

 ECE 4156/6156 Hardware-Oriented Security and Trust

Spring 2025

Assoc. Prof. Vincent John Mooney III

Georgia Institute of Technology

Pre Lab 1, 10 pts.

Due Wednesday, January 22 prior to 11:55pm

Lab 1, 90 pts.

Due Friday, January 24 prior to 11:55pm

(Please turn in homework electronically on Canvas)

Prelab

The prelab sets up Quartus and ModelSim on your computer. While this document is long, the

vast majority is simply installing Quartus and troubleshooting problems that may pop up in the

installation. Then you would have to simulate a small VHDL program which is given by us to

check that Quartus and ModelSim are working as expected.

Installation and Use of the Quartus Prime software

This first section prepares you to begin actual labs using the DE-10 Standard board, but
it still requires a little bit of time. It is a tutorial to familiarize you with the installation and basic
functionality of the Quartus software. The installation will be done in the Prelab 1 step, and this
will require a computer running Windows or Linux. Then a tutorial of creating a VHDL file and
implementing it on the development board will be done in the prelab steps.

This tutorial has been written using Quartus Prime version 19.1, but it is applicable to
earlier versions, as far back as version 15, or more recent versions of Quartus Prime. This
document is derived from ECE 2031 Lab 0, so you may be able to skip some of the install steps if
your computer is already set-up for use with the DE-10 Lite board.

NOTE: ECE 2031 has used a different FPGA (Field Programmable Gate Array) device than the
DE-10 Lite board in the past, so you may need to install Cyclone V device support for the DE-
10 specifically.

Documentation and resources for the DE-10 Standard board can be found at:

https://rocketboards.org/foswiki/Documentation/DE10Standard

https://rocketboards.org/foswiki/Documentation/DE10Standard

Lab 1 Prelab Steps

This course will make extensive use of a computer-aided design (CAD) application called
Quartus Prime, originally developed by the Altera Corporation, which is now a division of Intel.
Quartus Prime will allow you to "capture" your designs with schematics and other means and fit
the designs to be implemented on the FPGA board used as the primary development platform.
Even when we build circuits with discrete integrated circuits, Quartus is a convenient way to
draw schematics.

Requirements to begin

You must have a computer meeting one of the following general descriptions:

• A Windows 10* PC
• A PC running one of the following Linux distributions (although it is likely others will

work)
o Red Hat Enterprise Linux 6
o Red Hat Enterprise Linux 7
o SUSE SLE 12
o Ubuntu LTS (at least 14.04)

• A Mac with one of the following additional operating systems installed
o Windows 10* in a Boot Camp hard disk partition
o Windows 10* in a Parallels VM (Virtual Memory)
o Windows 10* in some other VM (e.g., VMware)
o One of the Linux variants above, in some VM

* Windows 7 and Windows 8 still seem to work fine but are not recommended. Windows 11
should work fine also.

Although all these configurations SHOULD be supported, the only ones being actively tested by
the instructors are specifically:

• A Windows 10 PC
• Debian 11 PC

You will know by the end of Prelab if you have any issues with your computer.

In all configurations, the following also apply:

• You need a functional USB port, with a full-size USB Type A receptacle, or some adapter,
such as the USB-C to USB-A adapter needed for recent MacBooks (one example, but
there are others)

https://en.wikipedia.org/wiki/USB
https://www.apple.com/shop/product/MJ1M2AM/A/usb-c-to-usb-adapter
https://www.apple.com/shop/product/MJ1M2AM/A/usb-c-to-usb-adapter

• For the limited number of users who may still be running a 32-bit version of their
operating system, you may have to upgrade to the 64-bit version of the operating
system.

• You will need at least 15 GB of disk space for the Quartus installation.
• You must have administrative rights, allowing you to install software on the system. To

check in Windows, open Settings (Gear icon), select Accounts, and next to your account
name, it should show Administrator

Once you have a computer at hand meeting these requirements, begin following the
installation steps below. Most of them should be similar for all computer configurations if you
are doing them within the Windows or Linux operating system on your computer. This first step
is the main exception since it is not required for Linux users.

Step 1.

Linux users should skip this step.

On any Windows system (including Windows running on a Mac VM or Bootcamp), the Quartus
installation will require the Visual C++ Runtime system, officially the Microsoft Visual C++
Redistributable. Your system probably has it already, but it will be worthwhile to check now.
There are two ways to check:

Option A) Open your Windows Settings (Gear icon), go to Apps & Features, and look for any
entries beginning with Microsoft Visual C++ Redistributable.... If you have one or two ending
with a date that is 2015 or later, you should be fine, and you can skip Step 2 and go to Step 3
below.

Step 2.

(Optional, only if required based on the result of Step 1.) Go to the URL below, then download
and run vc_redist.x64

• https://www.microsoft.com/en-us/download/details.aspx?id=48145

Step 3.

We have found that the following website does not work properly with Chrome or Firefox, so if
you have trouble downloading files in the steps that follow, try Edge or other browsers.

In a browser under Windows or Linux, go to the download site:
https://fpgasoftware.intel.com/19.1/?edition=lite&platform=windows. The top of the resulting
page will resemble the image below. As shown here,

• select the Quartus Prime Lite edition at the top right,
• select release 19.1 or 20.1 (you may try newer versions but they have not been validated by us

and the functionality may differ from what is presented in this document), and
• choose Windows (or Linux, if it applies to you).

It does not matter if you are on a Mac — you should not be in MacOS at this point, so select the
Windows version of Quartus.

https://www.microsoft.com/en-us/download/details.aspx?id=48145
https://fpgasoftware.intel.com/19.1/?edition=lite&platform=windows

Step 4.

Click the Download button to download all required files.

Step 5.

After downloading the file, extract the content of the .tar file. You should have the following
files inside a “components” folder (plus some extra device supports we do not actually need).

• "QuartusLiteSetup-..."
• "ModelSimSetup-..."
• "cyclonev-….qdz"
• "QuartusHelpSetup-..."— you can delete this, if you prefer to save a little space.

