

 ECE 4156/6156 Hardware-Oriented Security and Trust

Spring 2025

Assoc. Prof. Vincent John Mooney III

Georgia Institute of Technology

Lab 3, 100 pts.

Due Tuesday, March 25 prior to 11:55pm

(please turn in homework electronically on Canvas)

In this lab, you will generate VHDL code for and synthesize several versions of a hardware-
oriented (hardware-efficient) cryptographic primitive onto the Intel DE10-Standard
architecture. For each synthesis run, you will document the FPGA utilization and maximum
clock frequency of the design, generating a series of plots as deliverables.

This lab is based on the following paper: https://cic.iacr.org/p/1/4/19

You are not expected to read the entire paper to be able to complete the assignment. However,
you may find it helpful to refer to the paper to better understand some of the terminology used
in this assignment, such as feedback registers, Mersenne Product Registers, Composite
Mersenne Product Registers, and update polynomials.

I. Setup

Download the lab3.zip file and place in a new directory. Unzip the archive.

Clone the GitHub repository https://github.com/gt-hwswcosec/cmprs2025. Note that for this
lab, we will only use the ProductRegisters directory from this repository.

Ensure that you are on a system that has Python3.12 (or newer) and pip installed.

1. From unzipping lab3.zip, you should see two directories labeled “vhdl” and
“PythonCode.”

2. In PythonCode, there is a Python script called “vhdl_generator.py.”

• The “ProductRegisters” folder you downloaded from GitHub is a Python library,
and “vhdl_generator.py” uses this Python library

• The Python library depends on the following Python packages: memoization,
numba, numpy, galois, python-sat

• First, install the above dependencies using pip (pip install
memoization, numba, numpy, galois, python-sat)

https://cic.iacr.org/p/1/4/19
https://github.com/gt-hwswcosec/cmprs2025

• Once the dependencies are installed, move the ProductRegisters folder to inside
the PythonCode folder

II. Running vhdl_generator.py

1. The file vhdl_generator.py uses the ProductRegisters Python library to automatically
generate VHDL descriptions for a feedback register structure that can generate
nonlinear, pseudorandom binary sequences. These sequences are very useful in
cryptographic applications; they can be used as a starting point for constructing
encryption schemes, hash functions, and MACs.

The information below will help familiarize you with what exactly you are being asked to
do in this lab:

• This feedback register structure is termed a Composite Mersenne Product
Register (CMPR)

• A CMPR is constructed out of interconnected Mersenne Product Registers
(MPRs)

A gate-level diagram of a 5-bit CMPR constructed from a 3-bit MPR connected to
a 2-bit MPR is shown below:

Note that the portions of the diagram highlighted in red represent the logic used
to connect the two MPRs together. This is called a chaining function and is
discussed in Section 3 of the linked paper from the introduction.

• MPRs are registers whose size (number of bits) is a Mersenne exponent, or a
prime number 𝒏 such that 𝟐𝒏 − 𝟏 is also a prime number

• In this assignment, the CMPR size is 170 bits, and is constructed from MPRs of
sizes 127 bits, 19 bits, 17 bits, 5 bits, and 2 bits (observe that 127 + 19 + 17 + 5 +
2 = 170, observe that all of the numbers that sum to 170 are Mersenne
exponents)

• Each MPR has two tweakable parameters: its primitive polynomial, and its
update polynomial (refer to the paper if you want to gain a better
understanding of what purpose these polynomials serve/what mathematical

properties they have). Changing these parameters results in significant changes
to the nonlinear binary sequences generated by the CMPR, because a CMPR
(more-or-less) behaves like a keyed pseudorandom function

• For an n-bit MPR, its primitive polynomial P(x) is a degree n binary polynomial,
and its update polynomial U(x) is a degree n – 1 binary polynomial. A binary
polynomial is a polynomial whose coefficients are either 0 or 1

• Theory: an MPR performs the recursive mathematical operation A[t+1] =
U(x)A[t] mod P(x), where A[t] is the current state of the MPR and A[t+1] is the
next state of the MPR

• Here is an example of how an MPR is instantiated in vhdl_generator.py, for the
case of a 2-bit MPR: M2 = MPR(2, poly("1 + x + x^2"), poly("x"))

• In the code snippet shown above, the primitive polynomial is 1 + x + x2 and the
update polynomial is x

• We have used this 170-bit CMPR to develop VHDL code for a cipher (encryption
scheme)

• For this lab, you will be changing the values of the update polynomial, generating
VHDL, replace the feedback register logic in the cipher with the generated VHDL
and synthesizing the cipher

2. The first update polynomial we will use is “x.” In this case, leave the code in
vhdl_generator.py as-is, and run the Python script (python vhdl_generator.py).
Note that vhdl_generator.py and ProductRegisters must be co-located in the same
directory as mentioned in the setup steps of this assignment:

3. Once the script is finished running, you should see a VHDL file C170.vhd that has been
generated in the same directory as vhdl_generator.py.

