Power Analysis Part VI: 2nd Order DPA

Cryptographic Hardware for Conclusion: Embedded Systems

Marking Can be ECE 3170

Fall 2025

Fall 2025

Assoc. Prof. Vincent John Mooney III

Georgia Institute of Technology

Reading

• This lecture is based on Chapter 10 of Power Analysis Attacks: Revealing the Secrets of Smart Cards by Mangard et al., 2007, ISBN-13: 978-0-387-30857-9, ISBN-10: 0-387-30857-1, e-ISBN-10: 0-387-38162-7.

Masking and First-Order DPA

- Note that some types of masking are not 100% resistant to first-order differential power analysis (1st-order DPA)
- Consider multiplicative masking: $v_m = v * m$
- So-called Zero-Value (ZV) power models separate when v = 0 from when v is nonzero
- ZV 1st-order DPA attacks may succeed because the power trace for v = 0 has no dependence on the mask value

Case: N = 0, M = 1 $N = (0 \oplus 1) \times 1 = 1 \times 1 = 1$ Masking and First-Order DPA (cont'd)

- Consider a combination of Boolean masking with multiplicative masking using the same mask
- For example, consider $(v \oplus m) * m$
 - If m = 0, then $v_m = (v \oplus m) * m = 0$
- Furthermore, v = 1, then $v_m = (v \oplus m) * m = 0$ in two cases: m = 0 \Rightarrow $v_m = (v \oplus m) * m = 0$ in two cases:

 - m=1 $\Rightarrow \forall m=(|\oplus)||X|=0||$
- ZV 1st-order DPA attacks may succeed here as well

Second-order Differential Power Analysis

- Preprocess the data
- In 2nd order DPA, the data is combined in a particular way prior to looking for differences among groups of power traces
 - Assumption is that there are two (or more) intermediate data samples whose corresponding power traces, taken individually, have no known relationship to known data values (e.g., the plaintext input is a known data value)
 - However, a combination of the two or more intermediate data samples does have a known relationship
- Recall that in 1st order DPA, raw power trace values are used directly

Consider the Following Masking Type

Boolean

- Intermediate values v and u are concealed (at different points in time and at different parts of the cryptographic algorithm) by XOR with the identical mask m
- $v_m = v \oplus m$
- $u_m = u \oplus m$
- Why the same mask?
 - In order to avoid the necessity of the equivalent of a one-time pad, there is some amount of mask reuse in practical implementations

Possible Preprocessing Step

- $w = comb(u_m, v_m) = \underbrace{u_m \oplus v_m} \bigvee \bigoplus \bigvee$
- Therefore $w = comb(u_m, v_m) = u_m \oplus v_m = u \oplus v = comb(u, v) !!$
 - Note that we know the result of $w = u_m \oplus v_m = u \oplus v$ independent of the mask, i.e., without knowing the specific value of m !!!

Preprocessed Traces

- Typically, not certain exactly when u_m and v_m occur
 - E.g., due to shuffling
- However, there is a reasonable interval over which can compare
- E.g., let the interval be $I = t_{r+1}, ..., t_{r+\ell}$ which likely contains u_m and v_m
- Preprocessing compares points t_x, t_y with $x \neq y$
- $(pre(t_{r+1}, t_{r+2}), pre(t_{r+1}, t_{r+3}), ..., pre(t_{r+1}, t_{r+\ell}), pre(t_{r+2}, t_{r+3}), ..., pre(t_{r+\ell-1}, t_{r+\ell}))$
- Size of $pre(t_{r+1}, t_{r+2})$, $pre(t_{r+1}, t_{r+3})$,..., $pre(t_{r+1}, t_{r+\ell})$ is ℓ -1
- Size of $pre(t_{r+2}, t_{r+3})$, $pre(t_{r+2}, t_{r+4})$,..., $pre(t_{r+2}, t_{r+\ell})$ is ℓ -2
- ...
- Total length is $(\ell-1) + (\ell-2) + ... + 2 + 1 = \ell(\ell-1)/2 = (\ell^2 \ell)/2$