The most common installation error is that one or more files is missing or wrong, and it can
result in having to start over. Verify that you have the files shown here (for whichever version
you downloaded):

Still in that folder, run the QuartusLiteSetup... executable, not the QuartusHelpSetup or the

ModelSimSetup. Follow all the instructions to complete the installation. It is recommended that you

accept the default installation folder, usually C:\intelFPGA_lite\19.1. One step will be to confirm that you

want to install the other items that you downloaded into the folder. The example below shows the

items that you must install. It also shows that you should NOT install any edition of ModelSim other than

the "Starter Edition," so if another one is there, leave it unchecked.

Step 6.

The installation can take a while. When it nears the end, the following window appears. Leave
these three items checked, or uncheck the option for creating shortcuts, if desired. But make
sure that the option to Launch USB Blaster II driver is checked.

You will be presented with the Device Driver Installation Wizard. Make sure you click Next to
continue. It is very possible that this installation will fail, giving the reponse below.

If you get this error, it will affect what you do in a later step. Consider yourself in the group of
users who need to follow the steps to manually install the USB-Blaster, in a step coming up
very soon.

Step 7.

As it finishes the installation, you will be presented with the option below. At this time, and at
any future time where it may ask, select "Run the Quartus Prime software." No purchase is
necessary for this class.

Step 8.

When Quartus opens, it will appear similar to the image below.

You can delete the installation files from the temporary folder where you launched them.
https://www.microsoft.com/en-us/download/details.aspx?id=48145

https://www.microsoft.com/en-us/download/details.aspx?id=48145

Step 9.

If, only a couple steps back, you received an error when installing the USB-Blaster driver, then
do not proceed with any further steps until you first complete the steps in a separate section
below, titled Manual USB-Blaster Installation.

Return to the next step, when finished.

Step 10.

There is one additional thing to check at this time if you have already received your DE10-
Standard FPGA development board. If not, this will happen near the end of the steps.

Connect your DE10-Standard board to your computer with the supplied white/gray USB cable.
If you have Windows running in a VM on a Mac, you may get a prompt asking you if the newly
detected device should be connected to the Mac or to Windows 10. Choose Windows, if you
have this prompt.

The DE10-Standard should power up and immediately begin running the default programming
file that is stored in non-volatile memory. We are going to verify that you can reprogram it
through your cable.

If it does not turn on immediately, check the following:

Ensure the MSEL switches are in the positions shown above and the red power
button is pushed to the “down” position.

Power

Button

Step 11.

In Quartus, find the Programmer by either method below. Either look for the icon at the top
(the one on the left of the three shown below) or the menu item under Tools, also shown
below. Click on it to open

The Programmer will come up and appear similar to the image below. In particular, it will say "No

Hardware" near the top, just to the right of "Hardware Setup," because it has never been configured to

use the USB connection, called the USB-Blaster. Go ahead and click on "Hardware Setup."

Step 12.

The "Hardware Setup" window is shown below. In the "Available hardware items," if "USB-
Blaster" appears, then you are done. But usually, you need to click on "Add Hardware," and in
the window that comes up, select USB-Blaster (or EthernetBlaster if only that shows up). If you
can do that successfully, then you will also be done. If not,

A) First make sure that the USB cable is plugged in completely to your computer and to the
board. It is possible for it to supply power, yet not be connected properly. Then try again.

B) Should that fail, continue with the next step.

Linux users will need to take some additional steps, even if USB-Blaster is present,
because of USB access permissions.

The best description appears to be found here: https://blog.atomminer.com/fighting-
altera-usb-blaster-on-ubuntu/

Some students in summer reported that the script provided there did not work, and
someone updated it to work for their setup, so you might have better luck with this
script: usbblaster.sh.

https://blog.atomminer.com/fighting-altera-usb-blaster-on-ubuntu/
https://blog.atomminer.com/fighting-altera-usb-blaster-on-ubuntu/
https://powersof2.gatech.edu/cas/labmanual/labcontent/lab0/files/usbblaster.sh

Step 13.

If the previous step was unsuccessful, and you still are unable to make the USB-Blaster appear,
contact the instructors for assistance. There may be a discussion thread in Canvas on this topic,
if needed.

Step 14.

Continue with the Lab Steps for the prelab.

Manual USB-Blaster Installation

If you were able to use your USB-Blaster the first time you needed it to program your FPGA
board, you should not need to follow any of the steps below. But if you saw errors near the end
of the installation of Quartus Prime, indicating that NO device drivers were installed
successfully, continue here. The problem was probably that Windows would not install the
unsigned device driver provided by Intel.

Requirements to begin

You must have successfully installed Quartus (except possibly the USB-Blaster device driver) on
a Windows machine, either a PC, or Windows running on a Mac.

Step 1.

None of this is relevant to Linux users. If you have trouble programming the board on Linux, we
will try to help, but we have very limited experience using Quartus on Linux.

First, check to see if the driver possibly DID install correctly. In the text entry area of the
Windows Start Menu, type sigverif and press return. It will take a while to find all device drivers
that are unsigned, but when it is done, see if your computer is missing the file name intelta.sys.
The image below shows the result in a system that DOES have the driver installed correctly,
along with three other unrelated drivers.

Step 2.

Assuming your system does not have the driver, open Windows File Explorer, and navigate to
the folder 19.1/quartus/drivers, within the folder that you used to install Quartus (which
defaults to /intelFPGA_lite on the system drive). Below, the file DPinst (the application, not the
XML document) is highlighted.

Double-click on that application and continue with the installation. Ignore warnings like the one
below and select "Install this driver software anyway".

When it is finished, it may show that some items were not installed. But if the Altera USB-Blaster Device

Driver was installed, as shown below, then this part was successful.

Step 3.

If the previous step was unsuccessful, you probably saw a message similar to the one below, or
one that showed multiple devices, with none installed successfully.

The only known cause for this is that your Windows system is set to not allow unsigned device
drivers (those not tested by Microsoft) to be installed. It can be complicated to override this
setting, but first we will try the easy way.

Step 4.

First, launch an Administrator Command Prompt by

• clicking the Start button, then
• typing at least the first few letters of "Command Prompt," and
• clicking on "Run as administrator" in the Command Prompt window that comes up, as shown

below.

