CRYPTOGRAPHY AND NETWORK SECURITY

MIX

Paper from
responsible sources
FSC

woniscoy FSC® C014174

INTRODUCTION TO

MODERN
CRYPTOGRAPHY

m T Taylor & Francis Group
mn O 3 Q m Q _.ﬁ_ O 3 6000 Broken Sound Parkway N'W, Suite 300
Boca Raton, FL 334.87-274:2

© 2015 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S, Government works

Printed on acid-free paper

Jon athan Katz Version Date: 20140915

. ’ International Standard Book Number-13; 978-1-4665-7026-9 (Hardback
University of Maryland g A V

This book contains information obtained from authentic and highly regarded sources. Reasonable

MO:WGQ Park, MD, USA efforts have been made to publish reliable data and information, but the mm?ron and publisher cannot

assume responsibility for the validity of all materials or the consequences of their use. The authors and

publishers have attempted to trace the copyright holders of all material reproduced in this publication

<m j u Qm _I_.j Q m: and mmomom.ﬁm 8. copyright holders if permission to _u:v:mw in this form has not been ovamm:.mi..:m:«

copyright material has not been acknowledged please write and let us know so we may rectify in any
future reprint.

Bar-llan University

Ramat DM_D, Israel Except as _umn:::oﬂ E&_mn U.S. Copyright Law, no n.mnn of this vco_n may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information stor-
age or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copy-
right.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222
Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that pro-
vides licenses and registration for a variety of users. For organizations that have been granted a photo-
copy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are
nxm —Uﬂmmm used only for identification and explanation without intent to infringe.

Taylor & Francis Group Visit the Taylor & Francis Web site at
Boca Raton London New York http://www.taylorandfrancis.com

CRC Press is an imprint of the
Taylor & Francis Group an informa business

A CHAPMAN & HALL BOOK

and the CRC Press Web site at
http://www.crcpress.com

Chapter 1

HBE.OQ:nﬁo: .

1.1 Cryptography and Modern Cryptography

The Concise Ozford English Dictionary defines cryptography as “the art of
writing or solving codes.” This is historically accurate, but does not capture
the current breadth of the field or its present-day scientific foundations. The
definition focuses solely on the codes that have been used for centuries to en-
able secret communication. But cryptography nowadays encompasses much
more than this: it deals with mechanisms for ensuring integrity, techniques for
exchanging secret keys, protocols for authenticating users, electronic auctions
and elections, digital cash, and more. Without attempting to provide a com-
plete characterization, we would say that modern cryptography involves the
study of mathematical techniques for securing digital information, systems,
and distributed computations against adversarial attacks.

The dictionary definition also refers to cryptography as an art. Until late in
the 20th century cryptography was, indeed, largely an art. Constructing good
codes, or breaking existing ones, relied on creativity and a developed sense of
how codes work. There was little theory to rely on and, for a long time, no
working definition of what constitutes a good code. Beginning in the 1970s
and 1980s, this picture of cryptography radically changed. A rich theory
began to emerge, enabling the rigorous study of cryptography as a science
and a mathematical discipline. This perspective has, in turn, influenced how
researchers think about the broader field of computer security.

Another very important difference between classical cryptography (say, be-
fore the 1980s) and modern cryptography relates to its adoption. Historically,
the major consumers of cryptography were military organizations and gov-
ernments. Today, cryptography is everywhere! If you have ever authenticated
yourself by typing a password, purchased something by credit card over the
Internet, or downloaded a verified update for your operating system, you have
undoubtedly used cryptography. And, more and more, programmers with rel-
atively little experience are being asked to “secure” the applications they write
by incorporating cryptographic mechanisms.

In short, cryptography has gone from a heuristic set of tools concerned
with ensuring secret communication for the military to a science that helps
secure systems for ordinary people all across the globe. This also means that
cryptography has become a more central topic within computer science.

4 Introduction to Modern Cryptography

Goals of this book. Our goal is to make the basic principles of modern
cryptography accessible to students of computer science, electrical engineer-
ing, or mathematics; to professionals who want to incorporate cryptography
in systems or software they are developing; and to anyone with a basic level
of mathematical maturity who is interested in understanding this fascinating
field. After completing this book, the reader should appreciate the secu-
rity guarantees common cryptographic primitives are intended to provide; be
aware of standard (secure) constructions of such primitives; and be able to
perform a basic evaluation of new schemes based on their proofs of security
(or lack thereof) and the mathematical assumptions underlying those proofs.
It is not our intention for readers to become experts—or to be able to de-
sign new cryptosystems—after finishing this book, but we have attempted to
provide the terminology and foundational material needed for the interested
reader to subsequently study more advanced references in the area.

This chapter. The focus of this book is the formal study of modern cryp-
tography, but we begin in this chapter with a more informal discussion of
“classical” cryptography. Besides allowing us to ease into the material, our
treatment in this chapter will also serve to motivate the more rigorous ap-
proach we will be taking in the rest of the book. Our intention here is not to
be exhaustive and, as such, this chapter should not be taken as a representa-
tive historical account. The reader interested in the history of cryptography
is invited to consult the references at the end of this chapter.

1.2 The Setting of Private-Key Encryption

Classical cryptography was concerned with designing and using codes (also
called eiphers) that enable two parties to communicate secretly in the pres-
ence of an eavesdropper who can monitor all communication between them.

In modern parlance, codes are called encryption schemes and that is the ter-

minology we will use here. Security of all classical encryption schemes relied
on a secret—a key—shared by the communicating parties in advance and un-
known to the eavesdropper. This scenario is known as the private-key (or
shared-/secret-key) setting, and private-key encryption is just one example of
a cryptographic primitive used in this setting. Before describing some histor-
ical encryption schemes, we discuss private-key encryption more generally.
In the setting of private-key encryption, two parties share a key and use this
key when they want to communicate secretly. One party can send a message,
or plaintext, to the other by using the shared key to encrypt (or “scramble”)
the message and thus obtain a ciphertext that is transmitted to the receiver.
The teceiver uses the same key to decrypt (or “unscramble”) the ciphertext
and recover the original message. Note the same key is used to convert the

Introduction 5

£ encryption decryption § 7
ciphertext 2

FIGURE 1.1: One common setting of private-key cryptography (here,
encryption): two parties share a key that they use to communicate securely.

plaintext into a ciphertext and back; that is why this is also known as the
symmetric-key setting, where the symmetry lies in the fact that both parties
hold the same key that is used for encryption and decryption. This is in
contrast to asymmetric, or public-key, encryption (introduced in Chapter 10),
where encryption and decryption use different keys.

