ECE 4156/6156 Hardware-Oriented Security and Trust
Spring 2026
Assoc. Prof. Vincent John Mooney |l
Georgia Institute of Technology
Lab 2, 100 pts.
Due Friday, February 13 prior to 11:55pm
(Please turn in the zipped lab files electronically on Canvas)

Lab 2

In this lab, you will simulate and verify a VHDL implementation of the Advanced Encryption
Standard (AES). You will be given VHDL code which implements both encryption and
decryption, which you will then simulate. A sample testbench is also provided to help you set
up the simulation. After simulating the sample test bench, you will be asked to modify it to
check test cases you will generate. To be able to make an accurate comparison, you are also
given a correctly functioning AES C code.

After testing the design in ModelSim, you will synthesize and implement VHDL code to
implement encryption and decryption for the DE10-Standard board using Quartus. You will also
interface the HPS and FPGA (Field Programmable Gate Array) over the AXI bus. We will provide
an SD card with an OS containing a pre-synthesized bitstream implementing AES encryption.
You will have to read and write inputs to interface with FPGA logic and read the output via File
I/0 on a terminal and verify with your C code output.

The motivation for this lab is to execute AES code both in software and in hardware.
Please type your answers to the questions in this lab into a lab report.

This lab will not reiterate the steps explained in Lab 1. If you need a reminder of the
functionality of Quartus or ModelSim, please refer to Lab 1.

. VHDL/ DE-10 Help

There is plenty of documentation available on how to write good VHDL. Some good simple
examples can be found here. Some good YouTube videos introducing VHDL basics can be
found here.

https://nandland.com/learn-vhdl/
https://www.youtube.com/playlist?list=PLinyJoOpZA5jnorJmhPfBfov-rG9gxqUe

Documentation and resources for the DE-10 Standard board can be found at the following:

https://rocketboards.org/foswiki/Documentation/DE10Standard

https://www.utilities-online.info/ascii-to-hex, this is a resource to convert ascii to hex.

Il. Generation of Baseline Test Cases Using
C Code

Inside the "lab2" directory, you will find a folder named "c_code". This folder contains a
functioning version of AES in the C programming language. Compile and use the provided code
to generate correct output results.

As for testing the code, you must submit 5 plaintext test cases, 5 ciphertext test cases, and five
keys (thus, you will test all 10 input cases on each key for 50 tests (half testing encryption and
half testing decryption). These test cases must be your own; under the GT (Georgia Tech)
Honor Code, you are _not_ allowed to share your test cases with other teams! The reason for
this is that the focus should be on good coding and testing practices, not comparison with
another student’s results.

You must provide a brief rationale for your chosen five plaintext cases. The five cases must be
unrelated to each other; e.g., you may not choose numeric sequences (e.g., adding one to each
prior case).

The test cases and keys must be submitted in .txt files with following names:

o Key.txt (5 keys)

e Plaintextin.txt (5 plaintext test cases)

e Ciphertextoutl.txt (5 ciphertext from using keyl and the plaintextin.txt)

e Ciphertextout2.txt (5 ciphertext from using key2 and the plaintextin.txt)

e Ciphertextout3.txt (5 ciphertext from using key3 and the plaintextin.txt)

e Ciphertextout4.txt (5 ciphertext from using key4 and the plaintextin.txt)

e Ciphertextout5.txt (5 ciphertext from using key5 and the plaintextin.txt)

e Ciphertextin.txt (5 ciphertext test cases, please pick one ciphertext output from each of
the ciphertextoutX.txt (ciphertextoutl.txt, ciphertextout2.txt, ..., ciphertextout5.txt)

e Plaintextoutl.txt (5 plaintext from using key1 and the ciphertextin.txt)

e Plaintextout2.txt (5 plaintext from using key2 and the ciphertextin.txt)

e Plaintextout3.txt (5 plaintext from using key3 and the ciphertextin.txt)

e Plaintextout4.txt (5 plaintext from using key4 and the ciphertextin.txt)

e Plaintextout5.txt (5 plaintext from using key5 and the ciphertextin.txt)

https://rocketboards.org/foswiki/Documentation/DE10Standard
https://www.utilities-online.info/ascii-to-hex

The result of decrypting a ciphertext produced by a particular encryption of an input plaintext
should result in the same plaintext output (assuming the same key is used). Similarly, the result
of encrypting a plaintext produced by a particular decryption of an input ciphertext should
result in the same ciphertext output (assuming the same key is used).

As you are selecting one ciphertext from each of your files, and decrypting all five chosen
ciphertexts with one key, you should expect to only see only one correct original plaintext in
each of your plaintextoutX files. You are allowed to use the ciphertextoutX files to choose
candidates for your ciphertextin file.

Please note that your code must be able to take in the 5 plaintext cases and produce 5
ciphertext cases per key for a total of 25 ciphertext outputs. Similarly, your code must be able
to take in the 5 ciphertext cases per key for a total of 25 plaintext outputs. Finally, to grade
your assignment we will use additional inputs and keys not specified by you; therefore, try to
avoid buggy code, as this will affect your final grade.

This section's task is to modify the "main" function in the code to adapt it to your input/output
file's structure. Please also submit a README to show me how to run your C code. Your C code
is not required to write ciphertextout.txt and plaintextout.txt directly to a file. If you choose
not to write the results to a file, your program must print the results in the terminal. Please
make sure your print statements to the terminal can be understood by the TA.

Ill. ModelSim Simulation of VHDL Code

After generating the baseline results for AES using the C code, you will use ModelSim to
simulate the VHDL implementation and compare your new simulation results to those of the C
code.

When programming in any language, it is useful to debug, test, or simulate your code to verify

its functionality. When programming in VHDL, the convention is to have functional VHDL code
and a testbench which tests the code. In this section, you will simulate the provided testbench
(tb_AES_decrypt.vhd for decryption and enc_tb.vhd for encryption) with the given VHDL code

in ModelSim.