Step 5.

In the Command Prompt, type the following command:

BCDEDIT /set nointegritychecks ON

If you get an error related to the Secure Boot Policy, as shown below, continue with the next
step. If you do not get this error, then you can go back to Step 2 above and see if it succeeds.
But if it does not, continue to the next step.

Step 6.

If you have not succeeded yet, then we have the more complicated situation where we must
reboot the system in a mode that will allow installation of unsigned drivers. Begin by printing
the instructions that follow, or making some notes, or opening them on a different device,
because you will need to reboot your computer.

If your computer has Bitlocker enabled, you will need to know your Bitlocker recovery key. If
you do not have it saved somewhere, do a search on "recover bitlocker" for tips (and consider
saving it in whatever you use for password management in the future).

You need to get the advanced boot options menu, and the first step is to hold down the Shift
key while you click the “Restart” option in Windows. Your computer will restart into the menu
below. Choose "Troubleshoot."

In the Troubleshoot menu, as shown below, select "Advanced Options."

In the Advanced Options menu, as shown below, select "Startup Settings."

Clicking "Restart" on the following screen (shown below) will result in a reboot. But before
clicking it, note two things:

• If your computer has Bitlocker enabled, this is where you will need to know your
Bitlocker recovery key.

• You will need to do the driver installation on this next reboot. If you boot the system
again, you will lose the ability to install unsigned drivers, and you will have to go back to
restarting while holding the shift key, then going through the remaining menus.

Once the computer restarts, you will be presented with the following menu. Select option 7,
"Disable driver signature enforcement".

Once back in Windows, return to step 2 above and run DPInst.exe, which should now succeed.
If not, contact the instructors, because this is the last process, we have found necessary for
anyone so far.

The concepts and procedures outlined here should enable you to begin working on laboratory
projects. Additional features will also be explained throughout the laboratory exercises.
However, you should refer back to this tutorial if at any time you forget any of these basic
functions.

Simulating an Intro Circuit

Step 1.

Upon starting Quartus Prime (and perhaps dismissing a window that appears with the Lite edition), the

main interface window will be presented as seen above. From the menu at the top, select File => New

Project Wizard… to create a new project. (NOT File ==> New, because there is a fundamental difference

between creating a project and creating a single file.) At this point, Quartus will display an introduction

screen for the project wizard.

Get in the habit of reading information windows before moving on. On this screen, select Next
to advance to the next window. You may also want to check the box in the lower left corner to
avoid displaying this particular introduction screen again.

Step 2.

Enter a location to store your project files, as in the example above. NOTE: You cannot store
the project files in the default location as that folder is read-only. Choose a location outside
of the C:/IntelFPGA_lite folder. Include a dedicated directory (i.e., folder) for the particular
project, which is D:/ECE3170/Lab1 in the example here. Next, give the project a name. The
example uses IntroCircuit for the name of the project. The last entry is the top-level design
entity, which is an important concept. A project can consist of as little as a single design file,
such as a single schematic. Or it can contain one file which describes how other design files are
interrelated. We will create this project with only one file, which by definition must be the top-
level design entity. Quartus will default to using the project name for the top-level design file,
which works well here.

Then, select Next to advance to a window which asks you to choose between an "Empty
project" or a "Project template." Choose the "Empty project" and select Next to advance.

Step 3.

Press Next to advance to the window above. Allow Quartus to create the project directory, if it does not

yet exist. The user has the opportunity to add any files to the project that define logic, such as

schematics created beforehand. Since there are no design files to add to this project, click Next to

advance to the device selection window of the figure below.

Step 4.

You will need to select the correct device for the board you are using, first by selecting a device
family, and then by selecting a specific target device. If you followed the recommendation to
only install device support for the Cyclone 5 family, then your "Family" choice will default to
Cyclone V (E/GX/GT/SX/ST), but if you chose to install support for other devices if already had
support for other families installed, you may have to select this family yourself from the
dropdown.

Now, you need to find the exact device by reading the corresponding code near the middle of
the FPGA IC (Integrated Circuit), on your DE10-Standard board. Look closely at the board and

make a note of the complete device name for the Cyclone V chip. It is the long string directly
below “Cyclone V SoC."

Continuing with the Family, Device & Board Settings dialog, we now need to specify the exact
device, using the device name you just found. To select the specific device, you could

• scroll through the list at the bottom of the window to find it, or
• start typing the name in the Name filter box, or
• if you knew the Package, Pin Count, or Core speed grade, use those dropdowns.

Select the correct device in the bottom list. Press Next to continue to the window below.

It is common for commercial entities to use third-party tools to develop hardware and software
configurations for FPGAs (Field Programmable Gate Array). This window allows Quartus to
communicate with and use such tools within the development environment. We will mostly be
using the default tools included within Quartus, but we will use a version of a widely supported
simulator called ModelSim. To the right of the Simulation,

• select ModelSim-Altera (NOT generic ModelSim), and
• select VHDL in the second dropdown (under Format(s))

Then click Next to proceed to the summary window.

Take the Summary window as screenshot, you will need to submit this for the pre-lab.

With the summary window in view, press Finish to close the wizard and create the new project files. You
will be returned to the main window of Quartus.

Optionally, this is a good time to take a break. Note that you can choose the menu option File => Save

Project and then File => Close Project to return to a place where you can close Quartus entirely. You

would, of course, have to get back to the same point with File => Open Project, selecting the IntroCircuit

project just saved. Note that this is different from File => Open File, which would open an isolated file,

without context to the project settings, including the device assignments.

Step 5.

Design projects are composed of one or more design files, and this project will be defined by a
single VHDL file. Earlier, the concept of a top-level design entity was mentioned, to define the
one file that contains the overall design definition in some entity (device). To reiterate, we are
only going to have one file, containing the one top-level design entity. From the menu, select
File => New… to bring up the dialog below, and select VHDL File as was done here.

Quartus will only let you save it after you type something in it, so go ahead and add the library and use

statements that will be used for this file:

This will be your top-level design file for this project, so save it using the same name as your project so

that Quartus automatically uses it as the top-level design.