As already noted, the goal of encryption is to keep the plaintext hidden from
an eavesdropper who can monitor the communication channel and observe the
ciphertext. We discuss this in more detail later in this chapter, and spend a
great deal of time in Chapters 2 and 3 formally defining this goal.

There are two canonical applications of private-key cryptography. In the
first, there are two distinct parties separated in space, e.g., a worker in New
York communicating with her colleague in California; see Figure 1.2. These
two users are assumed to have been able to securely share a key in advance
of their communication. (Note that if one party simply sends the key to the
other over the public communication channel, then the eavesdropper obtains
the key too!) Often this is easy to accomplish by having the parties physically
meet in a secure location to share a key before they separate; in the example

" just given, the co-workers might arrange to share a key when they are both in

the New York office. In other cases, sharing a key securely is more difficult.
For the next several chapters we simply assume that sharing a key is possible;
we will revisit this issue in Chapter 10.

The second widespread application of private-key cryptography involves the
same party communicating with itself over time. (See Figure 1.2.) Consider,

e.g., disk encryption, where a user encrypts some plaintext and stores the
resulting ciphertext on their hard drive; the same user will return at a later

6 Introduction to Modern Cryptography

ﬁ _q encryption

decryption

3

(9

)

FIGURE 1.2: Another common setting of private-key cryptography
(again, encryption): a single user stores data securely over time.

point in time to decrypt the ciphertext and recover the original data. The
hard drive here serves as the communication channel on which an attacker
might eavesdrop by gaining access to the hard drive and reading its contents.
“Sharing” the key is now trivial, though the user still needs a secure and
reliable way to remember /store the key for use at a later point in time.

The syntax of encryption. Formally, a private-key encryption scheme
is defined by specifying a message space M along with three algorithms: a
procedure for generating keys (Gen), a procedure for encrypting (Enc), and
a procedure for decrypting (Dec). The message space M defines the set of
“legal” messages, i.e., those supported by the scheme. The algorithms have
the following functionality:

1. The key-generation algorithm Gen is a probabilistic algorithm that out-
puts a key k chosen according to some distribution.

2. The encryption algorithm Enc takes as input a key k and a message m
and outputs a ciphertext ¢. We denote by Encg(m) the encryption of
the plaintext m using the key k.

3. The decryption algorithm Dec takes as input a key k and a ciphertext ¢
and outputs a plaintext m. We denote the decryption of the ciphertext ¢
using the key k by Dec(c).

An encryption scheme must satisfy the following correctness requirement: for
every key k output by Gen and every message m € M, it holds that

Deck (Encg(m)) = m.

Introduction 7

In words: encrypting a message and then decrypting the resulting ciphertext
(using the same key) yields the original message.

The set of all possible keys output by the key-generation algorithm is called
the key space and is denoted by K. Almost always, Gen simply chooses a
uniform key from the key space; in fact, one can assume without loss of
generality that this is the case (see Exercise 2.1).

Reviewing our earlier discussion, an encryption scheme can be used by two
parties who wish to communicate as follows. First, Gen is run to obtain a key k
that the parties share. Later, when one party wants to send a plaintext m
to the other, she computes ¢ := Enck(m) and sends the resulting ciphertext ¢
over the public channel to the other party.! Upon receiving ¢, the other party
computes m := Decg(c) to recover the original plaintext.

Keys and Kerckhoffs’ principle. As is clear from the above, if an eaves-
dropping adversary knows the algorithm Dec as well as the key k shared by
the two communicating parties, then that adversary will be able to decrypt
any ciphertexts transmitted by those parties. It is for this reason that the
communicating parties must share the key &k securely and keep k completely
secret from everyone else. Perhaps they should keep the decryption algorithm
Dec secret, too? For that matter, might it not be better for them to keep all
the details of the encryption scheme secret?

In the late 19th century, Auguste Kerckhoffs argued the opposite in a paper
he wrote elucidating several design principles for military ciphers. One of the
most important of these, now known simply as Kerckhoffs’ principle, was:

The cipher method must not be required to be secret, and it must
be able to fall into the hands of the enemy without inconvenience.

That is, an encryption scheme should be designed to be secure even if an
eavesdropper knows all the details of the scheme, so long as the attacker
doesn’t know the key being used. Stated differently, security should not rely
on the encryption scheme being secret; instead, Kerckhoffs’ principle demands
that security rely solely on secrecy of the key.

There are three primary arguments in favor of Kerckhoffs’ principle. The
first is that it is significantly easier for the parties to maintain secrecy of
a short key than to keep secret the (more complicated) algorithm they are
using. This is especially true if we imagine using encryption to secure the
communication between all pairs of employees in some organization. Unless
each pair of parties uses their own, unique algorithm, some parties will know
the algorithm used by others. Information about the encryption algorithm
might be leaked by one of these employees (say, after being fired), or obtained
by an attacker using reverse engineering. In short, it is simply unrealistic to
assume that the encryption algorithm will remain secret.

1We use “:=” to denote deterministic assignment, and assume for now that Enc is deter-
ministic. A list of common notation can be found in the back of the book.

8 Introduction to Modern Cryptography

Second, in case the honest parties’ shared, secret information is ever ex-
posed, it will be much easier for them to change a key than to replace an
encryption scheme. (Consider updating a file versus installing a new pro-
gram.) Moreover, it is relatively trivial to generate a new random secret,
whereas it would be a huge undertaking to design a new encryption scheme.

Finally, for large-scale deployment it is significantly easier for users to all
rely on the same encryption algorithm/software (with different keys) than
for everyone to use their own custom algorithm. (This is true even for a
single user who is communicating with several different parties.) In fact, it is
desirable for encryption schemes to be standardized so that (1) compatibility
is ensured by default and (2) users will utilize an encryption scheme that has
undergone public scrutiny and in which no weaknesses have been found.