During this portion, note that the byte endianness of the Encryption VHDL code is opposite that
of the previous C code. An example is as follows, with partial color coding for understanding:

--p =0123456789abcdeffedcba9876543210 C code Plaintext

plaintext <= x"1032547698badcfeefcdab8967452301"; VHDL code plaintext

--c = ac6c9fd5bl4bb5eclef70964ac34a9ce Ciphertext 1

ciphertext <= x"cea934ac6409f71eecb54bb1d59f6cac"; VHDL code ciphertext

--k =1972bce09da0f71290f710bc83109edf C code key

key <= x"df9e1083bc10f79012f7a09deObc7219"; VHDL code key

To simulate the code, proceed as follows:

e Let us start with Encryption

Open ModelSim

Create a new project by clicking on the following: File --> New --> Project...
Verify that the project location is set to lab2/vhdI/AES_ENC/ and give the project
a name, say "ENC", and click OK.

After creating the project, we must add all the VHDL files to it. Do so by clicking
on the following: Add Existing File --> Browse...

Choose all the VHDL files in the directory. Click Open --> OK.

Once you are done adding all the VHDL files, click Close.

Now we must compile the design files. To do so click on the following:

Compile --> Compile Order, then click on Auto Generate and press OK.

Check the transcript window to make sure all files were successfully compiled.
You may need to compile twice in a row.

Now we can start the simulation by clicking on: Simulate --> Start Simulation...

In the Start Simulation window, make sure you are on the design tab, expand the
work library, and choose the testbench for this code named "enc_tb", and click
OK.

ModelSim will change the view into simulation mode and a couple of other
windows will show up.

Now let us add our signals of interest to the wave window to monitor their
changes as simulation proceeds. To do so, go to the "sim" window and click on
the instance named "test_enc" to add the testbench signals. Next, open the
"Objects" window and choose all the signals (inputs, outputs, and internal).
Right-click on the selection and click on Add Wave. Do the same process to add
all the signals of the instance "aes_enc." aes_enc should be your top-level
module, while test_enc is your testbench. Check that the signals have been
successfully added to the "Wave" window.

Our last step is to run the simulation for a specific time. For this testbench, run
the simulation until all testcases have been resolved. To do so, type run 500 ns in
the command line of the "Transcript" window. Read the transcript to check that
all your testcases have been resolved (either failed or successful), otherwise, run
another 500 ns.

Navigating back to the "Wave" window will now show you the result of the
simulation for all the signals that we added. To better read the values, select all
the signals and right-click, then change the Radix to Hexadecimal. Also, towards
the bottom left of the signals pane (to the left of where it says "Now"), there is a
blue button that has a description of "Toggle leaf names <-> full names" if you
hover the mouse over it. Click on that button to show the signal names only
without the hierarchy.

Look through the wave window and try to understand how the signals are
changing values with respect to the simulation time. Specifically, look for the
output signal that shows the encrypted/decrypted value.

Now that we have run the simulation, make sure that you set the zoom of the
wave window to a full view. To do so, right-click anywhere in the wave window
and click on Zoom Full. Export an image of your simulated waveform. To do so,
click on File --> Export --> Image... and save it as an image, or take a screenshot
with any other method. Include this image in your submission.

Before ending the simulation, open the transcript window and verify that no
reports are generated by the testbench indicating a failure of any of the test
cases.

Finally, to end the simulation, click on: Simulation --> End Simulation.

e Now, let us work on Decryption. NOTE: Decryption uses the same endianess as the C

code.

Create a new project by clicking on the following: File --> New --> Project...
Verify that the project location is set to lab2/vhdl/AES_DE/ and give the project a
name, say "DEC", and click OK.

After creating the project, we must add all the VHDL files to the project. Do so
by clicking on the following: Add Existing File --> Browse...

Choose all the VHDL files in the directory. Click Open --> OK.

Once you are done adding all the VHDL files, click Close.

Now we must compile the design files. To do so click on the following:
Compile --> Compile Order, then click on Auto Generate and press OK.

Check the transcript window to make sure all files were successfully compiled.
Now we can start the simulation by clicking on the following: Simulate --> Start
Simulation... In the Start Simulation window, make sure you are on the design
tab, expand the work library, choose the testbench for this code named
"tb_AES_decrypt", and click OK.

ModelSim will change the view into simulation mode and a couple of other
windows will show up.

Now let us add our signals of interest to the wave window to monitor their
changes as simulation proceeds. To do so, go to the "sim" window and click on
the instance named "tb_AES_decrypt" to add the testbench signals. Next, open
the "Objects" window and choose all the signals (inputs, outputs, and internal).
Right-click on the selection and click on Add Wave. Follow the same process to
add all the signals of the instance "aes_decrypter." aes_decrypter should be

your top-level module, while test_enc is your testbench. Check that the signals
have been successfully added to the "Wave" window.

e Qur last step is to run the simulation for a specific time. For this testbench, run
the simulation until all testcases have been resolved. To do so, type run 500 ns
in the command line of the "Transcript" window. Read the transcript to check
that all your testcases have been resolved (either failed or successful);
otherwise, run for another 500 ns.

e Navigating back to the "Wave" window will now show you the result of the
simulation for all the signals that have been added. To better read the values,
select all the signals and right-click, then change the Radix to Hexadecimal. Also,
towards the bottom left of the signals pane (to the left of where it says "Now"),
there is a blue button that has a description of "Toggle leaf names <-> full
names" if you hover the mouse over it. Click on that button to show the signal
names only without the hierarchy.

e Look through the wave window and try to understand how the signals are
changing values with respect to the simulation time. Specifically, look for the
output signal that shows the encrypted/decrypted value.

e Now that we have run the simulation, make sure that you set the zoom of the
wave window to a full view. To do so, right-click anywhere in the wave window
and click on Zoom Full. Export an image of your simulated waveform. To do so,
click on File --> Export --> Image... and save it as an image, or take a screenshot
with any other method. Include this image in your submission.

e Before ending the simulation, open the transcript window and verify that no
reports are generated by the testbench indicating a failure of any of the test
cases.

e Finally, to end the simulation, click on: Simulation --> End Simulation.

