

INTRODUCTION TO MODERN CRYPTOGRAPHY

Second Edition

Jonathan Katz

University of Maryland

College Park, MD, USA

Yehuda Lindell

Bar-Ilan University

Ramat Gan, Israel

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2015 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper
Version Date: 20140915

International Standard Book Number-13: 978-1-4665-7026-9 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilmimg, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com/ or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
<http://www.taylorandfrancis.com>

and the CRC Press Web site at
<http://www.crcpress.com>

CRC Press
Taylor & Francis Group

Boca Raton London New York

CRC Press is an imprint of the

Taylor & Francis Group an Informa business

A CHAPMAN & HALL BOOK

Chapter 1

Introduction

1.1 Cryptography and Modern Cryptography

The *Concise Oxford English Dictionary* defines cryptography as “the art of writing or solving codes.” This is historically accurate, but does not capture the current breadth of the field or its present-day scientific foundations. The definition focuses solely on the *codes* that have been used for centuries to enable secret communication. But cryptography nowadays encompasses much more than this: it deals with mechanisms for ensuring integrity, techniques for exchanging secret keys, protocols for authenticating users, electronic auctions and elections, digital cash, and more. Without attempting to provide a complete characterization, we would say that modern cryptography involves *the study of mathematical techniques for securing digital information, systems, and distributed computations against adversarial attacks*.

The dictionary definition also refers to cryptography as an *art*. Until late in the 20th century cryptography was, indeed, largely an art. Constructing good codes, or breaking existing ones, relied on creativity and a developed sense of how codes work. There was little theory to rely on and, for a long time, no working definition of what constitutes a good code. Beginning in the 1970s and 1980s, this picture of cryptography radically changed. A rich theory began to emerge, enabling the rigorous study of cryptography as a *science* and a mathematical discipline. This perspective has, in turn, influenced how researchers think about the broader field of computer security.

Another very important difference between classical cryptography (say, before the 1980s) and modern cryptography relates to its adoption. Historically, the major consumers of cryptography were military organizations and governments. Today, cryptography is everywhere! If you have ever authenticated yourself by typing a password, purchased something by credit card over the Internet, or downloaded a verified update for your operating system, you have undoubtedly used cryptography. And, more and more, programmers with relatively little experience are being asked to “secure” the applications they write by incorporating cryptographic mechanisms.

In short, cryptography has gone from a heuristic set of tools concerned with ensuring secret communication for the military to a science that helps secure systems for ordinary people all across the globe. This also means that cryptography has become a more central topic within computer science.

Goals of this book. Our goal is to make the basic principles of modern cryptography accessible to students of computer science, electrical engineering, or mathematics; to professionals who want to incorporate cryptography in systems or software they are developing; and to anyone with a basic level of mathematical maturity who is interested in understanding this fascinating field. After completing this book, the reader should appreciate the security guarantees common cryptographic primitives are intended to provide; be aware of standard (secure) constructions of such primitives; and be able to perform a basic evaluation of new schemes based on their proofs of security (or lack thereof) and the mathematical assumptions underlying those proofs. It is not our intention for readers to become experts—or to be able to design new cryptosystems—after finishing this book, but we have attempted to provide the terminology and foundational material needed for the interested reader to subsequently study more advanced references in the area.

This chapter. The focus of this book is the formal study of modern cryptography, but we begin in this chapter with a more informal discussion of “classical” cryptography. Besides allowing us to ease into the material, our treatment in this chapter will also serve to motivate the more rigorous approach we will be taking in the rest of the book. Our intention here is not to be exhaustive and, as such, this chapter should not be taken as a representative historical account. The reader interested in the history of cryptography is invited to consult the references at the end of this chapter.

1.2 The Setting of Private-Key Encryption

Classical cryptography was concerned with designing and using *codes* (also called *ciphers*) that enable two parties to communicate secretly in the presence of an eavesdropper who can monitor all communication between them. In modern parlance, codes are called *encryption schemes* and that is the terminology we will use here. Security of all classical encryption schemes relied on a secret—a *key*—shared by the communicating parties in advance and unknown to the eavesdropper. This scenario is known as the *private-key* (or *shared-/secret-key*) setting, and private-key encryption is just one example of a cryptographic primitive used in this setting. Before describing some historical encryption schemes, we discuss private-key encryption more generally.

In the setting of private-key encryption, two parties share a key and use this key when they want to communicate secretly. One party can send a message, or *plaintext*, to the other by using the shared key to *encrypt* (or “scramble”) the message and thus obtain a *ciphertext* that is transmitted to the receiver. The receiver uses the same key to *decrypt* (or “unscramble”) the ciphertext and recover the original message. Note the same key is used to convert the

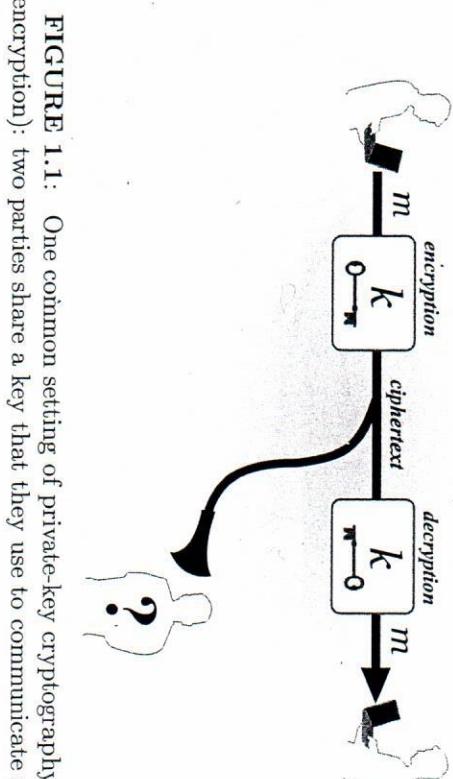


FIGURE 1.1: One common setting of private-key cryptography (here, encryption): two parties share a key that they use to communicate securely.

plaintext into a ciphertext and back; that is why this is also known as the *symmetric-key* setting, where the symmetry lies in the fact that both parties hold the same key that is used for encryption and decryption. This is in contrast to *asymmetric*, or *public-key*, encryption (introduced in Chapter 10), where encryption and decryption use different keys.