Nowadays Kerckhoffs’ principle is understood as advocating that crypto-
graphic designs be made completely public, in stark contrast to the notion
of “security by obscurity” which suggests that keeping algorithms secret im-
proves security. It is very dangerous to use a proprietary, “home-brewed”
algorithm (i.e., a non-standardized algorithm designed in secret by some com-
pany). In contrast, published designs undergo public review and are therefore
likely to be stronger. Many years of experience have demonstrated that it is
very difficult to construct good cryptographic schemes. Therefore, our con-
fidence in the security of a scheme is much higher if it has been extensively
studied (by experts other than the designers of the scheme) and no weaknesses
have been found. As simple and obvious as it may sound, the principle of open
cryptographic design (i.e., Kerckhoffs’ principle) has been ignored over and
over again with disastrous results. Fortunately, today there are enough secure,
standardized, and widely available cryptosystems that there is no reason to
use anything else.

1.3 Historical Ciphers and Their Cryptanalysis

In our study of “classical” cryptography we will examine some historical
encryption schemes and show that they are insecure. Our main aims in pre-
senting this material are (1) to highlight the weaknesses of an “ad hoc” ap-
proach to cryptography, and thus motivate the modern, rigorous approach
that will be taken in the rest of the book, and (2) to demonstrate that simple
approaches to achieving secure encryption are unlikely to succeed. Along the
way, we will present some central principles of cryptography inspired by the
weaknesses of these historical schemes.

In this section, plaintext characters are written in lower case and cipher-
text characters are written in UPPER CASE for typographical clarity.

Caesar’s cipher. One of the oldest recorded ciphers, known as Caesar’s

Introduction 9

cipher, is described in De Vita Caesarum, Divus Iulius (“The Lives of the
Caesars, the Deified Julius”), written in approximately 110 CE:

There are also letters of his to Cicero, as well as to his intimates
on private affairs, and in the latter, if he had anything confidential
to say, he wrote it in cipher, that is, by so0 changing the order of
the letters of the alphabet, that not a word could be made out. . .

Julius Caesar encrypted by shifting the letters of the alphabet 3 places for-
ward: a was replaced with D, b with E, and so on. At the very end of the
alphabet, the letters wrap around and so z was replaced with C, y with B, and
x with A. For example, encryption of the message begin the attack now,
with spaces removed, gives:

EHJLQWKHDWWDFNQRZ.

An immediate problem with this cipher is that the encryption method is fized;
there is no key. Thus, anyone learning how Caesar encrypted his messages
would be able to decrypt effortlessly.

Interestingly, a variant of this cipher called ROT-13 (where the shift is 13
places instead of 3) is still used nowadays in various online forums. It is
understood.that this does not provide any cryptographic security; it is used
merely to ensure that the text (say, a movie spoiler) is unintelligible unless
the reader of a message consciously chooses to decrypt it.

The shift cipher and the sufficient key-space principle. The shift
cipher can be viewed as a keyed variant of Caesar’s cipher.? Specifically, in
the shift cipher the key k is a number between 0 and 25. To encrypt, letters are
shifted as in Caesar’s cipher, but now by k places. Mapping this to the syntax
of encryption described earlier, the message space consists of arbitrary length
strings of English letters with punctuation, spaces, and numerals removed, and
with no distinction between upper and lower case. Algorithm Gen outputs a
uniform key & € {0, ...,25}; algorithm Enc takes a key k and a plaintext and
shifts each letter of the plaintext forward k positions (wrapping around at the
end of the alphabet); and algorithm Dec takes a key k and a ciphertext and
shifts every letter of the ciphertext backward k positions.

A more mathematical description is obtained by equating the English al-
phabet with the set {0,...,25} (so a = 0, b = 1, etc.). The message space
M is then any finite sequence of integers from this set. Encryption of the
message m = mq - --mg (where m; € {0,...,25}) using key k is given by

Enck(my---mg) =c1---cg, where ¢; = [(m; + k) mod 26].

(The notation [a mod N] denotes the remainder of a upon division by N,
with 0 < [a mod N] < N. We refer to the process mapping a to [a mod N|

%In some books, “Caesar’s cipher” and “shift cipher” are used interchangeably.

10 Introduction to Modern Cryptography

as reduction modulo N; we will have more to say about this beginning in
Chapter 8.) Decryption of a ciphertext ¢ = ¢; - - - ¢p using key k is given by

Deck(cy -+ ce) =my---me, where m; = [(¢; — k) mod 26].

Is the shift cipher secure? Before reading on, try to decrypt the following
ciphertext that was generated using the shift cipher and a secret key k:

OVDTHUFWVZZPISLRLFZHYLAOLYL.

Is it possible to recover the message without knowing k7 Actually, it is triviall
The reason is that there are only 26 possible keys. So one can try to decrypt
the ciphertext using every possible key and thereby obtain a list of 26 candi-
date plaintexts. The correct plaintext will certainly be on this list; moreover,
if the ciphertext is “long enough” then the correct plaintext will likely be the
only candidate on the list that “makes sense.” (The latter is not necessar-
ily true, but will be true most of the time. Even when it is not, the attack
narrows down the set of potential plaintexts to at most 26 possibilities.) By
scanning the list of candidates it is easy to recover the original plaintext.

An attack that involves trying every possible key is called a brute-force or
ezhaustive-search attack. Clearly, for an encryption scheme to be secure it
must not be vulnerable to such an attack.® This observation is known as the
sufficient key-space principle:

Any secure encryption scheme must have a key space that is suffi-
ciently large to moke an echaustive-search attack infeasible.

One can debate what amount of effort makes a task “infeasible,” and an
exact determination of feasibility depends on both the resources of a potential
attacker and the length of time the sender and receiver want to ensure secrecy
of their communication. Nowadays, attackers can use supercomputers, tens
of thousands of personal computers, or graphics processing units (GPUs) to
speed up brute-force attacks. To protect against such attacks the key space
must therefore be very large—say, of size at least 27°, and even larger if one
is concerned about long-term security against a well-funded attacker.