Now that you have simulated the design, modify the test bench to add all your test cases.
Notice how the testbench uses assert statements to check for the expected output and verify it.
Feel free to automate the process by implementing file 1/O in VHDL. Once you are done
modifying the testbench, save it, recompile it and resimulate the design. You may also
hardcode all your testcases if you do not want to implement File 1/O in VHDL.

An example of File 1/0 if you wish to use it can be found here:

VHDL Example Code of File 10 (handland.com)

For the lab report provide for AES ENCRYPTION ONLY an explanation of the function of each
provided VHDL file (what they accomplish), what part of the AES algorithm the file
accomplishes (if applicable), and a description of the overall hierarchical connections of the files
(i.e., how are they connected together).

https://www.nandland.com/vhdl/examples/example-file-io.html

IV. Running AES on the DE-10 board

You will now have to run AES on the DE-10 board. For this portion of the lab, you will have to
use the SD card given. To set up the board to work with the SD card, you need to do the
following steps.

a. Insert the SD card into the board
b. Setthe MSEL Bit of the board to the following setting:

c. Connect the board to the Windows PC using UART to USB Cable
Connect the board to the power using the power cable
Press the power button to power on the board

The UART to USB cable is the following:

If you are missing this cable, please email the TA or meet the TA during office hours.

Steps to Connect the board in Windows:
1. Open device manager and look for the proper port:
oy Device Manager
File Action View Help

&= | T E HFE W

w B yneumann

I Audic inputs and outputs
3 Computer

o Disk drives

53 Display adapters

- DVD/CD-ROM drives

wirn Humnan Interface Devices
_"|":' Imaging devices

¥ Junge Connectivity

@ Mice and other pointing devices
3 Meonitors
¥ Metwork adapters
~ & Ports (COM & LPT)
ﬁ Communications Port (COMT)
i USB Serial Port (COM3)

= Dieiemd mama e

For example, above the port number is 5.

2. Connect the board to the Windows PC using PuTTY
a. On Windows PC, open PuTTY to set up the board’s Serial Connection

#2 PuTTY Configuration *
I
Category:
=- Sgssiun Basic options for your PuT T session
o) &« "7 Logging Specify the destination you want to connect to
[=]- Terminal Gerial omed
- Keyboard eral line pee
 Bell COM5 115200]
- Features Connection type:
- Window ()55H ©Seial (O0ther: Telnet v
- Appearance
- Behaviour Load, save or delete a stored session
-~ Translation Saved Sessions
[+~ Selection
- Colours
[=)- Connection Default Settings Load
- Data
- Proy Save
+- 55H
H) Delete
- Serial
- Telnet
- Rlogin
- SUPDUP Close window on exit:
() Aways () Never © Only on clean exit

b. Fill the right COM port and set the speed as 115200
3. After connecting to PUTTY successfully, power off and then power on the board again; rsyocto
boots automatically.
4. Login as aroot user
a. After rsyocto finishes booting, terminal will prompt you to login
i. Login: root
ii. Password: eit

Steps to Connect the board in Linux (if you are connecting the DE-10 to a Linux computer):

1. Prepare the board
a. Insert the SD card into the board
b. Setthe MSEL Bits of the board to the following setting (“001000”):

c. Connect the board to the Linux PC using UART to USB Cable
d. Connect the board to the power using the power cable
e. Pressthe power button to power on the board
2. Connect the board to the Linux PC using Minicom
a. On Linux PC, open Minicom to set up the board’s Serial Connection
i. Before opening Minicom, we need to find the board name
1. To do this, open a terminal on Linux PC
2. Execute the following command
a. lIs/dev/cu.*
b. After this, find the board
c. It might be shown as something like this:
d. /dev/cu.usbserial-AU02GOAS
e. Make sure to copy this (what is shown above in part d) down,
you will need this in the next step
ii. After getting the board name, open the Minicom
1. To do this, in the terminal on Linux PC
a. Execute the following command
i. minicom -s
ii. After opening minicom, your terminal would be like this

10

+——— [configuration]—————— +
| Filenames and paths |
| File transfer protocols |
| serial port setup |
| Modem and dialing |
| Screen and keyboard |
| Save setup as dfl |
| Save setup as.. |
| Exit |
| Exit from Minicom |
: - - -+

2. Open Serial port setup in minicom
i. After opening it, your terminal would be like this

RS485 Terminate Bus : No
— RS485 Delay Rts Before: @
RS485 Delay Rts After : ©

Change which setting?

| A - Serial Device : /dev/cu.usbserial-AU@2G0AS8
| B — Lockfile Location : /usr/local/Cellar/minicom/2.8/var
| C - Callin Program

| D - Callout Program :

| E - Bps/Par/Bits : 115200 8N1

| F — Hardware Flow Control : Yes

| G — Software Flow Control : No

| H - RS485 Enable : No

| I - RS485 Rts On Send : No

| J — RS485 Rts After Send : No

| K — RS485 Rx During Tx : No

| L

| M

| N

|

|

3. Paste what you got in step 22(a)(i)(2)(d) to the “A - Serial Device” shown
in the screen above
b. After connecting to Minicom successfully, power off and then power on the board again,
rsyocto boots automatically
3. Loginasaroot user
a. After rsyocto finishes booting, terminal will prompt you to login
i. Login: root
ii. Password: eit

11

Running the AES Binary file on the SD card

We have developed a raw binary file (rbf) which already runs AES encryption. To run this, Load the .rbf
file and read/write to the LW AXI bridge using the instructions here

a. Inthe terminal, the following three commands are used to interact with the AES
accelerator:
1.FPGA-writeConfig -f aes_axi.rbf
1. This command loads the FPGA bitstream onto the FPGA fabric
2.FPGA-writeBridge -Ilw 20 -h ab
1. This command writes data Oxab to the light weight AXI bridge at address
20
3.FPGA-readBridge -lw 80
1. This command reads the light weight AXI bridge offsetting at address 80

The binary file given has the following locations with associated functionality.