Step 6. Device ports

Add this entity and port statement to your VHDL. The entity name should match your file name, because

Quartus will be looking for a device with that name.

Step 7. Device architecture

We will implement a few simple logic expressions to ensure proper operation of the DE-10
Standard board. Because this program is quite simple, you probably do not need to declare any
internal signals. You can assign each output with a single line of VHDL. The architecture name is
up to you (here it has been named "behavior"), but it does need to be declared as an
architecture of your device, so use your device name from the entity statement for that part of
the architecture declaration.

Step 8.

Save the file and compile the project. With the file saved, compile the design by selecting Processing =>

Start Compilation, or by clicking on the corresponding icon (the triangle to the right of STOP) in the

menu bar shown below.

 Fix any compilation errors before moving on.

When Quartus reports a compilation error in a VHDL file, double-clicking the error should take

you to where it found the error. Note though that it takes you to where Quartus noticed the

error, not necessarily where the error occurred.

Please take a Screenshot of the Compilation report.

Step 9.

The final step in the design process is to add pin assignments to the design file. We chose input
names that correspond to elements of the development board -- the buttons, switches, and
LEDs. But Quartus is not designed to work with just our board, and it does not know where
those devices connect to pins on the FPGA. That information is in the manual for the board, and
the relevant information will be provided below.

Open the pin planner by selecting Assignments => Pin Planner (or find the icon in the toolbar),
which brings up the window below. Notice that the I/O pins are listed in the table at the bottom
of the Pin Planner.

Since the pins in your design must be assigned to pins on the FPGA, the Fitter stage of compilation made

arbitrary choices, displayed in the Fitter Location column of the Pin Planner (not shown below). These

are not correct, since Quartus has no knowledge of the development board and the usage of FPGA pins

relative to switches, LEDs, and pushbuttons that we wish to use.

http://terasic.com/

For each I/O pin in the list, double-click on the Location cell (not the Fitter Location cell) and enter the

pin numbers shown below. Note than you can omit “PIN_” as you are typing, if you like, since Quartus

will fill in the leading characters. Or you can select from a drop-down list, instead of typing. Again, you

would have to search the documentation for the board to know that, for example, the LED called LEDR0

is actually connected to pin AA24 on the FPGA chip.

With all of the pin assignments made, close the Pin Planner window. It is very important to note that

even though the correct pin numbers have been assigned, the project must be compiled again before

these pins will actually be used in any files that can be programmed onto the DE10-Standard board. In

this case, we will compile at least one more time after making a change in the next step.

Step 10.

The following changes to default project settings are critical to the correct and safe operation of
designs programmed to the DE10-Standard. We will remind you to change them in the first
couple labs, but you need to remember to change them whenever you create a new Quartus
project.

We have just told Quartus what to do with eight of the many pins that are connected to the
Cyclone V FPGA chip. But there are many other pins, and if we are not specific, Quartus may use
them for intermediate signals, or drive them deliberately high or deliberately low. This could
result in strange patterns on the LEDs or other outputs. It could even damage something on the
board that is not meant to be driven.

Fortunately, there is an option to define what to do with all of the pins that are not needed in
our design. From the main Quartus menu, select >Assignments => Device… to bring up the
Device settings window. It is the same dialog that we used earlier to define the target FPGA
device. Look for the Device and Pin Options... button and click it to bring up the window shown
below. Select the Unused Pins category on the left, and then as input tri-stated on the right..

Without getting too technical, this option forces all of the unused pins on the FPGA to be
passive inputs. In normal new design situations, this would not matter, since the board design
would typically be done after the FPGA is designed. However, the projects in these laboratory

exercises will target your DE10-Standard FPGA board, which has several other ICs and
connectors on it in addition to the FPGA. Many of these ICs connect directly to the FPGA I/O
pins. To avoid causing erroneous board operation or potential damage to the FPGA or other ICs,
it is important to change this setting every time a new project is created. Once complete, press
the OK button to close this window. Press the OK button on the settings window to complete
the options change.

In the same Device and Pin Options dialog, go to the Voltage tab, and change the Default I/O
Standard to "3.3-V LVTTL", as shown here:

The FPGA on the DE10-Standard can configure its pins to use different voltages, and the majority of

devices on the board require 3.3 V. Changing this default settings will save you from needing to

individually configure each pin (and from the design not working if you forget to change one).

Compile your project one more time (because you just changed some settings that need to be

incorporated into the programming file), either from the toolbar button (the triangle) or the Processing

menu. If you have any errors that you cannot figure out, use online resources to ask instructors or TA.

Step 11.

Normally in this course, we will simulate our design and possibly fix some errors. But for this
simple project, we will go straight to a hardware test.

For programming of the FPGA using JTAG, the above shown switch positions are required (MSEL
[4:0] set to “10010”). NOTE: These positions will change in later labs when we program the
HPS (Arm Processor). They will need to be set appropriately depending on if we are
programming the FPGA or HPS.

Connect your computer to your target development board. This should require only a USB cable
between the computer and the DE10-Standard board, using one of the cables supplied with the
board as shown below.

The term "Programming" is used by Quartus, and we will use it as well to minimize confusion.
But you should always think of this as "configuring" the FPGA to connect its logic, flip-flops, and
other hardware internally. There is no program "running" on the board -- it will be
implementing hardware.

Before configuring/programming the board with your design file, open the device setting
window by selecting Assignments => Device… from the menu. Verify that the correct FPGA
device is still selected. If the wrong device is shown, select the correct FPGA and press the OK
button. This could require you to go back and reassign pin numbers, but should not be
necessary if you completed earlier steps with the correct device assignment.

Open the programmer tool, by selecting Tools => Programmer from the menu or selecting the
icon from the toolbar.

NOTE: This next section is NOT the same as in ECE 2031.

You should see a window like the one below. When you open the Programmer while working on a

project that has been compiled, it should correctly select the file holding the logic (top windowpane, left

column) and the correct device (second column). It also shows a diagram of the expected connection to

the device, which for our case is not the correct connection.