2nd (and Higher!) Order DPA Attacks

- 1. Choose an intermediate part of the algorithm to attack
 - a. For example, function f(d,k) where d is a data input and k is a small part of the secret key stored in the device under attack
 - b. Typically *d* is either plaintext or ciphertext
- 2. Make a large number of power measurements
 - a. Keep track of the known data values d_i as recording the measurements
 - b. For each d_i there exists a power trace of size $T: t'_i = (t_{i,1}, ..., t_{i,T})$
 - c. Preprocess the power traces; for 2^{nd} order, a window of size ℓ adds $\ell^2/2$ preprocessing calculations
- 3. Calculate hypothetical intermediate values
 - a. For each k, the K possible choices are $\mathbf{k} = (k_1, ..., k_K)$
 - b. The possible choices are used in conjunction with f(d,k)
- 4. Map hypothetical intermediate values to resulting predicted power values
 - a. \setminus For 2nd order, duplicate the $\sim \ell^2$ preprocessing calculations
- 5. Compare predicted power values with the actual trace values
 - a. Statistical tests involve differences, whether difference of means, covariance, or other

Recall Slide 9 of Lecture 23 Power Analysis Part I:

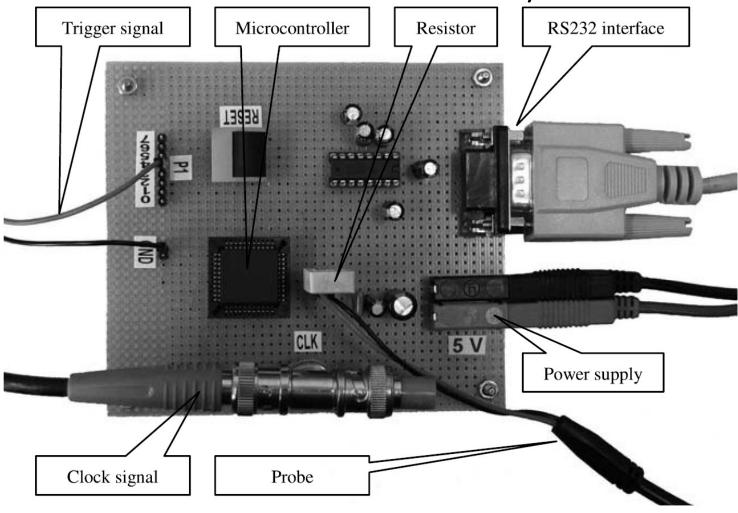
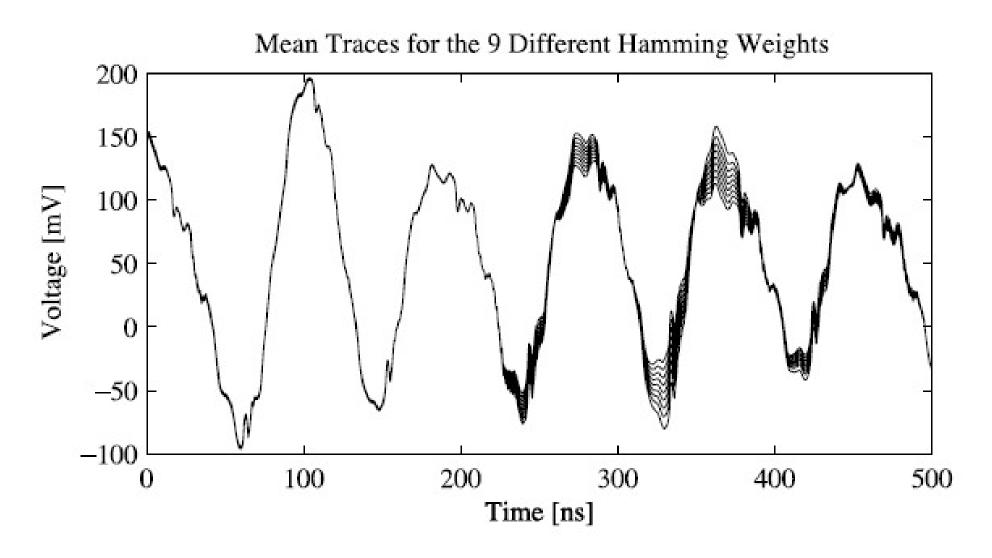



Figure 3.9. Picture of the measurement setup for the attacks on the 8-bit microcontroller.

