, N_A, N_B)
 - 1.6 Mallory to Alice: $E_{A_{pub}}(B, N_A, N_B)$
 - 1.7 Alice does not proceed

Recall!

- 1.3 Alice to Mallory: $E_{M_{pub}}(N_A, A)$
- 2.3 Mallory(Alice) to Bob: $E_{B_{pub}}(N_A, A)$
- 2.6 Bob to Mallory(Alice): $E_{A_{pub}}(N_A, N_B)$
- 1.6 Mallory to Alice: $E_{A_{pub}}(N_A, N_B)$
- 1.7 Alice to Mallory: $E_{M_{pub}}(N_B)$
- 2.7 Mallory(Alice) to Bob: $E_{B_{pub}}(N_B)$

Notation

For the Jassym.

• U: update image

- *D*: target device
- G_U : updating organization
- (G_{pub}, G_{prv}) : updating organization key pair
- (D_{pub}, D_{prv}) : device key pair
- N_{G} , N_D : organization and device nonces
- I_G , I_D : organization and device identifiers
- V: incoming update version number
- K_s: symmetric key

- *H*: hash of the update image
- H_U : update hashes sent by G_U
- $\{M\}_{D_{pub}}$: message M is encrypted using key D_{pub}
 - Notation is common to both symmetric and asymmetric encryption
- $(G \rightarrow D : M)$: organization G sends M to device D
- $(G \leftarrow D : M)$: device D sends M to organization G

Authentication Phase Using Public Key Crypto

Update Phase Using Symmetric Key Crypto

4. Organization sends update U and hash of the update H_U using the and symmetric key K_S

5. Device decrypts the message and checks that the (keyless) hash value H_U is obtained on the update U

Finally, D sends an encrypted message indicating that the update is complete

Long Term Asymmetric Keys, Short Term Symmetric Session Key

 New symmetric session key generated by updating organization on every update

- Shared during authentication phase
- Advantages
 - Decryption of update code faster than asymmetric
 - Higher security
- Disadvantages
 - Device has a higher implementation overhead in order to support asymmetric as well as symmetric crypto

Security Analysis

- 1. Man in the middle
- 2. Replay attack
- 3. Organization spoofing

Man in the Middle

- Attacker tries to place himself between the updating organization and the device
- Attack fails because
 - 1. Authentication requires possession of private key
 - 2. All communication is encrypted
- Note that the assumption is that the public keys are correct

Replay Attack

- Attacker saves previous authentication and replays it
- Replay will be denied
 - Nonce used prevents successful replay

Organization Spoofing

- Attacker claims to be the updating organization
 - Pushes out malicious update
- Authentication will fail
 - Organization public key statically stored on Device
- Device will deny the update

Lessons Learned

- Do not try to be too clever; do not remove important pieces
 - Names
 - Random numbers
 - Timestamps
- Focus on what has worked in the past and has not yet been broken; optimizing a protocol will often break it
- What is your communications need?
 - Client-server
 - Many to many
- Time synchronization can be a big issue

• Recovery from funts. This fire that care of the control of the c