We will program the board using the JTAG chain. This is in volatile memory and will not be stored after a

power off of the device.

The Hardware Setup refers to the programming hardware between your computer and the chip,

including the USB port, the cable, and some interface hardware on the board. If the Hardware Setup is

listed as No Hardware, which is normally the case for first-time use, click on the Hardware Setup…

button to display the window below.

Under the Currently selected hardware option, choose DE-SoC [USB-X] and close the window. If no

programming hardware is listed, make sure that the USB cable is in place, and possibly try the Add

Hardware button. If it still does not work, go back to the steps taken when Quartus was installed,

because those steps included an initial test of the USB Blaster setup. Close the Hardware Setup window

after it correctly shows the USB-Blaster as the currently selected hardware.

Select “Auto Detect” shown in the image above.

Select the detected device associated with the board as shown above.

Press “Yes” when you receive the above pop-up.

You should now see what is shown below:

Right click on the FPGA (the chip on the right) device and open the .sof file to be programmed by
navigating to Edit…Change File

If Change File is grayed out, make sure to left-click once on the FPGA (chip on the right), which
will cause a dashed border to appear around the chip image.

You should see a file IntroCircuit.sof located in the “output_files” folder. Select this file.

Select the checkbox for Program/Configure on the FPGA as shown below, and then press Start

to program the FPGA. Take a screenshot for your lab report showing the programmer has

successfully programmed the FPGA. (Essentially the below screenshot but with a success

instead of “Failed” which is shown now)

Verify that the LEDs operate as expected with usage of the push buttons and switches. Note

that the push-buttons generate a low logic level when pressed (active low).

Examining the compilation report

Step 1.

After compiling, the compilation report should automatically open in Quartus

If it does not, you can open it by Processing -> Compilation Report

Step 2.

With the Compilation Report open, navigate to the table of contents on the left, and open Analysis &

Synthesis -> Resource Usage Summary. Here you can see a basic summary of the resources utilized for

the project. We will require this summary for later lab portions.

ModelSim Tutorial and Functional Simulation of

SHA2 VHDL Code

When programming in any language, it is useful to debug, test, or simulate your code to verify
its functionality. When programming in VHDL, the convention is to have functional VHDL code
and a testbench which tests the code. In this section, you will simulate the provided testbench
(sha256_test.vhd) with the given VHDL code in ModelSim. This code is present in
lab1/sha256_vhdl.

To better understand the structure of the VHDL code, you are given the hierarchy of the
provided VHDL files below:

• sha256_test.vhd -- testbench (for simulation only)
o gv_sha256.vhd -- top level

▪ sha256_control.vhd
▪ sha256_padding.vhd
▪ sha256_msg_sch.vhd
▪ sha256_hash_core.vhd
▪ sha256_regs.vhd

▪ sha256_Kt_rom.vhd
▪ sha256_Ki_rom.vhd

To simulate the code, proceed as follows:

• Run ModelSim. Once ModelSim is open, create a new project by clicking on: File --> New
--> Project...

• Verify that the project location is set to lab1/sha256_vhdl and give the project a name,
say "sha256", and click OK.

• After creating the project, we have to add all the VHDL files to it. Do so by clicking on:
Add Existing File --> Browse...

• Choose all the VHDL files in the directory. Click Open --> OK.

• Once you are done adding ALL the VHDL files, click Close.

• Now we have to compile the design files. To do so click on: Compile --> Compile All.
Check the transcript window to make sure all files were successfully compiled.

• The first time you compile, you may get errors. That is because ModelSim has
not figured out the hierarchy of the VHDL files and incorrectly attempts to
compile the top-level file first.

• To fix this, just Compile -> Compile All again.

• Before we start the simulation process, let us take a quick look at the testbench file
which is responsible for running the simulation. Open the testbench file by double-
clicking on "sha256_test.vhd" in the Project window.

• The documentation present at the beginning of the file describes the
functionality of this specific implementation of the SHA256. It helps in
understanding how the input control signals need to be exercised and how the
VHDL module can be tested.

• Read through the documentation (comments) to have a better understanding of
the operation of the SHA256 module.

• Notice that a testbench usually contains the following main sections:

• An empty testbench entity with no port declarations.

• A testbench architecture that contains the following:

• Signal declarations (to be used to connect the unit under test
(UUT) to the testbench logic)

• Component declaration section (usually for the UUT)

• Component instantiations (usually for the UUT)

• A clocking process (to create the simulation clock)

• A testing process (to create the input stimuli and check for
expected behavior)

• In this lab, our unit under test (UUT) is the SHA256 top level entity. So in the
testbench, you will see that this component is instantiated and connected the
input stimuli. In addition, you will see that the output ports are checked for
expected behavior using the assert and report statements.

• Describe the logic behind the provided testbench as you understand it in your
written report.

• Now we can start the simulation by clicking on: Simulate --> Start Simulation...
In the Start Simulation window, make sure you are on the design tab, expand the work
library, choose the testbench for this code named: "testbench", and click OK.

• ModelSim will change view into simulation mode and a couple of other windows show
up.

• Our next step is to add some signals of interest to a wave window to monitor their
changes as simulation proceeds. Before doing so, let us create a dump file that will be
storing the results of our simulation as we perform it. To do so, type the following in the
command line of the "Transcript" window:
vcd file sim_results.vcd

vcd add testbench/*

vcd add testbench/Inst_sha_256_dut/*

• Now let us add our signals of interest to the wave window to monitor their changes as
simulation proceeds. To do so, go to the "sim" window and click on the instance named
"testbench" to add the testbench signals. Next, open the "Objects" window and choose
all the signals (inputs, outputs, and internal). Right-click on the selection and click on
Add Wave. Check that the signals have been successfully added to the "Wave" window.

• Our final step is to run the simulation for a specific time. For this testbench, running the
simulation for 17200 ns should be enough. To do so, type run 17200 ns in the command
line of the "Transcript" window.