Recall Slide 38 of Lecture 23 Power Analysis Part I:

Recall Slide 4 of Lecture 24 Power Analysis Part II:

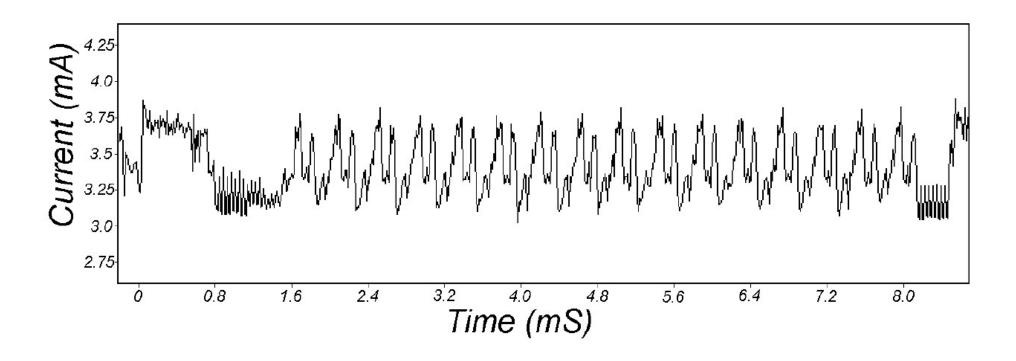


Figure A.1. SPA trace showing an entire DES operation

Recall Slide 6 of Lecture 24 Power Analysis Part II:

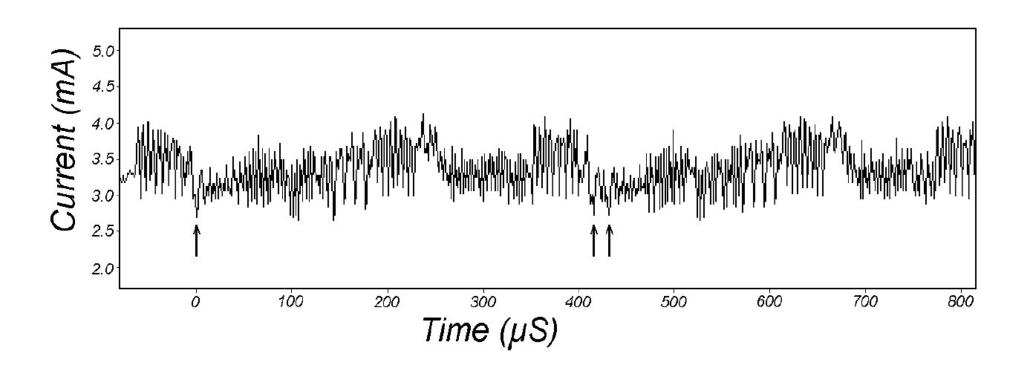


Figure A.2. SPA trace showing DES rounds 2 and 3.

Recall Slide 8 of Lecture 24 Power Analysis Part II:

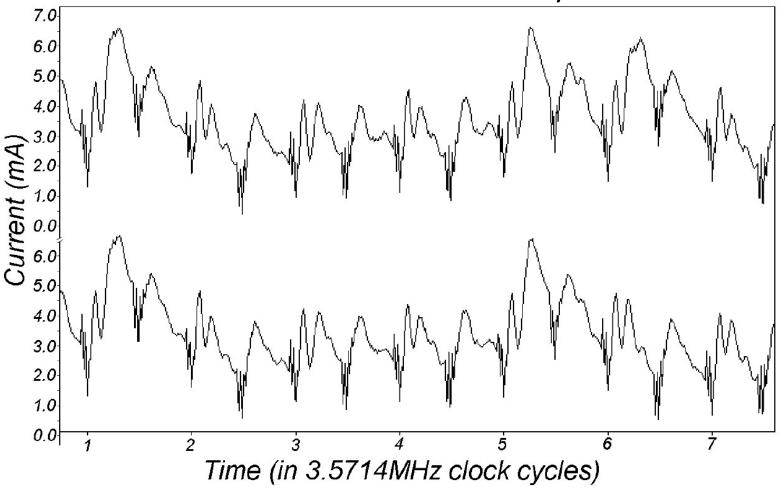


Figure A.3. SPA trace showing individual clock cycles.