As already noted, the goal of encryption is to keep the plaintext hidden from an eavesdropper who can monitor the communication channel and observe the ciphertext. We discuss this in more detail later in this chapter, and spend a great deal of time in Chapters 2 and 3 formally defining this goal.

There are two canonical applications of private-key cryptography. In the first, there are two distinct parties separated in *space*, e.g., a worker in New York communicating with her colleague in California; see Figure 1.2. These two users are assumed to have been able to securely share a key in advance of their communication. (Note that if one party simply sends the key to the other over the public communication channel, then the eavesdropper obtains the key too!) Often this is easy to accomplish by having the parties physically meet in a secure location to share a key before they separate; in the example just given, the co-workers might arrange to share a key when they are both in the New York office. In other cases, sharing a key securely is more difficult. For the next several chapters we simply assume that sharing a key is possible; we will revisit this issue in Chapter 10.

The second widespread application of private-key cryptography involves the same party communicating with itself over *time*. (See Figure 1.2.) Consider, e.g., disk encryption, where a user encrypts some plaintext and stores the resulting ciphertext on their hard drive; the same user will return at a later

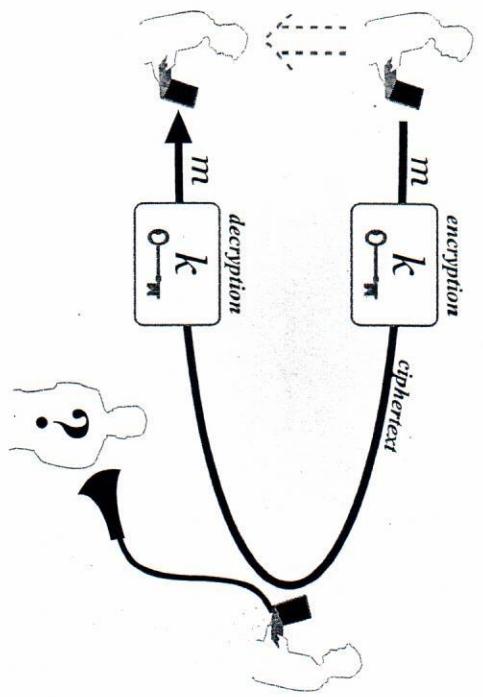


FIGURE 1.2: Another common setting of private-key cryptography (again, encryption): a single user stores data securely over time.

point in time to decrypt the ciphertext and recover the original data. The hard drive here serves as the communication channel on which an attacker might eavesdrop by gaining access to the hard drive and reading its contents. “Sharing” the key is now trivial, though the user still needs a secure and reliable way to remember/store the key for use at a later point in time.

The syntax of encryption. Formally, a private-key encryption scheme is defined by specifying a *message space* \mathcal{M} along with three algorithms: a procedure for generating keys (Gen), a procedure for encrypting (Enc), and a procedure for decrypting (Dec). The message space \mathcal{M} defines the set of “legal” messages, i.e., those supported by the scheme. The algorithms have the following functionality:

1. The *key-generation algorithm* Gen is a probabilistic algorithm that outputs a key k chosen according to some distribution.
2. The *encryption algorithm* Enc takes as input a key k and a message m and outputs a ciphertext c . We denote by $\text{Enc}_k(m)$ the encryption of the plaintext m using the key k .
3. The *decryption algorithm* Dec takes as input a key k and a ciphertext c and outputs a plaintext m . We denote the decryption of the ciphertext c using the key k by $\text{Dec}_k(c)$.

An encryption scheme must satisfy the following correctness requirement: for every key k output by Gen and every message $m \in \mathcal{M}$, it holds that

$$\text{Dec}_k(\text{Enc}_k(m)) = m.$$

In words: encrypting a message and then decrypting the resulting ciphertext (using the same key) yields the original message.

The set of all possible keys output by the key-generation algorithm is called the *key space* and is denoted by \mathcal{K} . Almost always, Gen simply chooses a uniform key from the key space; in fact, one can assume without loss of generality that this is the case (see Exercise 2.1).

Reviewing our earlier discussion, an encryption scheme can be used by two parties who wish to communicate as follows. First, Gen is run to obtain a key k that the parties share. Later, when one party wants to send a plaintext m to the other, she computes $c := \text{Enc}_k(m)$ and sends the resulting ciphertext c over the public channel to the other party.¹ Upon receiving c , the other party computes $m := \text{Dec}_k(c)$ to recover the original plaintext.

Keys and Kerckhoffs’ principle. As is clear from the above, if an eavesdropping adversary knows the algorithm Dec as well as the key k shared by the two communicating parties, then that adversary will be able to decrypt any ciphertexts transmitted by those parties. It is for this reason that the communicating parties must share the key k securely and keep k completely secret from everyone else. Perhaps they should keep the decryption algorithm Dec secret, too? For that matter, might it not be better for them to keep all the details of the encryption scheme secret?

In the late 19th century, Auguste Kerckhoffs argued the opposite in a paper he wrote elucidating several design principles for military ciphers. One of the most important of these, now known simply as *Kerckhoffs’ principle*, was:

The cipher method must not be required to be secret, and it must be able to fall into the hands of the enemy without inconvenience.

That is, an encryption scheme should be designed to be secure *even if* an eavesdropper knows all the details of the scheme, so long as the attacker doesn’t know the key being used. Stated differently, security should not rely on the encryption scheme being secret; instead, Kerckhoffs’ principle demands that *security rely solely on secrecy of the key*.

There are three primary arguments in favor of Kerckhoffs’ principle. The first is that it is significantly easier for the parties to maintain secrecy of a short key than to keep secret the (more complicated) algorithm they are using. This is especially true if we imagine using encryption to secure the communication between all pairs of employees in some organization. Unless each pair of parties uses their own, unique algorithm, some parties will know the algorithm used by others. Information about the encryption algorithm might be leaked by one of these employees (say, after being fired), or obtained by an attacker using reverse engineering. In short, it is simply unrealistic to assume that the encryption algorithm will remain secret.

¹We use “ \equiv ” to denote deterministic assignment, and assume for now that Enc is deterministic. A list of common notation can be found in the back of the book.

Second, in case the honest parties' shared, secret information *is* ever exposed, it will be much easier for them to change a key than to replace an encryption scheme. (Consider updating a file versus installing a new program.) Moreover, it is relatively trivial to generate a new random secret, whereas it would be a huge undertaking to design a new encryption scheme.