• Navigating back to the "Wave" window will now show you the result of the simulation
for all the signals that we added. To better read the values, select all the signals and
right-click, then change the Radix to Hexadecimal. Also, towards, the bottom left of the
signals pane (to the left of where it says "Now"), there is a blue button that has a
description of "Toggle leaf names <-> full names" if you hover the mouse over it. Click
on that button to show the signal names only without the hierarchy.

• Look through the wave window and try to understand how the signals are changing
values with respect to the simulation time. Specifically, look for the output signals that
show the resultant hash value. Notice that the hash value is only considered valid when
the signal "dut_do_valid" is asserted.

• Now that we have run the simulation, make sure that you set the zoom of the wave
window to show the results at least between 0 ns and 1500 ns. To do so, right-click
anywhere in the wave window and use the Zoom Range option. Export an image of your
simulated waveform by clicking on File --> Export --> Image... and save it as an image.
Include this image in your submission.

• In your report, briefly explain each of the test cases in the testbench indicating
whether the test case passed or failed. For cases that fail, if any, mention why you
think that happened. (HINT: read the comments in the testbench carefully).

• Before ending the simulation, open the transcript window and verify that the no reports
are generated by the testbench indicating a failure of any of the test cases.

• Finally, to end the simulation and correctly save the results in the VCD file, click on:
Simulation --> End Simulation. Submit the generated VCD dump file electronically.

• We are done with VHDL simulation. You can close the ModelSim window.

To verify whether the generated results of our inputs are correct, we will run the data of the
first 4 test cases on a software implementation of SHA256. For this lab, we will use either the
Linux "sha256sum" command or the Windows “Get-FileHash” command. Documentation on
the two commands can be found in the following links:

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/get-
filehash?view=powershell-5.1

https://docs.oracle.com/cd/E36784_01/html/E36870/sha256sum-1.html

Generate the hashes of the first 4 test cases using either command by placing each test case in
a file and running the command on that file. For each test case, compare the software
generated hash value with the generated value in your VHDL simulation. In your written
report, mention whether each of the test cases had the correct hash and provide the correct
hash value for the cases that did not, if any.

HINT: When passing your input to the "sha256sum" command or the “Get-FileHash” command,
make sure the input does not contain any new line or end-of-file characters since that would
generate a completely different and incorrect hash.

SHA2 VHDL Synthesis
1. In Quartus, start a new project. Name the project “SHA2”, with the top-level entity as “gv_sha256” as

shown below.

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/get-filehash?view=powershell-5.1
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/get-filehash?view=powershell-5.1
https://docs.oracle.com/cd/E36784_01/html/E36870/sha256sum-1.html

2. Then, select Next to advance to a window which asks you to choose between an "Empty project" or a

"Project template." Choose the "Empty project" and select Next to advance.

3. On the below screen, press the button circled in blue, and the provided SHA2 VHDL files in the

sha256_vhdl directory – except do not add the test bench “sha256_test.vhd” – to the project and select

Next to advance.

4. As before, select the appropriate FPGA device and select Next.

5. As before, select ModelSim-Altera and VHDL and then Finish after verifying the project options are

correct.

6. Compile the project. Take a screenshot of the Resource Utilization Summary.

7. Report any red errors generated through the compilation process. Explain in your own words the

reason(s) for the errors. Additionally, include a possible solution to the errors that will work for the

Cyclone V SoC. You do not need to actually implement your solution in this lab.

In this lab we will not be loading the SHA-256 VHDL onto the Cyclone V SoC. In a future lab we will

explore implementing the VHDL on the FPGA with an interface through the SoC’s processor.

PreLab1 Report

Please type all your answers and include a cover sheet with your first and last name, GT ID
number, and GT username.

Simulation:

1. Brief description of the test bench and its major components.
2. The exported waveform image of the simulated design.
3. Brief explanation of each of the test cases and whether they passed or failed (reason for

failure, if any).
4. The dump file sim_results.vcd of the simulated design.
5. Comparison with software hash values.

Synthesis and Implementation:

1. Utilization results for all design components.
2. Compilation Report
3. Error generated during implementation and reason behind it.
4. Your ideas for a possible solution.

Canvas Submission of PreLab1 Files

1. Place all files into a single folder and submit your work on Canvas.

LAB 1

In this lab, you will first embed the VHDL implementation of the widely used Secure Hash
Algorithm SHA2 into a top-level design. You will be given a VHDL code that implements the
algorithm. You will then add a new VHDL module to your top-level design. Finally, you will
create a test bench to set up and simulate your new design. Bare-bones design files are
provided to you. The files are missing hardware logic that implements the needed components
of this lab.

After achieving correct functionality by testing your design in ModelSim, you will synthesize and
implement a file to implement your design on the DE-10 Standard board using Quartus. When
synthesizing and implementing the new design, you will verify that some parts of the process
that failed and generated errors in Prelab got resolved. In this lab, you will be asked to report
how you think these errors are now resolved.

Please type your answers to the questions in this lab into a lab report.

This lab will not reiterate the steps explained in Prelab. If you need a reminder of the
functionality of Quartus, please refer to PreLab.

I. VHDL/ DE-10 Help

There is plenty of documentation available on how to write good VHDL. Some good simple
examples can be found here. Some good YouTube videos introducing VHDL basics can be
found here.

Documentation and resources for the DE-10 Standard board can be found at:

https://rocketboards.org/foswiki/Documentation/DE10Standard

II. VHDL Code Modification and ModelSim
Simulation

In this section, you will first modify the given VHDL code to implement the needed logic. You
will then create a testbench based on the Prelab testbench file and simulate your new VHDL
code in ModelSim.

https://nandland.com/learn-vhdl/
https://www.youtube.com/playlist?list=PLinyJoOpZA5jnorJmhPfBfov-rG9gxqUe
https://rocketboards.org/foswiki/Documentation/DE10Standard

To better understand the structure of the VHDL code, you are given the hierarchy of the
provided VHDL files below:

• hash_checker_test.vhd -- testbench (for simulation only). You will modify the
Prelab version of this file

o hash_checker.vhd -- The new top level design file
▪ result_comp.vhd -- The hash comparator result component

instantiated in the top level
▪ gv_sha256.vhd -- SHA256 component instantiated in the top level

▪ sha256_control.vhd
▪ sha256_padding.vhd
▪ sha256_msg_sch.vhd
▪ sha256_hash_core.vhd
▪ sha256_regs.vhd
▪ sha256_Kt_rom.vhd
▪ sha256_Ki_rom.vhd

HINT: If you need more details about the GV_SHA256 design, you can find the VHDL project
on OpenCores at the following link.