Name Address Location 1/0
Key segment O 0 Input
Key segment 1 10 Input
Key segment 2 20 Input
Key segment 3 30 Input
Plaintext segment 0 40 Input
Plaintext segment 1 50 Input
Plaintext segment 2 60 Input
Plaintext segment 3 70 Input
Ciphertext segment 0 80 Output
Ciphertext segment 1 90 Output
Ciphertext segment 2 100 Output
Ciphertext segment 3 110 Output
Reset 120 Input

Each location holds a 32-bit value. This is a hex value. By default, it holds the value 0 at each of the
input locations. A new ciphertext is only calculated after “pressing” the reset button, which we will do
by writing a ‘1’ followed by a ‘0’ to the reset address.

An example of how to encrypt x“00007890 00005678 00003456 00001234” with key x“00007890
00005678 00003456 00001234” (if these values are using the C endianess) is as follows:

FPGA-writeConfig -f aes_axi.rbf
FPGA-writeBridge -lw 0 -h 90780000
FPGA-writeBridge -Ilw 10 -h 78560000
FPGA-writeBridge -Ilw 20 -h 56340000
FPGA-writeBridge -Ilw 30 -h 34120000
FPGA-writeBridge -Ilw 40 -h 90780000

ok wnNPE

12

7. FPGA-writeBridge -Iw 50 -h 78560000
8. FPGA-writeBridge -lw 60 -h 56340000
9. FPGA-writeBridge -Ilw 70 -h 34120000
10. FPGA-writeBridge -lw 120-h 1
11. FPGA-writeBridge -lw 120-h 0

Note: In the above example, the first 32 bits (0x00007890) comprise segment 0, the second 32 bits
(0x00005678) comprise segment 1, and so on.

You would then read each ciphertext segment with the following commands:

FPGA-readBridge -Ilw 80
FPGA-readBridge -lw 90
FPGA-readBridge -lw 100
FPGA-readBridge -lw 110

PWNPRE

Note: The ciphertext segments are split similarly to the plaintext and key (l.e., address 80 holds the 32
MSBs)

Your task for this portion of the lab is to connect to the board using UART and run five of the tests you
ran from the previous section. Specifically, for each key you chose, load one of your plaintexts and
ensure that the resulting ciphertext matches.

Using the rbf file, perform the five encryptions and take of screenshot of the resulting ciphertext values
(all four 32-bit segments). Also, include a table in your report of each key and plaintext and
corresponding ciphertext.

Note: We have provided the AXI bus addressable AES accelerator for you. An appendix is provided at the
end of the lab on how to create your own rbf file and run it on the DE-10 board if interested.

13

Lab Report

Please type all your answers and include a cover sheet with your first and last name, GT ID
number, and GT username.

Code Modification and Simulation Section:

1.

2.

Submit all the code (C code and VHDL files) with in-line comments pointing out the
modifications you made in the files.

Provide a brief explanation of the modifications that you made to the main function and
to the VHDL testbench.

Simulation results compiled into .txt files as described in Section Il must show all keys,
plaintext and ciphertext values.

Waveforms in the lab report verifying one encryption testcase and one decryption
testcase in Section Il must be provided. Please make sure the values shown on the
waveform are legible.

Provide an explanation of the function of each provided VHDL file for AES ENCRYPTION
ONLY (what they accomplish), what part of the AES algorithm the file accomplishes (if
applicable), and a description of the overall hierarchical connections of the files (l.e.,
how are they connected together).

Synthesis and Implementation:

1.

Screenshots of the Ciphertext values

2. Table of test vectors

Canvas Submission of Lab 2 Files

1.

Place all files into a single folder and submit your work on Canvas.

14

Appendix

How to interface the FPGA and HPS over the AXI Bus on the
Intel DE-10 Standard Board (Linux Version)

Authors: Kevin Hutto and Yiming Tan

These instructions are certainly not the most effective way to interface the FPGA and the HPS over the
AXI Bus in terms of FPGA efficiency or workflow efficiency, but it is the best way that works so far.
These instructions are also not meant to be standalone or a complete tutorial on how to use Quartus or

write VHDL.

Please note for the Windows version, you need a router.

First, a list of the software and hardware needed to interface the FPGA and HPS over the AXI Bus:

e Software:
o Quartus
o Etcher
o Minicom
o rsyocto
e Hardware:
o Linux PC
o Intel DE-10 Standard Board (with its power cable and UART to USB cable)
o Empty SD Card
o SD Card Reader

e Note: all software listed above should be installed on the Linux PC

Second, a brief overview of what we will try to accomplish:

Platform Designer
Custom
Component

Top Level File

Platform Designer

AXIBus FEEEEEESSEM PO Ports

15

We have a custom component that we want to interface over the AXI bus. We will instantiate this
component in Platform Designer. However, we will not be connecting this component to the AXI bus
yet. Instead, we will instantiate components known as Parallel Input/Output (PIO) ports. We will
connect these to the AXI bus, and they will essentially act as registers. We will then generate the HDL
(Hardware Description Language) files automatically from the Platform Designer tool, and from the auto
generated top level file we will create a new top-level file which will connect the PIO port registers to
the signals we want to connect to on our custom component. This is a roundabout way of creating a
method to directly read and write from all interfaces on our desired custom component from the AXI
bus on the HPS.