Finally, for large-scale deployment it is significantly easier for users to all rely on the same encryption algorithm/software (with different keys) than for everyone to use their own custom algorithm. (This is true even for a single user who is communicating with several different parties.) In fact, it is desirable for encryption schemes to be *standardized* so that (1) compatibility is ensured by default and (2) users will utilize an encryption scheme that has undergone public scrutiny and in which no weaknesses have been found.

Nowadays Kerckhoffs' principle is understood as advocating that cryptographic designs be made completely public, in stark contrast to the notion of “security by obscurity” which suggests that keeping algorithms secret improves security. It is very dangerous to use a proprietary, “home-brewed” algorithm (i.e., a non-standardized algorithm designed in secret by some company). In contrast, published designs undergo public review and are therefore likely to be stronger. Many years of experience have demonstrated that it is very difficult to construct good cryptographic schemes. Therefore, our confidence in the security of a scheme is much higher if it has been extensively studied (by experts other than the designers of the scheme) and no weaknesses have been found. As simple and obvious as it may sound, the principle of open cryptographic design (i.e., Kerckhoffs' principle) has been ignored over and over again with disastrous results. Fortunately, today there are enough secure, standardized, and widely available cryptosystems that there is no reason to use anything else.

1.3 Historical Ciphers and Their Cryptanalysis

In our study of “classical” cryptography we will examine some historical encryption schemes and show that they are insecure. Our main aims in presenting this material are (1) to highlight the weaknesses of an “ad hoc” approach to cryptography, and thus motivate the modern, rigorous approach that will be taken in the rest of the book, and (2) to demonstrate that simple approaches to achieving secure encryption are unlikely to succeed. Along the way, we will present some central principles of cryptography inspired by the weaknesses of these historical schemes.

In this section, plaintext characters are written in lower case and ciphertext characters are written in **UPPER CASE** for typographical clarity.

Caesar's cipher. One of the oldest recorded ciphers, known as *Caesar's*

cipher, is described in *De Vita Caesarum, Divus Julius* (“The Lives of the Caesars, the Deified Julius”), written in approximately 110 CE:

There are also letters of his to Cicero, as well as to his intimates on private affairs, and in the latter, if he had anything confidential to say, he wrote it in cipher; that is, by so changing the order of the letters of the alphabet, that not a word could be made out...

Julius Caesar encrypted by shifting the letters of the alphabet 3 places forward: a was replaced with D, b with E, and so on. At the very end of the alphabet, the letters wrap around and so z was replaced with C, y with B, and x with A. For example, encryption of the message **begin the attack now**, with spaces removed, gives:

EHJLQWKHDWWDFNQRZ.

An immediate problem with this cipher is that the encryption method is *fixed*; there is no key. Thus, anyone learning how Caesar encrypted his messages would be able to decrypt effortlessly.

Interestingly, a variant of this cipher called ROT-13 (where the shift is 13 places instead of 3) is still used nowadays in various online forums. It is understood that this does not provide any cryptographic security; it is used merely to ensure that the text (say, a movie spoiler) is unintelligible unless the reader of a message consciously chooses to decrypt it.

The shift cipher and the sufficient key-space principle. The *shift cipher* can be viewed as a keyed variant of Caesar's cipher.² Specifically, in the shift cipher the key k is a number between 0 and 25. To encrypt, letters are shifted as in Caesar's cipher, but now by k places. Mapping this to the syntax of encryption described earlier, the message space consists of arbitrary length strings of English letters with punctuation, spaces, and numerals removed, and with no distinction between upper and lower case. Algorithm *Gen* outputs a uniform key $k \in \{0, \dots, 25\}$; algorithm *Enc* takes a key k and a plaintext and shifts each letter of the plaintext forward k positions (wrapping around at the end of the alphabet); and algorithm *Dec* takes a key k and a ciphertext and shifts every letter of the ciphertext *backward* k positions.

A more mathematical description is obtained by equating the English alphabet with the set $\{0, \dots, 25\}$ (so a = 0, b = 1, etc.). The message space \mathcal{M} is then any finite sequence of integers from this set. Encryption of the message $m = m_1 \dots m_\ell$ (where $m_i \in \{0, \dots, 25\}$) using key k is given by

$$\text{Enc}_k(m_1 \dots m_\ell) = c_1 \dots c_\ell, \text{ where } c_i = [(m_i + k) \bmod 26].$$

(The notation $[a \bmod N]$ denotes the remainder of a upon division by N , with $0 \leq [a \bmod N] < N$. We refer to the process mapping a to $[a \bmod N]$

²In some books, “Caesar's cipher” and “shift cipher” are used interchangeably.

as *reduction modulo N*; we will have more to say about this beginning in Chapter 8.) Decryption of a ciphertext $c = c_1 \dots c_\ell$ using key k is given by

$$\text{Dec}_k(c_1 \dots c_\ell) = m_1 \dots m_\ell, \quad \text{where } m_i = [(c_i - k) \bmod 26].$$

Is the shift cipher secure? Before reading on, try to decrypt the following ciphertext that was generated using the shift cipher and a secret key k :

0WDTHUFWZZPISLRLFZHYZLAOLYL.

Is it possible to recover the message without knowing k ? Actually, it is trivial! The reason is that there are only 26 possible keys. So one can try to decrypt the ciphertext using every possible key and thereby obtain a list of 26 candidate plaintexts. The correct plaintext will certainly be on this list; moreover, if the ciphertext is “long enough” then the correct plaintext will likely be the only candidate on the list that “makes sense.” (The latter is not necessarily true, but will be true most of the time. Even when it is not, the attack narrows down the set of potential plaintexts to at most 26 possibilities.) By scanning the list of candidates it is easy to recover the original plaintext. An attack that involves trying every possible key is called a *brute-force* or *exhaustive-search* attack. Clearly, for an encryption scheme to be secure it must not be vulnerable to such an attack.³ This observation is known as the *sufficient key-space principle*:

Any secure encryption scheme must have a key space that is sufficiently large to make an exhaustive-search attack infeasible.

