Masking Countermeasures in Cryptographic Hardware: Part II

Cryptographic Hardware for Embedded Systems ECE 3170

Fall 2025

Assoc. Prof. Vincent John Mooney III
Georgia Institute of Technology

Reading

- This lecture is based on three sources:
- Chapter 9 of Power Analysis Attacks: Revealing the Secrets of Smart Cards by Mangard et al., 2007, ISBN-13: 978-0-387-30857-9, ISBN-10: 0-387-30857-1, e-ISBN-10: 0-387-38162-7.
- T. Popp and S. Mangard, "Masked Dual-Rail Pre-charge Logic: Differential Power Analysis Resistance Without Routing Constraints," Cryptographic Hardware for Embedded Systems (CHES) conference, 2005.
- Chapter 2 of Handbook of Applied Cryptography by Menezes et al., 1996, ISBN: 978-1-119-09672-6.

Motivation

- Prior approaches (such as WDDL) attempt to consume a constant amount of energy regardless of logic transition
 - Basis: same number of wires transition from one logic value (0 or 1) to the opposite
- A major problem with prior work is that semi-custom chip design tools place and route standard cell logic gates without guaranteeing that all wires have equivalent capacitive loads
 - Furthermore, there does not appear to be any straightforward manner to do so

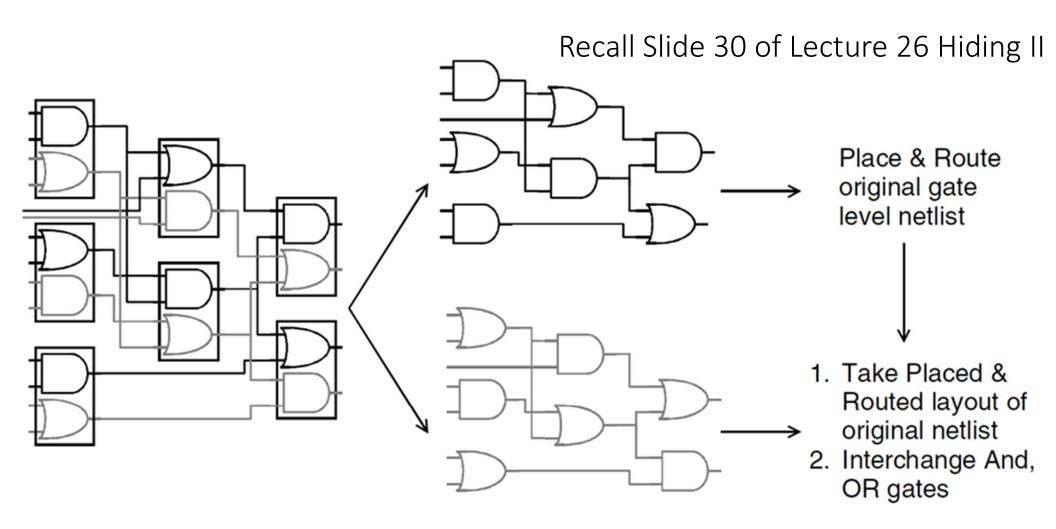


Fig. 5. Derivation of Divided WDDL

Masked Dual-rail Precharge Logic (MDPL)

Table 1. Transitions of the value d of a node in a CMOS

d_{t-1}	d_t	Energy	Probability
0	0	E_{00}	p_{00}
0	1	E_{01}	p_{01}
1	0	E_{10}	p_{10}
1	1	E_{11}	p_{11}

Expected Value of the Difference of the Means

$$\mathcal{E}(DM_{d_t}) = \mathcal{E}(M_{d_t=1}) - \mathcal{E}(M_{d_t=0}) = \frac{p_{11}E_{11} + p_{01}E_{01}}{p_{11} + p_{01}} - \frac{p_{00}E_{00} + p_{10}E_{10}}{p_{00} + p_{10}}$$

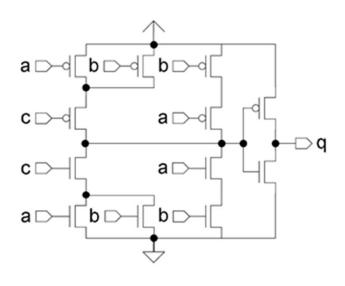
Idea

- In standard CMOS logic, $E_{00} \approx E_{11} \ll E_{10} \neq E_{01}$
- Prior approaches fail to guarantee $E_{00}=E_{11}=E_{10}=E_{01}$
- Therefore, another approach is to mask the value of d
 - Instead of representing d by two wires for each polarity $ar{d}$ and d
 - Generate a random mask *m* and update *m* every clock cycle
 - $d_m = d \oplus m$