The sufficient key-space principle gives a necessary condition for security,
but not a sufficient one. The next example demonstrates this.

The mono-alphabetic substitution cipher. In the shift cipher, the key
defines a map from each letter of the (plaintext) alphabet to some letter of
the (ciphertext) alphabet, where the map is a fixed shift determined by the
key. In the rmono-alphabetic substitution cipher, the key also defines a map
on the alphabet, but the map is now allowed to be arbitrary subject only to
the constraint that it be one-to-one so that decryption is possible. The key

3Technically, this is only true if the message space is larger than the key space; we will
return to this point in Chapter 2. Encryption schemes used in practice have this property.

Introduction 14l

space thus consists of all bijections, or permutations, of the alphabet. So, for
example, the key that defines the following permutation

mcnnmwmwpuWHEuowﬁwmﬁmczx<m
XEUADNBKVMROCQFSYHWGLZIJPT

(in which a maps to X, etc.) would encrypt the message tellhimaboutme to
GDOOKVCXEFLGCD. The name of this cipher comes from the fact that the key
defines a (fixed) substitution for individual characters of the plaintext.
Assuming the English alphabet is being used, the key space is of size 26! =
26-25-24--.2-1, or approximately 288, and a brute-force attack is infeasible.
This, however, does not mean the cipher is secure! In fact, as we will show
next, it is easy to break this scheme even though it has a large key space.
Assume English-language text is being encrypted (i.e., the text is gram-
matically correct English writing, not just text written using characters of
the English alphabet). The mono-alphabetic substitution cipher can then be
attacked by utilizing statistical patterns of the English language. (Of course,
the same attack works for any language.) The attack relies on the facts that:

1. For any key, the mapping of each letter is fixed, and so if e is mapped
to D, 4hen every appearance of e in the plaintext will result in the ap-
pearance of D in the ciphertext.

2. The frequency distribution of individual letters in the English language
is known (see Figure 1.3). Of course, very short texts may deviate from
this distribution, but even texts consisting of only a few sentences tend
to have distributions that are very close to the average.

14.0

120

10.0

8.0

6.0

Percentage

40

20

Letter

FIGURE 1.3: Average letter frequencies for English-language text.

12 Introduction to Modern Cryptography

The attack works by tabulating the frequency distribution of characters in the
ciphertext, i.e., recording that A appeared 11 times, B appeared 4 times, and
so on. These frequencies are then compared to the known letter frequencies
of normal English text. One can then guess parts of the mapping defined by
the key based on the observed frequencies. For example, since e is the most
frequent letter in English, one can guess that the most frequent character in
the ciphertext corresponds to the plaintext character e, and so on. Some of
the guesses may be wrong, but enough of the guesses will be correct to enable
relatively quick decryption (especially utilizing other knowledge of English,
such as the fact that u generally follows g, and that h is likely to appear be-
tween t and e). We conclude that although the mono-alphabetic substitution
cipher has a large key space, it is still insecure.

It should not be surprising that the mono-alphabetic substitution cipher can
be quickly broken, since puzzles based on this cipher appear in newspapers
(and are solved by some people before their morning coffee!). We recommend
that you try to decipher the following ciphertext—this should convince you
how easy the attack is to carry out. (Use Figure 1.3 to help you.)

JGRMQOYGHMVBJWRWQFPWHGFFDQGFPFZRKBEEBJ I ZQQOCIBZKLFAFGQVFZFWWE
0GWOPFGFHWOLPHLRLOLFDMFGQWBLWBWQOLKFWBYLBLYLFSFLJGRMQBOLWJVFP
FWQVHQWFFPQOQVFPQOCFPOGFWF JIGFQVHLHLROQVFGWJVFPFOLFHGQVQVFILE
0GQILHQFQGIQVVOSFAFGBWQVHQWIJVWIVFPFWHGFIWIHZZROGBABHZQOCGFHX

An improved attack on the shift cipher. We can use letter-frequency
tables to give an improved attack on the shift cipher. Our previous attack on
the shift cipher required decrypting the ciphertext using each possible key, and
then checking which key results in a plaintext that “makes sense.” A drawback
of this approach is that it is somewhat difficult to automate, since it is difficult
for a computer to check whether a given plaintext “makes sense.” (We do not
claim that it would be impossible, as the attack could be automated using a
dictionary of valid English words. We only claim that it would not be trivial
to automate.) Moreover, there may be cases—we will see one later—where
the plaintext characters are distributed just like English-language text even
though the plaintext itself is not valid English, in which case checking for a
plaintext that “makes sense” will not work. ;

We now describe an attack that does not suffer from these drawbacks. As
before, associate the letters of the English alphabet with 0,...,25. Let p;,
with 0 < p; < 1, denote the frequency of the ith letter in normal English text

(ignoring spaces, punctuation, ete.). Calculation using Figure 1.3 gives

25
> p? = 0.065. (1.1)
i=0

Now, say we are given some ciphertext and let ¢; denote the frequency of
the ith letter of the alphabet in this ciphertext; i.e., ¢; is simply the number

Introduction 13

of occurrences of the ith letter of the alphabet in the ciphertext divided by
the length of the ciphertext. If the key is &, then p; should be roughly equal
to gi4x for all i, because the ith letter is mapped to the (i + k)th letter. (We
use i+k instead of the more cumbersome [i+k mod 26].) Thus, if we compute

25
def
Iy'= M Di - Gitjy
i=0

for each value of 7 € {0,...,25}, then we expect to find that I, ~ 0.065
(where k is the actual key), whereas I ; for j # k will be different from 0.065.
This leads to a key-recovery attack that is easy to automate: compute [; for
all j, and then output the value k for which I}, is closest to 0.065.

The Vigenére (polyyalphabetic shift) cipher. The statistical attack on
the mono-alphabetic substitution cipher can be carried out because the key
defines a fixed mapping that is applied letter-by-letter to the plaintext. Such
an attack could be thwarted .by using a poly-alphabetic substitution cipher
where the key instead defines a mapping that is applied on blocks of plaintext
characters. Here, for example, a key might map the 2-character block ab to
DZ while mapping ac to TY; note that the plaintext character a does not get
mapped to a fixed ciphertext character. Poly-alphabetic substitution ciphers
“smooth out” the frequency distribution of characters in the ciphertext and
make it harder to perform statistical analysis.