One can debate what amount of effort makes a task “infeasible,” and an exact determination of feasibility depends on both the resources of a potential attacker and the length of time the sender and receiver want to ensure secrecy of their communication. Nowadays, attackers can use supercomputers, tens of thousands of personal computers, or graphics processing units (GPUs) to speed up brute-force attacks. To protect against such attacks the key space must therefore be very large—say, of size at least 2^{70} , and even larger if one is concerned about long-term security against a well-funded attacker.

The sufficient key-space principle gives a *necessary* condition for security, but not a *sufficient* one. The next example demonstrates this.

The mono-alphabetic substitution cipher. In the shift cipher, the key defines a map from each letter of the (plaintext) alphabet to some letter of the (ciphertext) alphabet, where the map is a fixed shift determined by the key. In the *mono-alphabetic substitution cipher*, the key also defines a map on the alphabet, but the map is now allowed to be *arbitrary* subject only to the constraint that it be one-to-one so that decryption is possible. The key

space thus consists of all *bijections*, or *permutations*, of the alphabet. So, for example, the key that defines the following permutation

$$\begin{array}{cccccccccccccccccccccccc} a & b & c & d & e & f & g & h & i & j & k & l & m & n & o & p & q & r & s & t & u & v & w & x & y & z \\ \hline X & E & U & A & D & N & B & K & V & M & R & O & C & Q & F & S & Y & H & W & G & L & I & J & P & T \end{array}$$

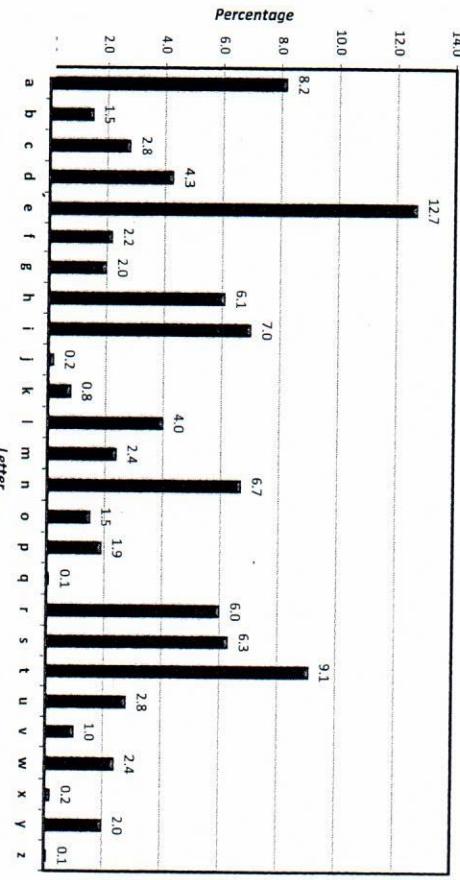
(in which a maps to X, etc.) would encrypt the message tellhimaboutme to GDOOKWCXEFLGCD. The name of this cipher comes from the fact that the key defines a (fixed) substitution for individual characters of the plaintext.

Assuming the English alphabet is being used, the key space is of size $26! = 26 \cdot 25 \cdot 24 \cdots 2 \cdot 1$, or approximately 2^{88} , and a brute-force attack is infeasible. This, however, does not mean the cipher is secure! In fact, as we will show next, it is easy to break this scheme even though it has a large key space.

Assume English-language text is being encrypted (i.e., the text is grammatically correct English writing, not just text written using characters of the English alphabet). The mono-alphabetic substitution cipher can then be attacked by utilizing statistical patterns of the English language. (Of course, the same attack works for any language.) The attack relies on the facts that:

1. For any key, the mapping of each letter is fixed, and so if e is mapped to D, then every appearance of e in the plaintext will result in the appearance of D in the ciphertext.

2. The frequency distribution of individual letters in the English language is known (see Figure 1.3). Of course, very short texts may deviate from this distribution, but even texts consisting of only a few sentences tend to have distributions that are very close to the average.



³Technically, this is only true if the message space is larger than the key space; we will return to this point in Chapter 2. Encryption schemes used in practice have this property.

The attack works by tabulating the frequency distribution of characters in the ciphertext, i.e., recording that **A** appeared 11 times, **B** appeared 4 times, and so on. These frequencies are then compared to the known letter frequencies of normal English text. One can then guess parts of the mapping defined by the key based on the observed frequencies. For example, since **e** is the most frequent letter in English, one can guess that the most frequent character in the ciphertext corresponds to the plaintext character **e**, and so on. Some of the guesses may be wrong, but enough of the guesses will be correct to enable relatively quick decryption (especially utilizing other knowledge of English, such as the fact that **u** generally follows **q**, and that **h** is likely to appear between **t** and **e**). We conclude that although the mono-alphabetic substitution cipher has a large key space, it is still insecure.

It should not be surprising that the mono-alphabetic substitution cipher can be quickly broken, since puzzles based on this cipher appear in newspapers (and are solved by some people before their morning coffee!). We recommend that you try to decipher the following ciphertext—this should convince you how easy the attack is to carry out. (Use Figure 1.3 to help you.)

JGRM0QYGHMVBJWRQFPWHGFDFDQGFPFZRKBEEB1JZQQC1CTBZKLFAFGQVFZFWWE
0GWOPFGFHWLPHRLQLOLFMDMFGQWBLWBWQOLKFWBLYLFLSFLJGRMQBOLWJVFP
FWQVHQWFFPQ0QVFPQ0CFCP0GFWFJ1JGFQVHLHLR0QVFGWJVFPLFHFQVQVFILE
0GQILHQFQG1IQVOSFAFGBWQVHQW1JWVJVFPLFWHGF1WIHZZRQGBABHZQOCGFHX

An improved attack on the shift cipher. We can use letter-frequency tables to give an improved attack on the shift cipher. Our previous attack on the shift cipher required decrypting the ciphertext using each possible key, and then checking which key results in a plaintext that “makes sense.” A drawback of this approach is that it is somewhat difficult to automate, since it is difficult for a computer to check whether a given plaintext “makes sense.” (We do not claim that it would be impossible, as the attack could be automated using a dictionary of valid English words. We only claim that it would not be trivial to automate.) Moreover, there may be cases—we will see one later—where the plaintext characters are distributed just like English-language text even though the plaintext itself is not valid English, in which case checking for a plaintext that “makes sense” will not work.