In this section, you will modify 3 of the VHDL files shown in the file design hierarchy above,
namely: result_comp.vhd, hash_checker.vhd and hash_checker_test.vhd. All 3 design files
are provided in the lab files. The entity sections in all 3 files have been written for you.
Please do not modify these sections in the VHDL code. You will be responsible for modifying
and adding to the architecture sections of these files.

Recall from Prelab that the major problem that we faced when implementing the SHA256
module was an excessive number of I/O pins. To circumvent this problem, we will embed
the SHA256 module (gv_sha256) along with a new comparator module (result_comp) inside
a new top-level file (hash_checker). The picture diagram below helps explain our new
design.

https://opencores.org/project/sha256_hash_core

Looking at the new design, you can realize that the number of I/O pins used in the top level has
significantly decreased. Remember that the signals routed into the result_comp module are the
256-bit signals holding the generated hash value.

III.A. Implementing the Comparison Logic

We will first start by modifying the newly generated module (result_comp). Open
result_comp.vhd and carefully read the comments in the file. The comments will guide you
through as you write up your VHDL code. Please make sure to keep the entity section intact.
Your modifications in this file should be limited to the architecture section. Do not forget to
COMMENT your code. In your written report, summarize the modifications/additions you
have done to this file, including any VHDL statements you used.

Your implemented logic in this file should implement the following behavior. Your code should
read in the hash value coming as an input to this module and it should compare the value to a
certain set of values (the values are present in the comments in the file). If the input hash value
matches any of the valid hashes, you should assert an output signal (set its value to a logic '1'),
otherwise the output signal should be de-asserted.

III.B. Implementing the Top-Level Logic

Second, we will modify the top-level file (hash_checker.vhd). The comments in the VHDL file
will guide you through the needed modifications and additions. Please make sure you do not
modify the entity section of this file too. The modifications in this file should be limited to the
architecture section. Specifically, you should be instantiating the two modules that will be

needed in this design and connecting their input and output pins. Do not forget to COMMENT
your code. In your written report, summarize the modifications/additions that you have done
to this file including any VHDL statements that you used.

III.C. Modifying the Testbench

Finally, you will modify the Prelab test bench to match the new top-level design. Open the
testbench file hash_checker_test.vhd. Notice that the logic inside this test bench has not been
changed from the one used in prelab. Your job is to modify it as needed for this lab. Feel free to
change any line in this file. Remember the major change in terms of running the simulation
using the new testbench is that in this lab, we are no longer checking the generated hash value
against an expected value in the testbench. All we are interested in is to check whether the
comparison result generated by the result_comp module is indicating a valid hash or not.
Specifically, your testbench should include an assert statement checking the expected behavior
of the comparison result signal (expected_behavior_o). Do not forget to COMMENT your code.
In your written report, summarize the modifications/additions that you have done to this file
including any VHDL statements that you used.

III.D. Simulating and Verifying Your New VHDL Design

To simulate your new code, follow the same procedure that we used in prelab.

• Start ModelSim, create a project and add your design and testbench files to the project.

• Compile the design files and check for any errors. If you have any syntax errors, go back
to the VHDL modification stage of this lab, and fix the errors.

• Next, start the simulation using your modified testbench file.

• Add the testbench signals and the top-level signals of the design to the wave window
and to a VCD dump file.

• Run the simulation and examine the results in the transcript and wave windows. Make
sure your new design is behaving as expected.

Remember, you should only be looking at the output signals when the signal

"dut_do_valid" is asserted.

• Now that you have run the simulation, export your results in the form of two waveform
images. Make sure the first wave window shows the results between 0 ns and 1500 ns.
Remember to use the Zoom Range option and the Export Image tool that we used in
prelab. For the second wave window, show the results between 1500 ns and 3000
ns. Include both images in your submission.

• Finally, end the simulation and correctly save the results in the VCD file by clicking on:
Simulation --> End Simulation. Submit the generated VCD dump file electronically.

• We are done with VHDL simulation. You can close the ModelSim window.

III. VHDL Code Modification for the DE-10
Board

Now that you are done with simulation, we will synthesize and implement the hash_checker file
to work on the DE-10 Board using Quartus. This will require the new file hierarchy as seen
below:

• DE_10_hash_checker.vhd -- The new top level design file. You will now modify
this file

o hash_checker.vhd
▪ result_comp.vhd -- The hash comparator result component
▪ gv_sha256.vhd -- SHA256 component instantiated in the top level

▪ sha256_control.vhd
▪ sha256_padding.vhd
▪ sha256_msg_sch.vhd
▪ sha256_hash_core.vhd
▪ sha256_regs.vhd
▪ sha256_Kt_rom.vhd
▪ sha256_Ki_rom.vhd

The DE_10_hash_checker.vhd file is found in the “DE_10 Testbench” folder of the provided lab
files. You will now modify this file.

Previously we utilized a test bench (essentially software) to test the implementation of the SHA-
256 function. Now we want the design to function as a standalone unit in hardware on the DE-
10 Board. To this aim the DE_10_hash_checker.vhd file consists of a simple state machine to
coordinate the loading of four predefined input words. The file additionally will route status
signals to LEDs on the DE-10 board and take switch positions as input to decide which of the
four predefined input words will be utilized for the hash generation.

The provided DE_10_hash_checker.vhd file has a basic framework, but you are not required to
utilize the code already provided if you do not want to. If you desire, you can separate the state
machine into a separate entity. If you do not have experience with creating state machines, I
highly recommend you just use the provided framework.