Recall Slide 6 of Lecture 28 Power Analysis Part IV:

Steps in Differential Power Analysis

- 1. Choose an intermediate part of the algorithm to attack
 - a. For example, function f(d,k) where d is a data input and k is a small part of the secret key stored in the device under attack
 - b. Typically *d* is either plaintext or ciphertext
- 2. Make a large number of power measurements
- 3. Calculate hypothetical intermediate values
- Map hypothetical intermediate values to resulting predicted power values
- 5. Compare predicted power values with the actual trace values

Recall Slide 7 of Lecture 28 Power Analysis Part IV:

Difference of Mean Power

- Consider MSB v of $S(p \oplus k)$
 - v=1 vs. v=0
- Calc. difference of 1000 traces:
 ½ with v=1, ½ with v=0
- Note key byte k has 256 guesses
- Peaks indicate correct guess!

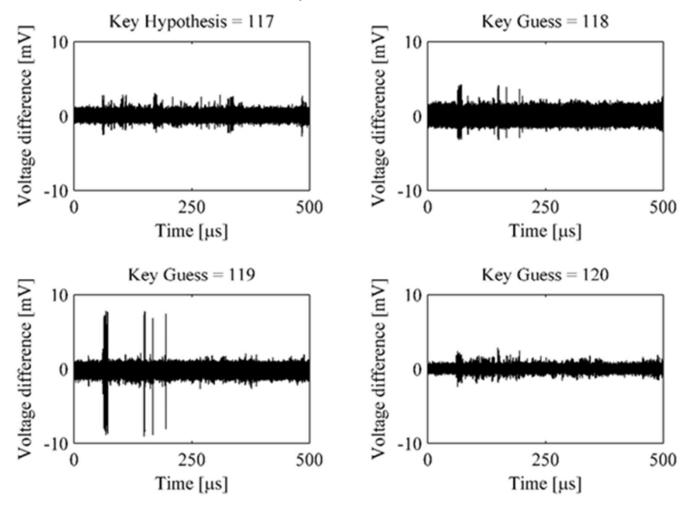
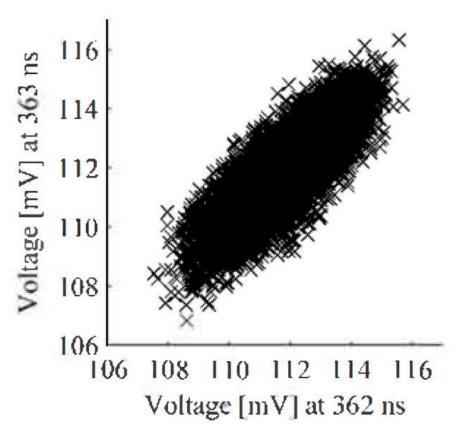


Figure 1.5. Difference plots for the key guesses 117, 118, 119, and 120.

Recall Slide 7 of Lecture 23 Statistics I:

Correlation and Covariance


- Two points are correlated if they vary together in a related way
- Statistical measure: covariance
- Cov(X,Y) = E[(X-E(X))*(Y-E(Y))] = E(XY) E(X)E(Y)
- Theoretical and empirical formulas:

•
$$\rho(X,Y) = \frac{Cov(X,Y)}{\sqrt{Var(X)*Var(Y)}}$$

•
$$r = \frac{\sum_{i=1}^{n} (x_i - \overline{x_i}) * (y_i - \overline{y_i})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x_i})^2 * \sum_{i=1}^{n} (y_i - \overline{y_i})^2}}$$

• As defined, the correlation coefficient ρ varies between -1 and 1, i.e., $-1 \le \rho \le 1$ and also thus $-1 \le r \le 1$

Recall Slide 50 of Lecture 21 Power Analysis Part I:

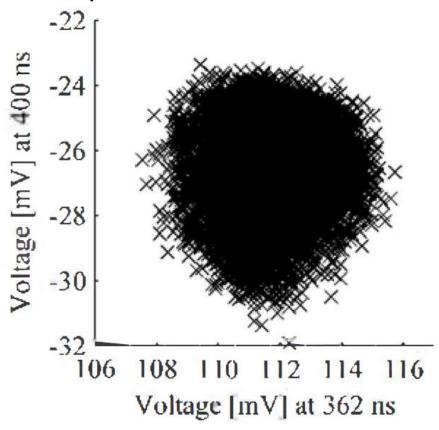


Figure 4.9. Scatter Plot: The power consumption at 362 ns is correlated to the power consumption at 363 ns. r = 0.82

Figure 4.10. Scatter Plot: The power consumption at 362 ns is largely uncorrelated to the power consumption at 400 ns. r = 0.12

Recall Slide 4 of Lecture 29 Power Analysis Part V: Steps in Differential Power Analysis