We now describe an attack that does not suffer from these drawbacks. As before, associate the letters of the English alphabet with $0, \dots, 25$. Let p_i , with $0 \leq p_i \leq 1$, denote the frequency of the i th letter in normal English text (ignoring spaces, punctuation, etc.). Calculation using Figure 1.3 gives

$$\sum_{i=0}^{25} p_i^2 \approx 0.065. \quad (1.1)$$

Now, say we are given some ciphertext and let q_i denote the frequency of the i th letter of the alphabet in this ciphertext; i.e., q_i is simply the number

of occurrences of the i th letter of the alphabet in the ciphertext divided by the length of the ciphertext. If the key is k , then p_i should be roughly equal to q_{i+k} for all i , because the i th letter is mapped to the $(i+k)$ th letter. (We use $i+k$ instead of the more cumbersome $[i+k \bmod 26]$.) Thus, if we compute

$$I_j \stackrel{\text{def}}{=} \sum_{i=0}^{25} p_i \cdot q_{i+j}$$

for each value of $j \in \{0, \dots, 25\}$, then we expect to find that $I_k \approx 0.065$ (where k is the actual key), whereas I_j for $j \neq k$ will be different from 0.065. This leads to a key-recovery attack that is easy to automate: compute I_j for all j , and then output the value k for which I_k is closest to 0.065.

The Vigenère (polyalphabetic shift) cipher. The statistical attack on the mono-alphabetic substitution cipher can be carried out because the key defines a fixed mapping that is applied letter-by-letter to the plaintext. Such an attack could be thwarted by using a *poly-alphabetic substitution cipher* where the key instead defines a mapping that is applied on *blocks* of plaintext characters. Here, for example, a key might map the 2-character block **ab** to **DZ** while mapping **ac** to **TY**; note that the plaintext character **a** does not get mapped to a fixed ciphertext character. Poly-alphabetic substitution ciphers “smooth out” the frequency distribution of characters in the ciphertext and make it harder to perform statistical analysis.

The *Vigenère cipher*, a special case of the above also called the polyalphabetic *shift* cipher, works by applying several independent instances of the shift cipher in sequence. The key is now viewed as a *string* of letters; encryption is done by shifting each plaintext character by the amount indicated by the next character of the key, wrapping around in the key when necessary. (This degenerates to the shift cipher if the key has length 1.) For example, encryption of the message **te11himaboutme** using the key **cafe** would work as follows:

Plaintext:	te11himaboutme
Key (repeated):	cafecafecafeca
Ciphertext:	VEQPJIREDOZKOE

(The key need not be an English word.) This is exactly the same as encrypting the first, fifth, ninth, ... characters with the shift cipher and key **c**; the second, sixth, tenth, ... characters with key **a**; the third, seventh, ... characters with **f**; and the fourth, eighth, ... characters with **e**. Notice that in the above example 1 is mapped once to **Q** and once to **P**. Furthermore, the ciphertext character **E** is sometimes obtained from **e** and sometimes from **a**. Thus, the character frequencies of the ciphertext are “smoothed out,” as desired. If the key is sufficiently long, cracking this cipher appears daunting. Indeed, it had been considered by many to be “unbreakable,” and although it was invented in the 16th century, a systematic attack on the scheme was only devised hundreds of years later.

Attacking the Vigenère cipher. A first observation in attacking the Vigenère cipher is that *if the length of the key is known* then attacking the cipher is relatively easy. Specifically, say the length of the key, also called the *period*, is t . Write the key k as $k = k_1 \dots k_t$ where each k_i is a letter of the alphabet. An observed ciphertext $c = c_1 c_2 \dots$ can be divided into t parts where each part can be viewed as having been encrypted using a shift cipher. Specifically, for all $j \in \{1, \dots, t\}$ the ciphertext characters

$$c_j, c_{j+t}, c_{j+2t}, \dots$$

all resulted by shifting the corresponding characters of the plaintext by k_j positions. We refer to the above sequence of characters as the *j th stream*. All that remains is to determine, for each of the t streams, which of the 26 possible shifts was used. This is not as trivial as in the case of the shift cipher, because it is no longer possible to simply try different shifts in an attempt to determine when decryption of a stream “makes sense.” (Recall that a stream does not correspond to consecutive letters of the plaintext.) Furthermore, trying to guess the entire key k at once would require a brute-force search through 26^t different possibilities, which is infeasible for large t . Nevertheless, we can still use letter-frequency analysis to analyze each stream independently. Namely, for each stream we tabulate the frequency of each ciphertext character and then check which of the 26 possible shifts yields the “right” probability distribution for that stream. Since this can be carried out independently for each stream (i.e., for each character of the key), this attack takes time $26 \cdot t$ rather than time 26^t .

A more principled, easier-to-automate approach is to use the improved method for attacking the shift cipher discussed earlier. That attack did not rely on checking for a plaintext that “made sense,” but only relied on the underlying frequency distribution of characters in the plaintext.

Either of the above approaches gives a successful attack when the key length is known. What if the key length is unknown?

Note first that as long as the maximum length T of the key is not too large, we can simply repeat the above attack T times (for each possible value $t \in \{1, \dots, T\}$). This leads to at most T different candidate plaintexts, among which the true plaintext will likely be easy to identify. So an unknown key length is not a serious obstacle.

There are also more efficient ways to determine the key length from an observed ciphertext. One is to use *Kasiski’s method*, published in the mid-19th century. The first step here is to identify repeated patterns of length 2 or 3 in the ciphertext. These are likely the result of certain bigrams or trigrams that appear frequently in the plaintext. For example, consider the common word “the.” This word will be mapped to different ciphertext characters, depending on its position in the plaintext. However, if it appears twice in the same relative position, then it will be mapped to the same ciphertext characters. For a sufficiently long plaintext, there is thus a good chance that “the” will be mapped repeatedly to the same ciphertext characters.

Consider the following concrete example with the key beads (spaces have been added for clarity):

Plaintext:	the man and the woman retrieved the letter from the Post office
Key:	bea dsb ead sbe adsbe adsbeadsb ead sbadsb eadsbeadsbe
Ciphertext:	ULE PSO ENG LII WREBR RHLSEMEWE XHH DFXTHJ GVUP LII PRKU SFIAID

The word **the** is mapped sometimes to ULE, sometimes to LII, and sometimes to XHH. However, it is mapped *twice* to LII, and in a long enough text it is likely that it would be mapped multiple times to each of these possibilities. Kasiski’s observation was that the distance between such repeated appearances (assuming they are not coincidental) must be a multiple of the period. (In the above example, the period is 5 and the distance between the two appearances of LII is 30, which is 6 times the period.) Therefore, the greatest common divisor of the distances between repeated sequences (assuming they are not coincidental) will yield the key length t or a multiple thereof.