The Vigenére cipher, a special case of the above also called the poly-
alphabetic shift cipher, works by applying several independent instances of
the shift cipher in sequence. The key is now viewed as a string of letters; en-
cryption is done by shifting each plaintext character by the amount indicated
by the next character of the key, wrapping around in the key when necessary.
(This degenerates to the shift cipher if the key has length 1.) For example,
encryption of the message tellhimaboutme using the key cafe would work
as follows:

Plaintext: tellhimaboutme
Key (repeated): cafecafecafeca
Ciphertext: VEQPJIREDOZXOE

(The key need not be an English word.) This is exactly the same as encrypting
the first, fifth, ninth, ... characters with the shift cipher and key c; the second,
sixth, tenth, ... characters with key a; the third, seventh, ... characters
with £; and the fourth, eighth, ... characters with e. Notice that in the above
example 1 is mapped once to § and once to P. Furthermore, the ciphertext
character E is sometimes obtained from e and sometimes from a. Thus, the
character frequencies of the ciphertext are “smoothed out,” as desired.

If the key is sufficiently long, cracking this cipher appears daunting. Indeed,
it had been considered by many to be “unbreakable,” and although it was
invented in the 16th century, a systematic attack on the scheme was only
devised hundreds of years later.

14 Introduction to Modern Cryptography

Attacking the Vigeneére cipher. A first observation in attacking the Vi-
genere cipher is that if the length of the key is known then attacking the cipher
is relatively easy. Specifically, say the length of the key, also called the period,
is t. Write the key k as k =k - - - ky where each k; is a letter of the alphabet.
An observed ciphertext ¢ = cjeg -+ can be divided into t parts where each
part can be viewed as having been encrypted using a shift cipher. Specifically,
for all j € {1,...,t} the ciphertext characters ,

CjyrCitty Ci421, - -

all resulted by shifting the corresponding characters of the plaintext by k;
positions. We refer to the above sequence of characters as the jth stream.
All that remains is to determine, for each of the ¢ streams, which of the 26
possible shifts was used. This is not as trivial as in the case of the shift
cipher, because it is no longer possible to simply try different shifts in an
attempt to determine when decryption of a stream “makes sense.” (Recall
that a stream does not correspond to consecutive letters of the plaintext.)
Furthermore, trying to guess the entire key k at once would require a brute-
force search through 26° different possibilities, which is infeasible for large t.
Nevertheless, we can still use letter-frequency analysis to analyze each stream
independently. Namely, for each stream we tabulate the frequency of each
ciphertext character and then check which of the 26 possible shifts yields the
“right” probability distribution for that stream. Since this can be carried out
independently for each stream (i.e., for each character of the key), this attack
takes time 26 - rather than time 26¢.

A more principled, easier-to-automate approach is to use the improved
method for attacking the shift cipher discussed earlier. That attack did not
rely on checking for a plaintext that “made sense,” but only relied on the
underlying frequency distribution of characters in the plaintext.

Either of the above approaches gives a successful attack when the key length
is known. What if the key length is unknown?

Note first that as long as the maximum length T of the key is not too
large, we can simply repeat the above attack T' times (for each possible value
t € {1,...,7}). This leads to at most 7" different candidate plaintexts, among
which the true plaintext will likely be easy to identify. So an unknown key
length is not a serious obstacle.

There are also more efficient ways to determine the key length from an
observed ciphertext. One is to use Kasiski’s method, published in the mid-
19th century. The first step here is to identify repeated patterns of length 2
or 3 in the ciphertext. These are likely the result of certain bigrams or trigrams
that appear frequently in the plaintext. For example, consider the common
word “the.” This word will be mapped to different ciphertext characters,
depending on its position in the plaintext. However, if it appears twice in
the same relative position, then it will be mapped to the same ciphertext
characters. For a sufficiently long plaintext, there is thus a good chance that
“the” will be mapped repeatedly to the same ciphertext characters.

Introduction 15

Consider the following concrete example with the key beads (spaces have
been added for clarity):

Plaintext: the man and the woman retrieved the letter from the post office
Key: bea dsb ead sbe adsbe adsbeadsb ead sbeads bead sbe adsb eadsbe
Ciphertext: ULE PSO ENG LII WREBR RHLSMEYWE XHH DFXTHJ GVOP LII PRKU SFIADI

The word the is mapped sometimes to ULE, sometimes to LII, and sometimes
to XHH. However, it is mapped fwice to LII, and in a long enough text it is
likely that it would be mapped multiple times to each of these possibilities.
Kasiski’s observation was that the distance between such repeated appear-
ances (assuming they are not coincidental) must be a multiple of the period.
(In the above example, the period is 5 and the distance between the two ap-
pearances of LII is 80, which is 6 times the period.) Therefore, the greatest
common divisor of the distances between repeated sequences (assuming they
are not coincidental) will yield the key length t or a multiple thereof.

An alternative approach, -called the indez of coincidence method, is more
methodical and hence ecasier to automate. Recall that if the key length is ¢,
then the ciphertext characters

C1,C14t, C142¢, -

in the first stream all resulted from encryption using the same shift. This
means that the frequencies of the characters in this sequence are expected
to be identical to the character frequencies of standard English text in some
shifted order. In more detail: let ¢; denote the observed frequency of the ith
English letter in this stream; this is simply the number of occurrences of the
ith letter of the alphabet divided by the total dumber of letters in the stream.
If the shift used here is j (i.e., if the first character ky of the key is equal
to j), then for all i we expect Ji+j = p;i, where p; is the frequency of the ith
letter of the alphabet in standard English text. (Once again, we use g;4; in

place of (it mod 26)-) But this means that the sequence qo, . . . ,q25 is just the
sequence po, - . ., Pas shifted j places. As a consequence (cf. Equation (1.1)):
25 25
D ¢?m > p?~0.065.
i=0 i=0

- This leads to a nice way to determine the key length t. For r = 1,2,...,
look at the sequence of ciphertext characters ¢y, Cl4r,Cl42r,--- and tabulate
qo, - - -, qas for this sequence. Then compute

- 25

ef 2

D =1 M q;-
i=0

When 7 =t we expect S, ~ 0.065, as discussed above. On the other hand, if 7
is not a multiple of ¢ we expect that all characters will occur with roughly equal

16 Introduction. to Modern Cryptography

probability in the sequence c1,¢1 4+, ¢149r, . . ., and so we expect q; = 1/26 for
all 7. In this case we will obtain

25 1 2
~ s =~ (0.038.
8 Mumw@v 0.03

=0

The smallest value of r for which S, ~ 0.065 is thus likely the key length.
One can further validate a guess 7 by carrying out a similar calculation using
the second stream ¢y, co4r, c2427, . . ., ete.