- 1. Choose an intermediate part of the algorithm to attack
 - a. For example, function f(d,k) where d is a data input and k is a small part of the secret key stored in the device under attack
 - b. Typically *d* is either plaintext or ciphertext
- 2. Make a large number of power measurements
 - a. Keep track of the known data values d_i as recording the measurements
 - b. For each d_i there exists a power trace of size $T: t'_i = (t_{i,1}, ..., t_{i,T})$
- 3. Calculate hypothetical intermediate values
 - a. For each k, the K possible choices are $\mathbf{k} = (k_1, ..., k_K)$
 - b. The possible choices are used in conjunction with f(d,k)
- 4. Map hypothetical intermediate values to resulting predicted power values
- 5. Compare predicted power values with the actual trace values

Recall Slide 6 of Lecture 29 Power Analysis Part V: Microcontroller Example

- AES software SBOX calculation
 - s = S(p XOR k) where p is the plaintext and k is the subkey (each of size 8 bits)
- Calculate 1000 power traces
 - Each power trace corresponds to a specific plaintext input
 - Hence, there are 1000 power measurements taken for each value of the 128 bit plaintext
 - Note that the overall plaintext input size is 128 for AES, hence there are 2¹²⁸ possible values of the overall plaintext
 - E.g., for a timeframe of 100 μ s, there is a measurement for every 100 ns (10 MHz sample rate of the power measurement device, e.g., an oscilloscope)
 - A total of 1,000,000 measurements are stored in this example, e.g., from an oscilloscope based power measurement setup
 - If each measurement requires 32 bits (a word), then the filesize is 4 MB (Megabytes)

Recall Slide 17 of Lecture 28 Power Analysis Part V:

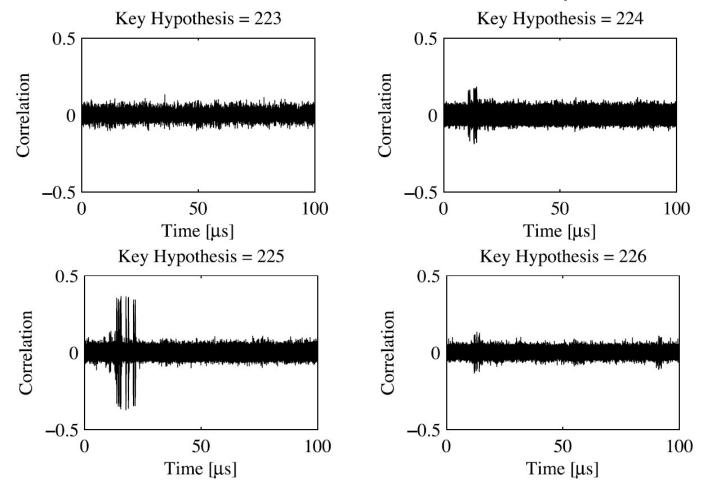


Figure 6.2. The rows of the matrix \mathbf{R} that correspond to the key hypotheses 223, 224, 225, and 226.

Now Back to 2nd Order DPA...

2nd (and Higher!) Order DPA Attacks

- 1. Choose an intermediate part of the algorithm to attack
 - a. For example, function f(d,k) where d is a data input and k is a small part of the secret key stored in the device under attack
 - b. Typically *d* is either plaintext or ciphertext
- 2. Make a large number of power measurements
 - a. Keep track of the known data values d_i as recording the measurements
 - b. For each d_i there exists a power trace of size $T: t'_i = (t_{i,1}, ..., t_{i,T})$
 - c. Preprocess the power traces; for 2^{nd} order, a window of size ℓ adds $\sim \ell^2$ preprocessing calculations
- 3. Calculate hypothetical intermediate values
 - a. For each k, the K possible choices are $\mathbf{k} = (k_1, ..., k_K)$
 - b. The possible choices are used in conjunction with f(d,k)
- 4. Mab hypothetical intermediate values to resulting predicted power values
 - a. For 2^{nd} order, duplicate the $\sim \ell^2$ preprocessing calculations
- 5. Compare predicted power values with the actual trace values
 - a. Statistical tests involve differences, whether difference of means, covariance, or other

Figure 10.1. Result of a second-order DPA attack on a masked AES implementation in software.

Figure 10.2. Evolution of the correlation coefficient over an increasing number of traces.