An alternative approach, called the *index of coincidence method*, is more methodical and hence easier to automate. Recall that if the key length is t , then the ciphertext characters

$$c_1, c_{1+t}, c_{1+2t}, \dots$$

in the first stream all resulted from encryption using the same shift. This means that the frequencies of the characters in this sequence are expected to be identical to the character frequencies of standard English text in *some shifted order*. In more detail: let q_i denote the observed frequency of the i th English letter in this stream; this is simply the number of occurrences of the i th letter of the alphabet divided by the total number of letters in the stream. If the shift used here is j (i.e., if the first character k_1 of the key is equal to j), then for all i we expect $q_{i+j} \approx p_i$, where p_i is the frequency of the i th letter of the alphabet in standard English text. (Once again, we use q_{i+j} in place of $q_{(i+j) \bmod 26}$.) But this means that the sequence q_0, \dots, q_{25} is just the sequence p_0, \dots, p_{25} shifted j places. As a consequence (cf. Equation (1.1)):

$$\sum_{i=0}^{25} q_i^2 \approx \sum_{i=0}^{25} p_i^2 \approx 0.065.$$

This leads to a nice way to determine the key length t . For $\tau = 1, 2, \dots$ look at the sequence of ciphertext characters $c_1, c_{1+\tau}, c_{1+2\tau}, \dots$ and tabulate q_0, \dots, q_{25} for this sequence. Then compute

$$S_\tau \stackrel{\text{def.}}{=} \sum_{i=0}^{25} q_i^2.$$

When $\tau = t$ we expect $S_\tau \approx 0.065$, as discussed above. On the other hand, if τ is not a multiple of t we expect that all characters will occur with roughly equal

probability in the sequence $c_1, c_{1+\tau}, c_{1+2\tau}, \dots$, and so we expect $q_i \approx 1/26$ for all i . In this case we will obtain

$$S_\tau \approx \sum_{i=0}^{25} \left(\frac{1}{26} \right)^2 \approx 0.038.$$

The smallest value of τ for which $S_\tau \approx 0.065$ is thus likely the key length. One can further validate a guess τ by carrying out a similar calculation using the second stream $c_2, c_{2+\tau}, c_{2+2\tau}, \dots$, etc.

Ciphertext length and cryptanalytic attacks. The above attacks on the Vigenère cipher require a longer ciphertext than the attacks on previous schemes. For example, the index of coincidence method requires c_1, c_{1+t}, c_{1+2t} (where t is the actual key length) to be sufficiently long in order to ensure that the observed frequencies match what is expected; the ciphertext itself must then be roughly t times larger. Similarly, the attack we showed on the monoalphabetic substitution cipher requires a longer ciphertext than the attack on the shift cipher (which can work for encryptions of even a single word). This illustrates that a longer key can, in general, require the cryptanalyst to obtain more ciphertext in order to carry out an attack. (Indeed, the Vigenère cipher can be shown to be secure if the key is as long as what is being encrypted. We will see a similar phenomenon in the next chapter.)

Conclusions. We have presented only a few historical ciphers. Beyond their historical interest, our aim in presenting them was to illustrate some important lessons. Perhaps the most important is that *designing secure ciphers is hard*. The Vigenère cipher remained unbroken for a long time. Far more complex schemes have also been used. But a complex scheme is not necessarily secure, and all historical schemes have been broken.

1.4 Principles of Modern Cryptography

As should be clear from the previous section, cryptography was historically more of an art than a science. Schemes were designed in an ad hoc manner and evaluated based on their perceived complexity or cleverness. A scheme would be analyzed to see if any attacks could be found; if so, the scheme would be “patched” to thwart that attack, and the process repeated. Although there may have been agreement that some schemes were *not* secure (as evidenced by an especially damaging attack), there was no agreed-upon notion of what requirements a “secure” scheme should satisfy, and no way to give evidence that any specific scheme was secure.

Over the past several decades, cryptography has developed into more of a science. Schemes are now developed and analyzed in a more systematic

manner, with the ultimate goal being to give a rigorous *proof* that a given construction is secure. In order to articulate such proofs, we first need *formal definitions* that pin down exactly what “secure” means; such definitions are useful and interesting in their own right. As it turns out, most cryptographic proofs rely on currently unproven *assumptions* about the algorithmic hardness of certain mathematical problems; any such assumptions must be made explicit and be stated precisely. An emphasis on definitions, assumptions, and proofs distinguishes *modern* cryptography from classical cryptography; we discuss these three principles in greater detail in the following sections.

1.4.1 Principle 1 – Formal Definitions

One of the key contributions of modern cryptography has been the recognition that formal definitions of security are *essential* for the proper design, study, evaluation, and usage of cryptographic primitives. Put bluntly:

If you don't understand what you want to achieve, how can you possibly know when (or if) you have achieved it?

Formal definitions provide such understanding by giving a clear description of what threats are in scope and what security guarantees are desired. As such, definitions can help guide the design of cryptographic schemes. Indeed, it is much better to formalize what is required *before* the design process begins, rather than to come up with a definition *post facto* once the design is complete. The latter approach risks having the design phase end when the designers’ patience is exhausted (rather than when the goal has been met), or may result in a construction achieving *more* than is needed at the expense of efficiency.

Definitions also offer a way to evaluate and analyze what is constructed. With a definition in place, one can study a proposed scheme to see if it achieves the desired guarantees; in some cases, one can even *prove* a given construction secure (see Section 1.4.3) by showing that it meets the definition. On the flip side, definitions can be used to conclusively show that a given scheme is *not* secure, insofar as the scheme does not satisfy the definition. In particular, note that the attacks in the previous section do not automatically demonstrate that any of the schemes shown there is “insecure.” For example, the attack on the Vigenère cipher assumed that sufficiently long English text was being encrypted, but could the Vigenère cipher be “secure” if short English text, or compressed text (which will have roughly uniform letter frequencies), is encrypted? It is hard to say without a formal definition in place.