Ciphertext length and cryptanalytic attacks. The above attacks on
the Vigenere cipher require a longer ciphertext than the attacks on previous
schemes. For example, the index of coincidence method requires ¢, €144, C142¢
(where ¢ is the actual key length) to be sufficiently long in order to ensure that
the observed frequencies match what is expected; the ciphertext itself must
then be roughly ¢ times larger. Similarly, the attack we showed on the mono-
alphabetic substitution cipher requires a longer ciphertext than the attack on
the shift cipher (which can work for encryptions of even a single word). This
illustrates that a longer key can, in general, require the cryptanalyst to obtain
more ciphertext in order to carry out an attack. (Indeed, the Vigenére cipher
can be shown to be secure if the key is as long as what is being encrypted.
We will see a similar phenomenon in the next chapter.)

Conclusions. We have presented only a few historical ciphers. Beyond their
historical interest, our aim in presenting them was to illustrate some important
lessons. Perhaps the most important is that designing secure ciphers is hard.
The Vigenere cipher remained unbroken for a long time. Far more complex
schemes have also been used. But a complex scheme is not necessarily secure,
and all historical schemes have been broken.

1.4 Principles of Modern Cryptography

As should be clear from the previous section, cryptography was historically
more of an art than a science. Schemes were designed in an ad hoc manner
and evaluated based on their perceived complexity or cleverness. A scheme
would be analyzed to see if any attacks could be found; if so, the scheme would
be “patched” to thwart that attack, and the process repeated. Although there
may have been agreement that some schemes were not secure (as evidenced
by an especially damaging attack), there was no agreed-upon notion of what
requirements a “secure” scheme should satisfy, and no way to give evidence
that any specific scheme was secure.

Over the past several decades, cryptography has developed into more of
a science. Schemes are now developed and analyzed in a more systematic

Introduction i

manner, with the ultimate goal being to give a rigorous proof that a given
construction is secure. In order to articulate such proofs, we first need formal
definitions that pin down exactly what “secure” means; such definitions are
useful and interesting in their own right. As it turns out, most cryptographic
proofs rely on currently unproven assumnptions about the algorithmic hard-
ness of certain mathematical problems; any such assumptions must be made
explicit and be stated precisely. An emphasis on definitions, assumptions,
and proofs distinguishes modern cryptography from classical cryptography;
we discuss these three principles in greater detail in the following sections.

1.4.1 Principle 1 — Formal Definitions

One of the key contributions of modern cryptography has been the recog-

nition that formal definitions of security are essential for the proper design,
study, evaluation, and usdge of cryptographic primitives. Put bluntly:

If you don’t understand what you want to achieve, how can you
possibly know when (or if) you have achieved it?

Formal definitions provide such understanding by giving a clear description of
what threats are in scope and what security guarantees are desired. As such,
definitions can help guide the design of cryptographic schemes. Indeed, it is
much better to formalize what is required before the design process begins,
rather than to come up with a definition post facto once the design is complete.
The latter approach risks having the design phase end when the designers’
patience is exhausted (rather than when the goal has been met), or may result
in a construction achieving more than is needed at the expense of efficiency.

Definitions also offer a way to evaluate and analyze what is constructed.
With a definition in place, one can study a proposed scheme to see if it achieves
the desired guarantees; in some cases, one can even prove a given construction
secure (see Section 1.4.3) by showing that it meets the definition. On the flip
side, definitions can be used to conclusively show that a given scheme is not
secure, insofar as the scheme does not satisfy the definition. In particular,
note that the attacks in the previous section do not automatically demonstrate
that any of the schemes shown there is “insecure.” For example, the attack
on the Vigenére cipher assumed that sufficiently long English text was being
encrypted, but could the Vigenére cipher' be “secure” if short English text,
or compressed text (which will have roughly uniform letter frequencies), is
encrypted? It is hard to say without a formal definition in place.

Definitions enable a meaningful comparison of schemes. As we will see,
there can be multiple (valid) ways to define security; the “right” one depends
on the context in which a scheme is used. A scheme satisfying a weaker
definition may be more efficient than another scheme satisfying a stronger
definition; with precise definitions we can properly evaluate the trade-offs
between the two schemes. Along the same lines, definitions enable secure
usage of schemes. Consider the question of deciding which encryption scheme

18 Introduction to Modern Cryptography

to use for some larger application. A sound way to approach the problem is to
first understand what notion of security is required for that application, and

then find an encryption scheme satisfying that notion. A side benefit of this

approach is modularity: a designer can “swap out” one encryption scheme and
replace it with another (that also satisfies the necessary definition of security)
without having to worry about affecting security of the overall application.

Writing a formal definition forces one to think about whal is essential to
the problem at hand and what properties are extraneous. Going through the
process often reveals subtleties of the problem that were not obvious at first
glance. We illustrate this next for the case of encryption.

An example: secure encryption. A common mistake is to think that
formal definitions are not needed, or are trivial to come up with, because
.,“mcm@o:m has an intuitive idea of what security means.” This is not the case.
As an example, we consider the case of encryption. (The reader may want to
pause here to think about how they would formally define what it means for an
encryption scheme to be secure.) Although we postpone a formal definition of
secure encryption to the next two chapters, we describe here informally what
such a definition should capture.