• This VHDL file contains the hardware description for the 170-bit CMPR that was
originally instantiated in the Python script

• For now, set aside C170.vhd (store it somewhere on your computer) and
continue with the next steps

• When storing C170.vhd elsewhere on your computer, you may find it useful to
change the filename to somehow indicate the update polynomial (for example,
C170_x.vhd)

4. Edit vhdl_generator.py. We will now vary the update polynomial for only the 127-bit
MPR, which corresponds to variable M127 in the Python code. Now, we want to use an
update polynomial of x2.

• To change the update polynomial from x to x2, replace poly("x") with
poly("x^2") in the variable declaration for M127

5. After changing the update polynomial, re-run the Python script (which again generates a
VHDL file), and set aside this VHDL file

6. Repeat the process described in steps 4 and 5 for update polynomials of x3, x4, x5, x10,
and x15

7. You should now have 7 different VHDL files, each corresponding to the 170-bit CMPR
but with a different update polynomial

III. Synthesis using Quartus

1. Make a new project in Quartus (same as steps Lab 1, p. 25)

• For this lab, the top-level entity name is “cmprcipherv3”

• When the New Project Wizard asks if you would like to add a file to the Quartus
project, add in the VHDL file in the “vhdl” directory of the lab assignment ZIP file.
This VHDL file is called cmprcipherv3.vhd

• When the New Project Wizard prompts you to specify family, device, and board
settings, use the same settings as in Lab 1 (p. 29 of Lab 1)

• When the New Project Wizard prompts you to specify EDA tool settings, use the
same settings as in Lab 1 (p. 30 of Lab 1)

2. Now that you have created your Quartus project with the VHDL file included in the
“vhdl” directory, you need to replace the feedback register logic in your project VHDL
file with the feedback register logic you generated in the previous section

• Open cmprcipherv3.vhd (the version of the file that is being used in your Quartus
project)

• The feedback register logic is described immediately after the begin statement
for the architecture (lines 26-238 of the VHDL code), with variable names s and
s_reg

• Replace this feedback register logic with the logic from C170_x.vhd (the
generated VHDL for update polynomial x). In the generated VHDL, the feedback
register logic is described immediately after the “statereg” process (lines 29-241
of the generated VHDL)

• Note that in cmprcipherv3.vhd, the variable names s and s_reg are used, but in
the generated VHDL, the variable names nextstate and currstate are used. When
replacing the feedback register logic in cmprcipherv3.vhd, you will need to
change the variable names (nextstate => s, currstate => s_reg), which you should
be able to do straightforwardly using any text editor with a “replace all” option

For your reference, here is where the feedback register logic should be inserted:

3. Now that you have replaced the feedback register logic, you may compile the project
(the compile button is circled in the screenshot below for convenience)

4. Wait for the project to finish compiling (~3-5 minutes). Once the project has compiled,
take screenshots of the Flow Summary and of Timing Analyzer -> Slow 1100Mv 85C
Model -> Fmax summary. Note down the values for Logic Utilization (in ALMs) and
Fmax (in MHz). These are two important metrics for analyzing the FPGA utilization of a

design: ALMs are the basic building blocks of Intel FPGAs, and Fmax provides an
estimate of the maximum speed at which the design can be clocked.

5. Repeat steps 2-4 for all of the generated VHDL files. That is, replace the feedback
register logic in cmprcipherv3.vhd with the generated feedback register logic for all of
the remaining update polynomials x2, x3, x4, x5, x10, x15, take the screenshots required in
step 4 and note down the values for ALMs and Fmax.

• You do not need to make a new Quartus project each time, you can just edit
the VHDL in the same project each time

IV. Figure Generation

In this section, you will generate plots for the synthesis data you collected in the previous
section.

You may use any plotting software of your choice (ex: Python, MATLAB). You will be generating
two plots. For both plots, the x-axis should indicate the update polynomial used, in order of
increasing degree (x, x2, x3, x4, x5, x10, x15).

For the first plot, the y-axis should indicate ALM count. For the second plot, the y-axis should
indicate the value of Fmax (in MHz).

It is recommended that the first plot be a bar graph and the second plot be a scatter plot to
make the visualization easier.

What to Turn In

Please type all your answers and include a cover sheet with your first and last name, GT ID
number, and GT username. In the report, include:

1. All screenshots from Section III.
2. All plots from Section IV.

Submit your Lab 3 report on Canvas as a PDF or .docx file.