Much of this was learned from these other sources of information:

https://github.com/robseb/rsyocto

https://people.ece.cornell.edu/land/courses/ece5760/DE1 SOC/Making Qsys Components 15 0.pdf#:
~:text=VHDL%20code%20for%20the%20memory-mapped%20new-
register%20interface.%204Avalon,to%20request%20and%20send%20data%20to%20slave%20compone
nts.

Third, more in depth steps to be followed strictly to interface the FPGA and HPS over the AXI Bus:

1. Onthe Linux PC, open Quartus
a. Note: Step 1 to Step 18 should all be done in Quartus

2. In Quartus, create your desired HDL custom component. It must have the following:
a. Aclksignal
b. Aresetsignal

This instruction guide will use the following code as the example:

16

https://github.com/robseb/rsyocto
https://people.ece.cornell.edu/land/courses/ece5760/DE1_SOC/Making_Qsys_Components_15_0.pdf%23:~:text=VHDL%20code%20for%20the%20memory-mapped%20new-register%20interface.%204Avalon,to%20request%20and%20send%20data%20to%20slave%20components.
https://people.ece.cornell.edu/land/courses/ece5760/DE1_SOC/Making_Qsys_Components_15_0.pdf%23:~:text=VHDL%20code%20for%20the%20memory-mapped%20new-register%20interface.%204Avalon,to%20request%20and%20send%20data%20to%20slave%20components.
https://people.ece.cornell.edu/land/courses/ece5760/DE1_SOC/Making_Qsys_Components_15_0.pdf%23:~:text=VHDL%20code%20for%20the%20memory-mapped%20new-register%20interface.%204Avalon,to%20request%20and%20send%20data%20to%20slave%20components.
https://people.ece.cornell.edu/land/courses/ece5760/DE1_SOC/Making_Qsys_Components_15_0.pdf%23:~:text=VHDL%20code%20for%20the%20memory-mapped%20new-register%20interface.%204Avalon,to%20request%20and%20send%20data%20to%20slave%20components.

LTBRARY ieee;
USE ieee.std logic 1le4.all;

ENTITY add32 IS
PORT (clk, resetn : in std logicy

inputl, input2 : IN STD LOGIC VECTOR(31 DOWNTO 0O) :

outputl : OUT STD LOGIC VECTOR(3. DOWNTO 0)):
END add32;

ARCHITECTURE Behavior OF add3z IS

BEGIN

process (clk, resetn)

begin
if {(resetn <="0") then
outputl <= {(others => "0");

elsif (rising edge(clk)) then
outputl <= inputl =or input2;
end if;

end process;

END Behawvior;

All this circuit does is XOR two inputs. It outputs the result after a clk edge.

3. Create a new Quartus project with the desired settings. Leave the project blank for now.
4. Open Platform Designer
a. Found inside Quartus. Tools -> Platform Designer

17

& Piatform Designer - unsaved.qeys* (C:\Users\K\OneDrive\ Documents\ GT\TA\ Quiartus Testing\unsaved.qsys)
File Edit System Generate View Tocls Help
= P Catiog 4 | _a‘um“m 2 | interconnect Requrements &)
A x| =« W system:unsaved
Project * Use com... Name besaiption Exwort Codk Base End RQ Tags Gpcode Name
o Mew Component... v B dko (Gock Seurce
- U2ER o dn Godk trput i exported
h-Gpoan O dinreset Reset Input reset
Library -~ & |Godk Output ko
#) Basc Functions = -
Do o reet [Reset Cutput
7 DSPBA L blocks
i-Interface Frotocols -
Low Power x
 Memory interfaces and Cantralkrs
#1-Processors and Peripher ais
1 Qsys Ttercomnect
1 Tr-State Conponents
51 Uriversity Pragram
- =
A4V W Current fiter:
Fﬂ“ Messages -
Troe Path Message
< >

0 Errors, 0 Warmings

5. To your platform designer project add the following by searching in the IP Catalog box on the

left:
a.

Arria V/Cyclone V HPS

™ Ip Catalog 52

- =

., hps

X &

E--Pr_ucessnrs and Peripherals

[=}-Hard Processor Components
----- ® Altera HPS Emac Interface Splitter
----- ® Altera HPS Trace IP

i. Remove the SDRAM, unclick “Enable MPU standby and event signals”
ii. Leave all other parameters as default, click finish in bottom right corner

18

FPGA Interfaces peripheral Pins HPS Clocks SDRAM

[~ General

[] Enable general purpose signals

[] Enable Debug APE interface

[Enable System Trace Macrocell hardware events
[Enable FPGA Cross Trigger Interface

[Enable FPGA Trace Port Interface Unit

Enable FPGA Trace Port Alternate FPGA Interface

[[] Enable boot from fpga signals
[] Enable HLGPI Interface
[~ moa Bridges
FPGA-to-HPS interface width: 64-bit
HP5-to-FPGA interface width: 64-bit

Lightweight HPS-to-FPGA interface width: | 32hit o

|~ FPGA-to-HPS SDRAM Interface
Click the '+ and '- buttons to add and remove FPGA-to-HPS SDRAM ports.

MName Type Width

b. Add PIO components equal to the number of signals (as a vector, not individual lines)
you wish to interface with. For the example XOR/Adder code we need three PIO ports
(Two for input, one output):

™ Ip Catalog 2 =
-, pio X Q
P'_mject

L.l New Componient...