In general, a security definition has two components: a security guarantee
(or, from the attacker’s point of view, what constitutes a successful attack
on the scheme) and a threat model. The security guarantee defines what the
scheme is intended to prevent the attacker from doing, while the threat model
describes the power of the adversary, i.e., what actions the attacker is assumed
able to carry out.

Let’s start with the first of these. What should a secure encryption scheme
guarantee? Here are some thoughts:

o [t should be impossible for an attacker to recover the key. We have
previously observed that if an attacker can determine the key shared
by two parties using some scheme, then that scheme cannot be secure.
However, it is easy to come up with schemes for which key recovery
is impossible, yet the scheme is blatantly insecure. Consider, e.g., the
scheme where Encg(m) = m. The ciphertext leaks no information about
the key (and so the key cannot be recovered if it is long enough) yet the
message is sent in the clear! We thus see that inability to recover the key
is not sufficient for security. This makes sense: the aim of encryption is
to protect the message; the key is a means for achieving this but is, in
itself, unimportant.

o [t should be impossible for an attacker to recover the entire plaintext from
the ciphertext. This definition is better, but is still far from satisfactory.
In particular, this definition would consider an encryption scheme secure
if its ciphertexts revealed 90% of the plaintext, as long as 10% of the
plaintext remained hard to figure out. This is clearly unacceptable in
most common applications of encryption; for example, when encrypting

Introduction 19

a salary database, we would bé justifiably upset if 90% of employees’
salaries were revealed!

o [t should be impossible for an attacker to recover any character of the
plaintext from the ciphertezt. This looks like a good definition, yet is
still not sufficient. Going back to the example of encrypting a salary
database, we would not consider an encryption scheme secure if it re-
veals whether an employee’s salary is more than or less than $100,000,
even if it does not reveal any particular digit of that employee’s salary.
Similarly, we would not want an encryption scheme to reveal whether
employee A makes more than employee B.

Another issue is how to formalize what it means for an adversary to
“recover a character of the plaintext.” What if an attacker correctly
guesses, through sheer luck or external information, that the least sig-
nificant digit of someone’s salary is 07 Clearly that should not render an
encryption scheme insecure, and so any viable definition must somehow
rule out such behavior as being a successful attack.

e The “right” answer: regardless of any information an attacker already
has, a ciphertext should leak no additional information about the un-
derlying plaintert. This informal definition captures all the concerns
outlined above. Note in particular that it does not try to define what
information about the plaintext is “meaningful”; it simply requires that
no information be leaked. This is important, as it means that a secure
encryption scheme is suitable for all potential applications in which se-
crecy is required.

What is missing here is a precise, mathematical formulation of the def-
inition. How should we capture an attacker’s prior knowledge about
the plaintext? And what does it mean to (not) leak information? We
will return to these questions in the next two chapters; see especially
Definitions 2.3 and 3.12.

Now that we have fixed a security goal, it remains to specify a threat model.
This specifies what “power” the attacker is assumed to have, but does not
place any restrictions on the adversary’s strategy. This is an important dis-
tinction: we specify what we assume about the adversary’s abilities, but we
do not assume anything about how it uses those abilities. It is impossible to
foresee what strategies might be used, in an attack, and history has proven
that attempts to do so are doomed to failure.

There are several plausible options for the threat model in the context of
encryption; standard ones, in order of increasing power of the attacker, are:

e Ciphertext-only attack: This is the most basic attack, and refers to
a scenario where the adversary just observes a ciphertext (or multiple
ciphertexts) and attempts to determine information about the under-
lying plaintext (or plaintexts). This is the threat model we have been

20 Introduction to Modern Cryptography

implicitly assuming when discussing classical encryption schemes in the
previous section.

e Known-plaintext attack: Here, the adversary is able to learn one
or more plaintext/ciphertext pairs generated using some key. The aim
of the adversary is then to deduce information about the underlying
plaintext of some other ciphertext produced using the same key.

All the classical encryption schemes we have seen are trivial to break
using a known-plaintext attack; we leave a demonstration as an exercise.

e Chosen-plaintext attack: In this attack, the adversary can obtain
plaintext/ciphertext pairs (as above) for plaintexts of its choice.

e Chosen-ciphertext attack: The final type of attack is one where
the adversary is additionally able to obtain (some information about)
the decryption of ciphertexts of its choice, e.g., whether the decryption
of some ciphertext chosen by the attacker yields a valid English mes-
sage. The adversary’s aim, once again, is to learn information about
the underlying plaintext of some other ciphertext (whose decryption
the adversary is unable to obtain directly).

None of these threat models is inherently better than any other; the right one
to use depends on the environment in which an encryption scheme is deployed.

The first two types of attack are the easiest to carry out. In a ciphertext-
only attack, the only thing the adversary needs to do is eavesdrop on the
public communication channel over which encrypted messages are sent. In
a known-plaintext attack it is assumed that the adversary somehow also ob-
tains ciphertexts corresponding to known plaintexts. This is often casy to
accomplish because not all encrypted messages are confidential, at least not
indefinitely. As a trivial example, two parties may always encrypt a “hello”
message whenever they begin communicating. As a more complex example,
encryption may be used to keep quarterly-earnings reports secret until their
release date; in this case, anyone eavesdropping on the ciphertext will later
obtain the corresponding plaintext.

In the latter two attacks the adversary is assumed to be able to obtain
encryptions and/or decryptions of plaintexts/ciphertexts of its choice. This
may at first seem strange, and we defer a more detailed discussion of these
attacks, and their practicality, to Section 3.4.2 (for chosen-plaintext attacks)
and Section 3.7 (for chosen-ciphertext attacks).

1.4.2 Principle 2 — Precise Assumptions

Most modern cryptographic constructions cannot be proven secure uncon-
ditionally; such proofs would require resolving questions in the theory of com-
putational complexity that seem far from being answered today. The result of

Introduction 21

this unfortunate state of affairs is that proofs of security typically rely on as-
sumptions. Modern cryptography requires any such assumptions to be made
explicit and mathematically precise. At the most basic level, this is simply
because mathematical proofs of security require this. But there are other
reasons as well: .