Definitions enable a meaningful comparison of schemes. As we will see, there can be multiple (valid) ways to define security; the “right” one depends on the context in which a scheme is used. A scheme satisfying a weaker definition may be more efficient than another scheme satisfying a stronger definition; with precise definitions we can properly evaluate the trade-offs between the two schemes. Along the same lines, definitions enable secure usage of schemes. Consider the question of deciding which encryption scheme

to use for some larger application. A sound way to approach the problem is to first understand what notion of security is required for that application, and then find an encryption scheme satisfying that notion. A side benefit of this approach is *modularity*: a designer can “swap out” one encryption scheme and replace it with another (that also satisfies the necessary definition of security) without having to worry about affecting security of the overall application. Writing a formal definition forces one to think about what is essential to the problem at hand and what properties are extraneous. Going through the process often reveals subtleties of the problem that were not obvious at first glance. We illustrate this next for the case of encryption.

An example: secure encryption. A common mistake is to think that formal definitions are not needed, or are trivial to come up with, because “everyone has an intuitive idea of what security means.” This is not the case. As an example, we consider the case of encryption. (The reader may want to pause here to think about how they would formally define what it means for an encryption scheme to be secure.) Although we postpone a formal definition of secure encryption to the next two chapters, we describe here informally what such a definition should capture.

In general, a security definition has two components: a security guarantee (or, from the attacker’s point of view, what constitutes a successful attack on the scheme) and a threat model. The security guarantee defines what the scheme is intended to prevent the attacker from doing, while the threat model describes the power of the adversary, i.e., what actions the attacker is assumed able to carry out.

Let’s start with the first of these. What should a secure encryption scheme guarantee? Here are some thoughts:

- *It should be impossible for an attacker to recover the key.* We have previously observed that if an attacker can determine the key shared by two parties using some scheme, then that scheme cannot be secure. However, it is easy to come up with schemes for which key recovery is impossible, yet the scheme is blatantly insecure. Consider, e.g., the scheme where $\text{Enc}_k(m) = m$. The ciphertext leaks no information about the key (and so the key cannot be recovered if it is long enough) yet the message is sent in the clear! We thus see that inability to recover the key is not sufficient for security. This makes sense: the aim of encryption is to protect the *message*; the key is a means for achieving this but is, in itself, unimportant.
- *It should be impossible for an attacker to recover the entire plaintext from the ciphertext.* This definition is better, but is still far from satisfactory. In particular, this definition would consider an encryption scheme secure if its ciphertexts revealed 90% of the plaintext, as long as 10% of the plaintext remained hard to figure out. This is clearly unacceptable in most common applications of encryption, for example, when encrypting

a salary database, we would be justifiably upset if 90% of employees’ salaries were revealed!

- *It should be impossible for an attacker to recover any character of the plaintext from the ciphertext.* This looks like a good definition, yet is still not sufficient. Going back to the example of encrypting a salary database, we would not consider an encryption scheme secure if it reveals whether an employee’s salary is more than or less than \$100,000, even if it does not reveal any particular digit of that employee’s salary. Similarly, we would not want an encryption scheme to reveal whether employee A makes more than employee B.

Another issue is how to formalize what it means for an adversary to “recover a character of the plaintext.” What if an attacker correctly guesses, through sheer luck or external information, that the least significant digit of someone’s salary is 0? Clearly that should not render an encryption scheme insecure, and so any viable definition must somehow rule out such behavior as being a successful attack.

- *The “right” answer: regardless of any information an attacker already has, a ciphertext should leak no additional information about the underlying plaintext.* This informal definition captures all the concerns outlined above. Note in particular that it does not try to define what information about the plaintext is “meaningful”; it simply requires that no information be leaked. This is important, as it means that a secure encryption scheme is suitable for all potential applications in which secrecy is required.

What is missing here is a precise, mathematical formulation of the definition. How should we capture an attacker’s prior knowledge about the plaintext? And what does it mean to (not) leak information? We will return to these questions in the next two chapters; see especially Definitions 2.3 and 3.12.

Now that we have fixed a security *goal*, it remains to specify a *threat model*. This specifies what “power” the attacker is assumed to have, but does not place any restrictions on the adversary’s *strategy*. This is an important distinction: we specify what we assume about the adversary’s abilities, but we do *not* assume anything about *how it uses* those abilities. It is impossible to foresee what strategies might be used in an attack, and history has proven that attempts to do so are doomed to failure.

There are several plausible options for the threat model in the context of encryption; standard ones, in order of increasing power of the attacker, are:

- **Ciphertext-only attack:** This is the most basic attack, and refers to a scenario where the adversary just observes a ciphertext (or multiple ciphertexts) and attempts to determine information about the underlying plaintext (or plaintexts). This is the threat model we have been

implicitly assuming when discussing classical encryption schemes in the previous section.

- **Known-plaintext attack:** Here, the adversary is able to learn one or more plaintext/ciphertext pairs generated using some key. The aim of the adversary is then to deduce information about the underlying plaintext of some *other* ciphertext produced using the same key. All the classical encryption schemes we have seen are trivial to break using a known-plaintext attack; we leave a demonstration as an exercise.

- **Chosen-plaintext attack:** In this attack, the adversary can obtain plaintext/ciphertext pairs (as above) for plaintexts *of its choice*.

None of these threat models is inherently better than any other; the right one to use depends on the environment in which an encryption scheme is deployed. The first two types of attack are the easiest to carry out. In a ciphertext-only attack, the only thing the adversary needs to do is eavesdrop on the public communication channel over which encrypted messages are sent. In a known-plaintext attack it is assumed that the adversary somehow also obtains ciphertexts corresponding to known plaintexts. This is often easy to accomplish because not all encrypted messages are confidential, at least not indefinitely. As a trivial example, two parties may always encrypt a “hello” message whenever they begin communicating. As a more complex example, encryption may be used to keep quarterly-earnings reports secret until their release date; in this case, anyone eavesdropping on the ciphertext will later obtain the corresponding plaintext.

In the latter two attacks the adversary is assumed to be able to obtain encryptions and/or decryptions of plaintexts/ciphertexts of its choice. This may at first seem strange, and we defer a more detailed discussion of these attacks, and their practicality, to Section 3.4.2 (for chosen-plaintext attacks) and Section 3.7 (for chosen-ciphertext attacks).