L'!hrar\r

=-Interface Protocols
: E}--PCI Express
EI--QSYS Example Designs
[-Processors and Peripherals
E}--Peripherals
10 (Parallel 1/Q) Intel FPGA IP

19

i. Set the size of the PIO width to the same size as you need but set the direction
OPPOSITE of what your custom component is. In other words, if your custom
component has an input of 16 bits, create a PIO component with a 16-bit output

1. The example code would need two output PIO set to 32 bits, and one
input set to 32 bits
ii. If asignal vector is > 32 bits, you need to use two PIO components to handle the
signal. In other words, if you have a 48-bit input, you could have two 24-bit
outputs, or a 32-bit output and a 16-bit output.
c. Create a custom component by clicking on the new component tab

™ Ipcatalog 2 -
L X K2
P_r-uiect P
1 [pE—

i. Add all your required custom VHDL files to the “Files” tab. Ensure the top-level
file is set to have the attribute as top-level file. Click “Analyze Synthesis Files.”

s= Component Editor - add32_hw.tcl* *

File Templates Beta View

Component Type &% | Block Symbol 23 [Files 53] Parameters &1 | Signals & Interfaces 238
+ About Files

=

Synthesis Files

These files describe this component's implementation, and will be created when a Quartus synthesis model is generated.

The parameters and signals found in the topevel module will be used for this component's parameters and signals.

Qutput Path Source File Type
‘add32.vhd

Attributes
Top-level File

MH4>» M

Add File... Remove File Analyze Synthesis Files Create Synthesis File from Signals

ii. Go to the Signals and Interfaces tab and set all signals as conduits, other than clk
or reset. Clock must be set under “Clock Input” and the reset must be set under
“Reset Input.”

iii. Theinput and output signals that you reassigned to be conduits will have odd
names now in light grey such as “readdata,” “burstenable,” and others. This is
not wanted. Rename the signals to something that makes sense. This is not
necessary, but these names are how the signals will appear in the auto
generated VHDL, so it is recommended to rename them to make it easier to
understand what you are doing later.

20

Component Type &% | Blodk Symbal I3

Files

&

Parameters

&

» About Signals

Signals & Interfaces

&

I i =

MName

C=inputl [32]
C=input2 [32]
=2 putputl [32] owious

= reset_sink
= resetn [1]

= add si

iv. Rename the component to something different than the top level VHDL file, the
Platform Designer project, or the Quartus project. In general, just use new
names for everything

Component Type 33] Block Symbaol 33| Files 33| Parameters 33| Signals & Interfaces 33|

» About Component Type

Mame: add32

Display name: | 3dd32

Version: 1.0

Group:

Description:

Created by:

Icon:

Documentation: Title URL
+

6. Connect everything together

a. Make all the connections by clicking on the empty circles.

i. All clk inputs must be connected,

ii. All resets should be connected to the clk_reset.

iii. Connect the line “h2f_Iw_axi_master” on the hps component to the “s1” line on
each of the PIO components.

b. Double click to export the “Conduits” for the PIO components and your custom
component. The grey text should become bolded

21

Use Connections MName Description Export Clock Base End

Clock Source
C— dk_in Clock Input clk exported
me) dk_in_reset Reset Input reset
— dk Clock Output dk_0
— ck_reset Reset Output
B add32_o add3z
dodk Clock Input clk_0
St cond Conduit add32_cond [clock]
reset_sink Reset Input [clodk]
B hps_o Arria VfCydone ¥ Hard Processor System
h2f_cold_reset Reset Output
St h2f_gp Conduit hps_0_h2f_gp
= memory Conduit memory
h2f_reset Reset Output
h2f_axi_cock Clock Input clk_0
h2f_axi_master AXI Master [h2f_axi_do...
f2h_axi_dodk Clock Input clk_0
f2h_axi_slave AXI Slave [fzh_axi_do...
h2f_Iw_axi_dock Clock Input clk_0
—t h2f_lw_axi_master AXI Master [h2f_hw_axi...
a3 pio_0 PIC (Parallel 1/0) Intel FPGA IP
dk Clock Input clk_0
reset Reset Input [chk]
s1 Avalon Memary Mapped Slave [ch] 0x0000_0000 0x0000_000£
St external_connection Conduit pio_add_inputl
B pio_1 PIC (Parallel 1/0) Intel FPGA IP
dk Clock Input clk_0
reset Reset Input [ck]
s1 Avalon Memary Mapped Slave [chk] 0x0000_0010 0x0000_001£
< external_connection Conduit pio_add_input2
= pio_2 PIO (Parallel 1/0) Intel FPGA IP
ck Clack Input clk_o
reset Reset Input [ch]
sl Avalon Memory Mapped Slave [ck] 0x0000_0020 0x0000_002£
O external_connection Conduit pio_add_outputl
7. Set unique addresses for each PIO component (e.g., 0000-000f, 0010-001f, 0020-002f). Make
sure you know these addresses, as these are how you will read/write to your component
8. Verify that you have no red errors in the messages at the bottom. You should expect to see four
warnings
Type Path Message
=, 4 \Warnings
a, embedded_system.hps_0|" Configuration/HP5-to-FPGA user 0 clock frequency” (desired_cfg_clk_mhz) requested 100.0 MHz, but only achieved 97.368421 MHz
a, embedded_system.hps_0|1 or more output dock frequencies cannot be achieved predsely, consider revising desired output dock frequencies.
o, embedded_system.hps_0|OCT is disabled. Enabling OOT (Mode Register 1) may improve signal integrity
a, embedded_system.hps_0|set_interface_assignment: Interface "hps_io" does not exist
=[] 3 Info Messages
@ embedded_system.hps_0|HPS Main PLL counter settings:n=0m = 73
@ embedded_system.hps_0|HPS peripherial PLL counter settings: n =0m = 33
@ embedded_system.pio_2 |PIO inputs are not hardwired in test bench. Undefined values will be read from PIO inputs during simulation.