1. Validation of assumptions: By their very nature, assumptions are state-
ments that are not proven but are instead conjectured to be true. In
order to strengthen our belief in some assumption, it is necessary for
the assumption to be studied. The more the assumption is examined
and tested without being refuted, the more confident we are that the
assumption is true. Furthermore, study of an assumption can provide
evidence of its validity by showing that it is implied by some other as-
sumption that is also widely believed.

If the assumption being relied upon is not precisely stated, it cannot be
studied and (potentially) refuted. Thus, a pre-condition to increasing
our confidence in an assumption is having a precise statement of what
exactly is being assumed.

2. Comparison of schemes: Often in cryptography we are presented with
two schemes that can both be proven to satisfy some definition, each
based on a different assumption. Assuming all else is equal, which
scheme should be preferred? If the assumption on which the first scheme
is based is wesker than the assumption on which the second scheme
is based (i.e., the second assumption implies the first), then the first
scheme is preferable since it may turn out that the second assumption
is false while the first assumption is true. If the assumptions used by the
two schemes are not comparable, then the general rule is to prefer the
scheme that is based on the better-studied assumption in which there is
greater confidence.

3. Understanding the necessary assumptions: An encryption scheme may
be based on some underlying building block. If some weaknesses are
later found in the building block, how can we tell whether the encryp-
tion scheme is still secure? If the underlying assumptions regarding the
building block are made clear as part of proving security of the scheme,
then we need only check whether the required assumptions are affected
by the new weaknesses that were found.

A question that sometimes arises is: rather than prove a scheme secure
based on some other assumption, why not simply assume that the construction
itself is secure? In some cases—e.g., when a scheme has successfully resisted
attack for many years—this may be a reasonable approach. But this approach
is never preferred, and is downright dangerous when a new scheme is being
introduced. The reasons above help explain why. First, an assumption that
has been tested for several years is preferable to a new, ad hoc assumption

22 Introduction to Modern Cryptography

that is introduced along with a new construction. Second, there is a general
preference for assumptions that are simpler to state, since such assumptions
are easier to study and to (potentially) refute. So, for example, an assumption
that some mathematical problem is hard to solve is simpler to study and
evaluate than the assumption that an encryption scheme satisfies a complex
security definition. Another advantage of relying on “lower-level” assumptions
(rather than just assuming a construction is secure) is that these low-level
assumptions can typically be used in other constructions. Finally, low-level
assumptions can provide modularity. Consider an encryption scheme whose
security relies on some assumed property of one of its building blocks. If the
underlying building block turns out not to satisfy the stated assumption, the
encryption scheme can still be instantiated using a different component that
is believed to satisfy the necessary requirements.

1.4.3 Principle 3 — Proofs of Security

The two principles described above allow us to achieve our goal of providing
a rigorous proof that a construction satisfies a given definition under certain
specified assumptions. Such proofs are especially important in the context
of cryptography where there is an attacker who is actively trying to “break”
some scheme. Proofs of security give an iron-clad guarantee—relative to the
definition and assumptions—that no attacker will succeed; this is much better
than taking an unprincipled or heuristic approach to the problem. Without a
proof that no adversary with the specified resources can break some scheme,
we are left only with our intuition that this is the case. Experience has shown
that intuition in cryptography and computer security is disastrous. There
are countless examples of unproven schemes that were broken, sometimes
immediately and sometimes years after being developed.

Summary: Rigorous vs. Ad Hoc Approaches to Security

Reliance on definitions, assumptions, and proofs constitutes a rigorous ap-
proach to cryptography that is distinct from the informal approach of clas-
sical cryptography. Unfortunately, unprincipled, “off-the-cuff” solutions are
still designed and deployed by those wishing to obtain a quick solution to a
problem, or by those who are simply unknowledgable. We hope this book
will contribute to an awareness of the rigorous approach and its importance
in developing provably secure schemes.

1.4.4 Provable Security and Real-World Security

Much of modern cryptography now rests on sound mathematical founda-
tions. But this does not mean that the field is no longer partly an art as
well. The rigorous approach leaves room for creativity in developing defini-
tions suited to contemporary applications and environments, in proposing new

Introduction 23

mathematical assumptions or designing new primitives, and in constructing
novel schemes and proving them secure. There will also, of course, always be
the art of attacking deployed cryptosystems, even if they are proven secure.
We expand on this point next.

The approach taken by modern cryptography has revolutionized the field,
and helps provide confidence in the security of cryptographic schemes deployed
in the real world. But it is important not to overstate what a proof of security
implies. A proof of security is always relative to the definition being considered
and the assumption(s) being used. If the security guarantee does not match
what is needed, or the threat model does not capture the adversary’s true
abilities, then the proof may be irrelevant. Similarly, if the assumption that
is relied upon turns out to be false, then the proof of security is meaningless.

The take-away point is that provable security of a scheme does not nec-
essarily imply security of that scheme in the real world.? While some have
viewed this as a drawback of provable security, we view this optimistically as
illustrating the strength of the approach. To attack a provably secure scheme
in the real world, it suffices to focus attention on the definition (i.e., to explore
how the idealized definition differs from the real-world environment in which
the scheme is deployed) or the underlying assumptions (i.e., to see whether
they hold). In turn, it is the job of cryptographers to continually refine their
definitions to more closely match the real world, and to investigate their as-
sumptions to test their validity. Provable security does not end the age-old
battle between attacker and defender, but it does provide a framework that
helps shift the odds in the defender’s favor.

References and Additional Reading

In this chapter, we have studied just a few of the known historical ciphers.
There are many others of both historical and mathematical interest, and we
refer the reader to textbooks by Stinson [168] or Trappe and Washington [169)]
for further details. The important role cryptography has played throughout
history is a fascinating subject covered in books by Kahn [97] and Singh [163].

Kerckhoffs’ principles were elucidated in [103, 104]. Shannon [154] was the
first to pursue a rigorous approach to cryptography based on precise defini-
tions and mathematical proofs; we explore his work in the next chapter.

4Here we are not even considering the possibility of an incorrect implementation of the
scheme. Poorly implemented cryptography is a serious problem in the real world, but this
problem is somewhat outside the scope of cryptography per se.