1.4.2 Principle 2 – Precise Assumptions

Most modern cryptographic constructions cannot be proven secure unconditionally; such proofs would require resolving questions in the theory of computational complexity that seem far from being answered today. The result of

this unfortunate state of affairs is that proofs of security typically rely on *assumptions*. Modern cryptography requires any such assumptions to be made explicit and mathematically precise. At the most basic level, this is simply because mathematical proofs of security require this. But there are other reasons as well:

1. *Validation of assumptions:* By their very nature, assumptions are statements that are not proven but are instead conjectured to be true. In order to strengthen our belief in some assumption, it is necessary for the assumption to be studied. The more the assumption is examined and tested without being refuted, the more confident we are that the assumption is true. Furthermore, study of an assumption can provide evidence of its validity by showing that it is implied by some other assumption that is also widely believed.
2. *Comparison of schemes:* Often in cryptography we are presented with two schemes that can both be proven to satisfy some definition, each based on a different assumption. Assuming all else is equal, which scheme should be preferred? If the assumption on which the first scheme is based is *weaker* than the assumption on which the second scheme is based (i.e., the second assumption implies the first), then the first scheme is preferable since it may turn out that the second assumption is false while the first assumption is true. If the assumptions used by the two schemes are not comparable, then the general rule is to prefer the scheme that is based on the better-studied assumption in which there is greater confidence.

3. *Understanding the necessary assumptions:* An encryption scheme may be based on some underlying building block. If some weaknesses are later found in the building block, how can we tell whether the encryption scheme is still secure? If the underlying assumptions regarding the building block are made clear as part of proving security of the scheme, then we need only check whether the required assumptions are affected by the new weaknesses that were found.

A question that sometimes arises is: rather than prove a scheme secure based on some other assumption, why not simply assume that the construction *itself* is secure? In some cases—e.g., when a scheme has successfully resisted attack for many years—this may be a reasonable approach. But this approach is never preferred, and is downright dangerous when a new scheme is being introduced. The reasons above help explain why. First, an assumption that has been tested for several years is preferable to a new, ad hoc assumption

that is introduced along with a new construction. Second, there is a general preference for assumptions that are simpler to state, since such assumptions are easier to study and to (potentially) refute. So, for example, an assumption that some mathematical problem is hard to solve is simpler to study and evaluate than the assumption that an encryption scheme satisfies a complex security definition. Another advantage of relying on “lower-level” assumptions (rather than just assuming a construction is secure) is that these low-level assumptions can typically be used in other constructions. Finally, low-level assumptions can provide *modularity*. Consider an encryption scheme whose security relies on some assumed property of one of its building blocks. If the underlying building block turns out *not* to satisfy the stated assumption, the encryption scheme can still be instantiated using a different component that is believed to satisfy the necessary requirements.

1.4.3 Principle 3 – Proofs of Security

The two principles described above allow us to achieve our goal of providing a rigorous *proof* that a construction satisfies a given definition under certain specified assumptions. Such proofs are especially important in the context of cryptography where there is an attacker who is actively trying to “break” some scheme. Proofs of security give an iron-clad guarantee—relative to the definition and assumptions—that no attacker will succeed; this is much better than taking an unprincipled or heuristic approach to the problem. Without a proof that no adversary with the specified resources can break some scheme, we are left only with our intuition that this is the case. Experience has shown that intuition in cryptography and computer security is disastrous. There are countless examples of unproven schemes that were broken, sometimes immediately and sometimes years after being developed.

Summary: Rigorous vs. Ad Hoc Approaches to Security

Reliance on definitions, assumptions, and proofs constitutes a rigorous approach to cryptography that is distinct from the informal approach of classical cryptography. Unfortunately, unprincipled, “off-the-cuff” solutions are still designed and deployed by those wishing to obtain a quick solution to a problem, or by those who are simply unknowable. We hope this book will contribute to an awareness of the rigorous approach and its importance in developing provably secure schemes.

1.4.4 Provable Security and Real-World Security

Much of modern cryptography now rests on sound mathematical foundations. But this does not mean that the field is no longer partly an *art* as well. The rigorous approach leaves room for creativity in developing definitions suited to contemporary applications and environments, in proposing new

mathematical assumptions or designing new primitives, and in constructing novel schemes and proving them secure. There will also, of course, always be the art of *attacking* deployed cryptosystems, even if they are proven secure. We expand on this point next.

The approach taken by modern cryptography has revolutionized the field, and helps provide confidence in the security of cryptographic schemes deployed in the real world. But it is important not to overstate what a proof of security implies. A proof of security is always relative to the *definition* being considered and the *assumption(s)* being used. If the security guarantee does not match what is needed, or the threat model does not capture the adversary’s true abilities, then the proof may be irrelevant. Similarly, if the assumption that is relied upon turns out to be false, then the proof of security is meaningless. The take-away point is that provable security of a scheme does not necessarily imply security in the real world.⁴ While some have viewed this as a drawback of provable security, we view this optimistically as illustrating the *strength* of the approach. To attack a provably secure scheme in the real world, it suffices to focus attention on the definition (i.e., to explore how the idealized definition differs from the real-world environment in which the scheme is deployed) or the underlying assumptions (i.e., to see whether they hold). In turn, it is the job of cryptographers to continually refine their definitions to more closely match the real world, and to investigate their assumptions to test their validity. Provable security does not end the age-old battle between attacker and defender, but it does provide a framework that helps shift the odds in the defender’s favor.

References and Additional Reading

In this chapter, we have studied just a few of the known historical ciphers. There are many others of both historical and mathematical interest, and we refer the reader to textbooks by Stinson [168] or Trappe and Washington [169] for further details. The important role cryptography has played throughout history is a fascinating subject covered in books by Kahn [97] and Singh [163]. Kerckhoffs’ principles were elucidated in [103, 104]. Shannon [154] was the first to pursue a rigorous approach to cryptography based on precise definitions and mathematical proofs; we explore his work in the next chapter.

⁴Here we are not even considering the possibility of an incorrect *implementation* of the scheme. Poorly implemented cryptography is a serious problem in the real world, but this problem is somewhat outside the scope of cryptography *per se*.