©

Generate HDL from platform designer, bottom right of screen. We are now done with Platform
Designer
10. Back in main Quartus, add the generated .qgip file to the project. The .qip file is placed in /”
Quartus Project Name”/” Platform Designer Project Name”/synthesis
11. Open the .qip file by double clicking it and delete all lines that reference SDRAM
a. Use Ctrl-f, type SDRAM, delete all lines with reference
b. Delete all SDRAM module in the border file
12. Delete SDRAM component from border file

22

Project Mavigator @Files 008 =

Files @

w @ embedded system/synthesis/embedded system.qipé

% ernbedded_systemn/synthesisfembedded_system.vhd
ernbedded_system/synthesis/submodules/altera_reset_controllerv

ernbedded_systemn/synthesisfsubmodules/altera_reset_synchronizer.v

ernbedded_systermn/synthesisfsubmodules/altera_reset_controller.sdc

|
=]
o

embedded system/synthesisf/submodules/embedded system_mm_interconnect_0.v

ECE

e embedded svstem/svnthesis/submodules/embedded svstemn mm interconnect O avalor

a. Click the arrow on the .qip file to see the subfiles
b. Scroll to the bottom and open the following file

embedded system/synthesis/submuodules /embedded system hps O hps io burder.sv'é

c. Delete from the file the second component instantiation, the SDRAM one. Only remove
the highlighted text shown below.

23

31 ,'mput wire [1L -1 : 0] oct_rzgin
32

33

34

EFECihps_sdram hps_sdram_inst
ELCIN =] . mem_ dq(t

37 _mem_dg[7:0
£

39 =, . mem_odt i

40 mem_odt [0:0
41 i)

42 =l, . mem_ras_n({
43 _mem_ras_n[0:
44

415 g qs_ni{
46 _mem_dgs_n[0:
47

FERNC], . mem_ qs (1

49 mem_dqs [0:0
50 i9)

51 =], . mem_dm i

52 _mem_dm[0:0
53

54 =1, rl‘wnl

55

36

57 =, .mem_cas_n i

58 _mem_cas_n[0:0
59

a0 =], mwm pa({

61 _mem_ba[2:0
62

63 =1, rl‘wnl al{

64 _mem_a[12:0
65

66 =, .men_cs_n i

67 mem_cs_n[0:0
68 i)

69 =f, . mem_ck({

70 _mem_ tl-.[D 0
71 1)

72 =, . mem_c

73 _mem_ck

74

75 ofilas _rzqin

76 _oct_rz '|r|[IIJ [1]
77

78 =,

79

50

CAR Sl . mem_ck_n(q

82 mum ck_n [0:0
83

B4

85

86 endmodule

87

&8

10

13. Create a new top-level file that instantiates the .gip component
a. Open the .vhd file generated under the .qgip file

Project Mavigator

Files

Files

v E

ernbedded_systern/synthesis/embedded_system.gip

%% embedded system/synthesis/embedded system.vhdé

24

&

©

- embedded_system.qip embedded_system.vhd 1]

= 3 267 —
s IC‘ I"} L[I] 268 =

m8 0 =

1 -- embedded_system. vhd

2

3 -- Generated using acps version 20.1 720

4

5 Tlibrary IEEE;

6 use IEEE.st

7 use TEEE.nu

8

9

10

11 ELLE] _Tnputl :in E glc_\ V- i . 1nputl
12 nd_input2 :in s - .input2
13 nd_output :oout = . output
14 clk_clk :in - clk.clk
15 _0_h2f_gp_gp_in :in vector (31 - hps_o_h2f_gp.gp_
16 _0_h2f_gp_gp_out : out or(31 - gp
7 e m_a : out or(12 - memor e
138 3 : out ctor(2 downto 0); -

19 e T oout -

20 a : out -

2l out =

22 " out =

23 out =

24 out =

25 2 out =

26 e Sl out -

7 e inout ctor (7 downto 0) -

28 _mem_ inout =

29 d inout =

30 _mem_t out =

31 out =

32 i in = c

32 pio_add out ector (31 downto -- pio_add_inputl.

34 pio_add_i out (31 downto -- pio_add_input2.

35 io_ad in (31 downto 0) -- pio_add al-

36 r eT_| : in ==

7

38

39 =

b. Instantiate the top entity in this vhd file in a new custom VHDL file

c. This is why the PIO connections were created opposite of the custom component. The
gip component should have matching interfaces for both the PIO components and the
custom component. Simply match the correct signals together. As shown below, the
memory connections are ignored as they are not being used. Instantiate the clk_clk
signal and connect the custom component |0s to the PIO 10s.

25

[Tibrary eee;
use jeee.std_logic_1164.all;

Bentity add_toplevel is

Bport(

clk, resetn : in std_logic

and add_toplevel;

El_arch'itecture behavior of add_toplevel is

signal inputl, input2, outputl : std_Tlogic_vector (31l downto 0);