Information on making a state machine in VHDL can be found here:

VHDL Templates for State Machines (intel.com)

How to create a Finite-State Machine in VHDL - VHDLwhiz

https://www.intel.com/content/www/us/en/support/programmable/support-resources/design-examples/horizontal/vhd-state-machine.html
https://vhdlwhiz.com/finite-state-machine/

Advice on how to approach the state machine generation is to examine the
hash_checker_test.vhd file (or the testbench from prelab). The first test vector (~lines 142 to
163) approximates the expected appearance of the required states.

All the inputs are at ‘0’ initially. On the next clock cycle (I.e., after the “wait until” line), four
different signals are written. Then on the next clock cycle, two inputs are written. There is then
a branch and the test_bench loops until it receives a specific input. All this can be directly
translated into a state machine.

Common Errors and Issues (assuming you use the two-process state machine template
provided in DE10_Hash_Checker.vhd):

- You must incorporate a final hold state in the state machine (in other words, the final
state where the behavior of the LED, on/off, should be held, do not go back to the initial
state)

- When conditioning on hash_selector_switch to determine the value of di_i, also assign
the correct value to bytes_i, since each of the 4 messages has a different value for
bytes_i

- Sometimes, Quartus incorrectly categorizes signals as clocks. In the past, we have seen
Quartus classify the reset signal and the state variables (s0,…s3) as clocks. To address
this, use the assignment editor to assign the “not a clock” option to the pins
corresponding to those variables that were incorrectly categorized as clocks. Also, in the

future steps, the Timing Analyzer is used to generate a .sdc file for the clock. Make sure
that this .sdc file does not contain references to non-clock signals.

- When debugging your state machine on the DE10 board, it may help to use a very slow
clock that allows for real-world debugging of each state (a clock period of 1-2s).
Instructions on how to change the clock period are in the subsequent portions of this
assignment.

- When debugging individual states, it may help to illuminate various LEDs on the board
corresponding to each state. This way, you will know exactly what state the state
machine is in. LED pin assignments:

- It may help to include di_req_o in the sensitivity list of the second process. In other

words, the declaration for the process should look like process (state, di_req_o).

Your final file will utilize the following IO pins on the DE-10 board.

• Clock signal

• Two switches to choose from four different hash inputs (Switches in positions 00, 01, 10,
11)

• One push button to start a new hash function

• One push button as a general reset

• One LED to indicate the hash is valid

You should utilize the following pins in the pin planner:

• Clk: PIN_AF14

• Switches: PIN_AB30 and PIN_Y27. These are SW0 and SW1, the two rightmost switches
when viewing the board with the switches on the bottom.

• Push Buttons: PIN_AJ4 and PIN_AA15. These are KEY0 and KEY3, the rightmost and
leftmost button respectively when viewing the board with the buttons on the bottom.
Be aware that the buttons are ACTIVE LOW.

• LED: PIN_AA24. This is the rightmost LED, immediately above the switches when viewing
the board with the switches on the bottom.

To summarize, the desired functionality of the file is as follows:

• When you press the start button, one of four hashes are calculated, based on the
positions of two switches. If the calculated hash is valid in accordance with the hash
checker, one LED turns on, otherwise the LED turns off. The LED should stay in that
status until you start a new hash calculation.

IV. Obtaining Timing Results

With your design completed obtain timing results as follows:

Create a project in Quartus as in prelab, with the DE-10_hash_check file as the top-level file.

• Make sure you choose the correct FPGA as your target device.

• Next compile design with the default options and wait for the task to be completed.

• Now open Tools -> Timing Analyzer. You will see the below screen

• Double click “Create Timing Netlist” on the left under the task bar. It should turn green.

• Run Constraints -> Write SDC File. Press “OK” on the opened dialogue box.

• You should now see the following in the Tasks window

• Now run Constraints -> Create Clock. In the pop-up window, put “clk_i” for the Clock

Name and hit the “…” next to “Targets”. On the new pop up window click “list” and
move “clk_i” to the right as in the example shown below. Hit OK.

• Now hit run in the below window

• Double click “Update Timing Netlist” in the Tasks window of the Timing Analyzer.

• Back in the main Quartus screen, click the arrow next to Timing Analysis in the Tasks
window and open “Edit Settings”. In the Settings window, click the “…” and add the
.out.sdc file you just created to the project.

• Now re-run the full Compilation task in Quartus. After the compilation is complete look
for the Timing Analysis results. The results can be seen in the “Timing Analyzer” section
of the Compilation Report

• Next, find the best clock period at which your new design runs by changing your clock
constraint. Report the new timing values shown in the “Clocks” tab inside “Timing

Analyzer” in the Compilation Report.

o In the above example, you can see that the four Models (Slow 85C, Slow 0C, Fast

85C, Fast 0C) are in the red. This is due to failing to meet timing requirements.
They will be in black when the timing constraints are met.

o Adjust the clock frequency and rerun the Timing Analysis to try to find the
maximum clock frequency. The clock frequency for the Timing Analysis can be
adjusted by editing the SDC file created by the Timing Analyzer. This file is
located in your project folder with an .out.sdc extension. In the file you will see
the following line.

o The 1.000 after period is the time period in ns. The numbers in the brackets
define when the clock changes from ‘1’ to ‘0’ and ‘0’ to ‘1’. To change this value
to something else, such as 5.000, the new line will be

▪ “...... -period 5.000 -waveform { 0.000 2.5000 } ….”
o Save the file. You can now rerun just the “Timing Analysis” task without needing

to redo full compilation.
o Report the fastest clock achieved and take a screenshot showing the contents of

the Messages tab of the “Timing Analyzer” under the compilation report.

Lab Report

Please type all your answers and include a cover sheet with your first and last name, GT ID
number, and GT username.

Code Modification and Simulation Section:

1. All design and simulation files including commented and modified code (VHDL files).
2. Code modifications and/or additions summary of all 4 design files.
3. The two exported waveform images of the simulated design.
4. The VCD dump file of the simulated design.

Synthesis and Implementation:

1. Fastest clock frequency achieved.
2. “Messages” output from the Timing Analyzer
3. Resource Usage Summary for the project with DE-10_hash_checker.vhd as the top level.

Canvas Submission of Lab 1 Files

1. Place all files into a single folder and submit your work on Canvas.

