
Advance Encryption Standard

Topics

 Origin of AES

 Basic AES

 Inside Algorithm

 Final Notes

Origins
 A replacement for DES was needed

 Key size is too small

 Can use Triple-DES – but slow, small block

 U.S. NIST issued call for ciphers in 1997

 15 candidates accepted in Jun 98

 5 were shortlisted in Aug 99

AES Competition Requirements

 Private key symmetric block cipher

 128-bit data, 128/192/256-bit keys

 Stronger & faster than Triple-DES

 Provide full specification & design details

 Both C & Java implementations

AES Evaluation Criteria
 initial criteria:

 security – effort for practical cryptanalysis
 cost – in terms of computational efficiency
 algorithm & implementation characteristics

 final criteria
 general security
 ease of software & hardware implementation
 implementation attacks
 flexibility (in en/decrypt, keying, other factors)

AES Shortlist
 After testing and evaluation, shortlist in Aug-99

 MARS (IBM) - complex, fast, high security margin
 RC6 (USA) - v. simple, v. fast, low security margin
 Rijndael (Belgium) - clean, fast, good security margin
 Serpent (Euro) - slow, clean, v. high security margin
 Twofish (USA) - complex, v. fast, high security margin

 Found contrast between algorithms with
 few complex rounds versus many simple rounds
 Refined versions of existing ciphers versus new proposals

Rijndae: pronounce “Rain-Dahl”

The AES Cipher - Rijndael
 Rijndael was selected as the AES in Oct-2000

 Designed by Vincent Rijmen and Joan Daemen in Belgium
 Issued as FIPS PUB 197 standard in Nov-2001

 An iterative rather than Feistel cipher
 processes data as block of 4 columns of 4 bytes (128 bits)
 operates on entire data block in every round

 Rijndael design:
 simplicity
 has 128/192/256 bit keys, 128 bits data
 resistant against known attacks
 speed and code compactness on many CPUs

V. Rijmen

J. Daemen

Topics

 Origin of AES

 Basic AES

 Inside Algorithm

 Final Notes

AES Conceptual Scheme

9

AES

Plaintext (128 bits)

Ciphertext (128 bits)

Key (128-256 bits)

Multiple rounds

10

 Rounds are (almost) identical
 First and last round are a little different

High Level Description

• Round keys are derived from the cipher key
using Rijndael's key scheduleKey Expansion

• AddRoundKey : Each byte of the state is combined
with the round key using bitwise xorInitial Round

• SubBytes : non-linear substitution step
• ShiftRows : transposition step
• MixColumns : mixing operation of each column.
• AddRoundKey

Rounds

• SubBytes
• ShiftRows
• AddRoundKey

Final Round No MixColumns

SubBytes: Nonlinear Byte Substitution
 A simple substitution of each byte

 provides confusion

 Uses one S-box of 16x16 bytes containing a permutation of all 256 8-bit
values

Overall Structure

128-bit values

15

 Data block viewed as 4-by-4 table of bytes
 Represented as 4 by 4 matrix of 8-bit bytes.
 Key is expanded to array of 32 bits words

1 byte

Data Unit

Unit Transformation

Changing Plaintext to State

Topics

 Origin of AES

 Basic AES

 Inside Algorithm

 Final Notes

Details of Each Round

SubBytes: Byte Substitution
 A simple substitution of each byte

 provides confusion

 Uses one S-box of 16x16 bytes containing a permutation of all 256 8-bit
values

 Each byte of state is replaced by byte indexed by row (left 4-bits) & column
(right 4-bits)
 e.g. ,byte {95} is replaced by byte in row 9 column 5
 which has value {2A}

 S-box constructed using defined transformation of values in Galois Field-
GF(28)

Galois : pronounce “Gal-Wa”

SubBytes and InvSubBytes

SubBytes Operation
 The SubBytes operation involves 16 independent byte-to-byte

transformations.
• Interpret the byte as two

hexadecimal digits xy
• SW implementation, use row (x)

and column (y) as lookup pointer
S1,1 = xy16

x’y’16

SubBytes Table

 Implement by Table Lookup

InvSubBytes Table

Sample SubByte Transformation

 The SubBytes and InvSubBytes transformations are
inverses of each other.

ShiftRows

 Shifting, which permutes the bytes.
 A circular byte shift in each each

 1st row is unchanged
 2nd row does 1 byte circular shift to left
 3rd row does 2 byte circular shift to left
 4th row does 3 byte circular shift to left

 In the encryption, the transformation is called
ShiftRows

 In the decryption, the transformation is called
InvShiftRows and the shifting is to the right

ShiftRows Scheme

ShiftRows and InvShiftRows

MixColumns

 ShiftRows and MixColumns provide diffusion to the
cipher

 Each column is processed separately
 Each byte is replaced by a value dependent on all 4 bytes

in the column
 Effectively a matrix multiplication in GF(28) using prime

poly m(x) =x8+x4+x3+x+1

MixColumns Scheme

The MixColumns transformation operates at the column level; it
transforms each column of the state to a new column.

MixColumn and InvMixColumn

AddRoundKey

 XOR state with 128-bits of the round key

 AddRoundKey proceeds one column at a time.
 adds a round key word with each state column matrix
 the operation is matrix addition

 Inverse for decryption identical
 since XOR own inverse, with reversed keys

 Designed to be as simple as possible

AddRoundKey Scheme

AES Round

AES Key Scheduling

 takes 128-bits (16-bytes) key and expands into array of 44
32-bit words

Key Expansion Scheme

Key Expansion submodule
 RotWord performs a one byte circular left shift on a word

For example:

RotWord[b0,b1,b2,b3] = [b1,b2,b3,b0]

 SubWord performs a byte substitution on each byte of input
word using the S-box

 SubWord(RotWord(temp)) is XORed with RCon[j] – the
round constant

Round Constant (RCon)
 RCON is a word in which the three rightmost bytes are zero

 It is different for each round and defined as:

RCon[j]word = (RCon[j]byte,0,0,0)

where RCon[1]byte =1 , RCon[j]byte = 2 * RCon[j-1]byte

 Multiplication is defined over GF(2^8) but can be implemented in a Table
Lookup

Key Expansion Example (1st Round)

• Example of expansion of a 128-bit cipher key
Cipher key = 2b7e151628aed2a6abf7158809cf4f3c

w0=2b7e1516 w1=28aed2a6 w2=abf71588 w3=09cf4f3c

wiw[i-4]tiRcon[i/4]SubWordRotWor
d

wi-1i

a0fafe172b7e15168b84eb01010000008a84eb01cf4f3c0909cf4f3c4

88542cb128aed2a6----a0fafe175

23a33939Abf71588----88542cb16

2a6c760509cf4f3c----23a339397

Topics

 Origin of AES

 Basic AES

 Inside Algorithm

 Final Notes

AES Security
 AES was designed after DES.

 Most of the known attacks on DES were already tested on
AES.

 Brute-Force Attack
 AES is definitely more secure than DES due to the larger-size key.

 Statistical Attacks
 Numerous tests have failed in attempts to perform statistical analysis

of the ciphertext

 Differential and Linear Attacks
 There are no differential and linear attacks on AES as yet.

Implementation Aspects

 The algorithms used in AES are so simple that they
can be easily implemented using cheap processors
and a minimum amount of memory.

 Very efficient

 Implementation was a key factor in its selection as
the AES cipher

 AES animation:
 https://www.youtube.com/watch?v=evjFwDRTmV0