B component embedded_system 1is

=] ort (

F add32_cond_inputl :in std_logic_vector (31 downto 0) := (others => '0'); -- add32_cond. inputl
add32_cond_input2 :in std_logic_vector (31 downto 0) := (others => '0"); -- .input2
add32_cond_output T out std_logic_vector (31 downto 0); - .output
clk_clk :in std_logic = '0"; - clk.clk
hps_0_h2f_gp_gp_in HER T std_logic_vector (31 downto 0) := (others => '0'); -- hps_0_h2f_gp.gp_in
hps_0_h2f_gp_gp_out : out std_logic_vector (31l downto 0); -- .gp_out
memory_mem_a I out std_logic_vector (12 downto 0); - memory. mem_a
memory_mem_ba I out std_logic_vector (2 downto 0); - .mem_ba
memory_mem_ck rout std_logic; -- . mem_ck
memory_mem_ck_n rout std_logic; -- .mem_ck_n
memory_mem_cke :oout std_logic; - .mem_cke
memory_mem_cs_n rout std_logic; -- . mem_cs_n
memory_mem_ras_n rout std_logic; -- .mem_ras_n
memory_mem_cas_n rout std_logic; -- .mem_cas_n
memory_mem_we_n rout std_logic; -- . mem_we_n
memory_mem_reset_n rout std_logic; -- .mem_reset_n
memory_mem_dq : inout std_logic_vector (7 downto 0) = (others => '0'); -- . mem_dq
memory_men_dqs : dnout std_logic = "0"; -- . mem_dqs
memory_mem_dgs_n : inout std_logic = "0"; -- .mem_dgs_n
memory_men_odt rout std_logic; -- . mem_odt
memory_mem_dm rout std_logic; -- . mem_dm
memory_oct_rzqin HER T std_logic = "0"; -- .oct_rzqin
pio_add_inputl_export : out std_logic_vector(3l downto 0); -- pio_add_inputl. export
pio_add_input2_export : out std_logic_vector (31 downto 0); -- pio_add_input2. export
pio_add_outputl_export : in std_logic_vector (31 downto 0) := (others => '0'); -- pio_add_outputl.export
reset_reset_n HER T std_logic ="0" -- reset.reset_n

H
end component;

_beg'in

Bembed: embedded_system port map(
add32_cond_inputl => inputl,
add32_cond_input2 => input2,
add32_cond_output => outputl,
clk_clk == clk,

reset_reset_n == resetn,
pio_add_inputl_export == inputl,
pio_add_input2_export == input2,
gio_add_outputl_export => outputl

end behavior;

14. Add this new top-level file to the Quartus project. The only two files added to the project
should be the .qip file, and the top-level file. Ensure the new VHDL file is the top-level file, not
the .qip file.

15. Set the clk pin (and anything else needed) in pin planner

16. Compile the design

17. Convert the created output file to .rbf format with mode 16x parallel. You can do this from
Quartus by clicking File -> Convert Programming Files

18. Make sure you have the output file (in the .rbf format) saved successfully on your computer.
You will need it for future steps.

a. Note: Until now, you have done with Quartus. You can close it if you want.

26

19. Install the rsyocto Linux image on the SD card instead of the default yoctolinux provided by
Terasic. We are using this due to the easier method of addressing for the AXI bus.
a. Use an SD Card reader to insert the empty SD Card to the Linux PC
b. Download rsYocto_1 042 DE10STD.zip from
https://github.com/robseb/rsyocto/releases
c. Use Etcher to boot rsYocto_1 042 DE10STD.zip on the SD Card
20. Move the .rbf file onto the Linux image
a. Treat SD Card as an USB drive on Linux PC
b. Move the .rbf file into the /home/root directory
c. Ejectthe SD card from the Linux PC
21. Prepare the board
a. Insert the SD card into the board
b. Setthe MSEL Bit of the board to the following setting:

PSNT_N

U
32
*
=
©
-
R d
o

R

c. Connect the board to the Linux PC using UART to USB Cable
d. Connect the board to the power using the power cable
e. Pressthe power button to power on the board
22. Connect the board to the Linux PC using Minicom
a. On Linux PC, open Minicom to set up the board’s Serial Connection
i. Before opening Minicom, we need to find the board name
1. Todo this, open a terminal on Linux PC
2. Execute the following command
a. lIs/dev/cu.*
b. After this, find the board
c. It might be shown as something like this:
d. /dev/cu.usbserial-AU02GOAS8
e. Make sure to copy this (what is shown above in part d) down,
you will need this in the next step

27

https://github.com/robseb/rsyocto/releases

ii. After getting the board name, open the Minicom
1. To do this, in the terminal on Linux PC
a. Execute the following command:
i. minicom -s
ii. After opening minicom, your terminal would be like this

- [configuration]————— +
| Filenames and paths |
| File transfer protocols |
| serial port setup |
| Modem and dialing |
| Screen and keyboard |
| Save setup as dfl |
| Save setup as.. |
| Exit |
| Exit from Minicom |
: - - -—+

2. Open Serial port setup in minicom
i. After opening it, your terminal would be like this

RS485 Terminate Bus : No
RS485 Delay Rts Before: ©
RS485 Delay Rts After : ©

Change which setting?

| A - Serial Device : /dev/cu.ushserial-AU@2GOAS8
| B — Lockfile Location : /usr/local/Cellar/minicom/2.8/var
| C - Callin Program

| D — Callout Program :

| E - Bps/Par/Bits ¢ 115200 8N1

| F — Hardware Flow Control : Yes

| G — Software Flow Control : No

| H - RS485 Enable : No

| T - RS485 Rts On Send : No

| J — RS485 Rts After Send : No

| K — RS485 Rx During Tx : No

| L

| M

| N

|

|

3. Paste what you got in step 22(a)(i)(2)(d) to the “A - Serial Device” shown
in the screen above
b. After connecting to Minicom successfully, power off and then power on the board again,
rsyocto boots automatically
23. Login as a root user
a. After rsyocto finishes booting, terminal will prompt you to login
i. Login: root
ii. Password: eit

28

24. Load the .rbf file and read/write to the LW AXI bridge using the following instructions:
a. Inthe terminal (the same terminal in step 23(a)), execute the following commands
i. FPGA-writeConfig -f file_name.rbf

1. This command loads the FPGA configuration you want onto the FPGA

ii. FPGA-writeBridge -lw 0-h ab
1. This command writes data Oxab to the light weight AXI bridge offsetting

at address 0

iii. FPGA-readBridge -lw 0

1. This command reads the light weight AXI bridge offsetting at address 0

25. Congratulations! We are done!

29