Table 2. Transitions of the value d_m of a masked node

Line no.	d_{t-1}	m_{t-1}	$d_{m_{t-1}}$	$ d_t $	m_t	d_{m_t}	Energy	Probability
1	0	0	0	0	0	0	E_{00}	$\frac{1}{4}p_{00}$
2	0	0	0	1	1	0	E_{00}	$\frac{1}{4}p_{01}$
3	1	1	0	0	0	0	E_{00}	$\frac{1}{4}p_{10}$
4	1	1	0	1	1	0	E_{00}	$\frac{1}{4}p_{11}$
5	0	0	0	0	1	1	E_{01}	$\frac{1}{4}p_{00}$
6	0	0	0	1	0	1	E_{01}	$\frac{1}{4}p_{01}$
7	1	1	0	0	1	1	E_{01}	$rac{1}{4}p_{10}$
8	1	1	0	1	0	1	E_{01}	$\frac{1}{4}p_{11}$
9	0	1	1	0	0	0	E_{10}	$\frac{1}{4}p_{00}$
10	0	1	1	1	1	0	E_{10}	$\frac{1}{4}p_{01}$
11	1	0	1	0	0	0	E_{10}	$\frac{1}{4}p_{10}$
12	1	0	1	1	1	0	E_{10}	$\frac{1}{4}p_{11}$
13	0	1	1	0	1	1	E_{11}	$\frac{1}{4}p_{00}$
14	0	1	1	1	0	1	E_{11}	$\frac{1}{4}p_{01}$
15	1	0	1	0	1	1	E_{11}	$\frac{1}{4}p_{10}$
16	1	0	1	1	0	1	E_{11}	$\frac{1}{4}p_{11}$

©Georgia Institute of Technology, 2018-2025


$$\mathcal{E}(M_{d_t=0}) = \mathcal{E}(M_{d_t=1}) = \frac{1}{4} \left(E_{00} + E_{01} + E_{10} + E_{11} \right)$$

Masked Dual-rail Pre-charge Logic: MDPL

- Every signal masked with same random value m
- AND gate in MDPL
- Consider inputs a_m and b_m
 - Recall $a_m = a \oplus m$ and $b_m = b \oplus m$
 - Also $a = a_m \oplus m$ and $b = b_m \oplus m$
- $q = ab \Rightarrow q_m = q \oplus m = ab \oplus m$
- $\Rightarrow q_m = (a)(b) \oplus m$
- $\Rightarrow q_m = (a_m \oplus m)(b_m \oplus m) \oplus m$
- Similarly, $\overline{q_m} = (\overline{a_m} \oplus \overline{m})(\overline{b_m} \oplus \overline{m}) \oplus \overline{m}$

Table 3. Truth table of an MDPL AND gate

Line no.	a_m	b_m	m	q_m	\overline{a}	\overline{n}	$\overline{b_m}$	\overline{m}	$\overline{q_m}$
1	0	0	0	0	1		1	1	1
2	0	0	1	0	1		1	0	1
3	0	1	0	0	1		0	1	1
4	0	1	1	1	1	-	0	0	0
5	1	0	0	0	0)	1	1	1
6	1	0	1	1	0)	1	0	0
7	1	1	0	1	0)	0	1	0
8	1	1	1	1	0)	0	0	0

 $q_{\rm m}$

Fig. 1. Schematic of a CMOS majority gate

Fig. 2. Schematic of an MDPL AND gate

 a_{m}

 \boldsymbol{b}_{m}

m

а

С

b MAJ q

MDPL Operation

- As with WDDL, inversion is implemented by switching wires
- An MDPL gate for OR can also be used (not shown, see reference)
- Precharge wave sets all values to zero
 - Note that for a_m , $\overline{a_m}$, b_m , $\overline{b_m}$, m and \overline{m} all equal to zero makes q_m and \overline{q}_m zero
- During the evaluation phase, the majority gates each make at most one transition (from 0 to 1 since they are all precharged to zero!)
- Majority gates are available in all standard cell libraries known

 ${\bf Table~5.}~{\rm MDPL~cells~and~their~CMOS~implementations}$

	CMOS implementation	Area (gate		
MDPL cell	of MDPL cell	MDPL cell	std. CMOS cell	$\frac{MDPL}{CMOS}$
Inverter	Wire swapping	0	0.67	0
Buffer	2×Buffer	2	1	2
AND, OR $(2-in)$	$2 \times MAJ$ (3-in)	4	1.67	2.4
NAND, NOR (2-in)	$2 \times MAJ$ (3-in)	4	1	4
XOR (2-in)	$6 \times MAJ$ (3-in)	12	2.33	5.1
XNOR (2-in)	$6 \times MAJ$ (3-in)	12	2	6
D-Flip-Flop	$2 \times AND$, $2 \times OR$ (both 2-in)			
	$2 \times MAJ$ (3-in), $1 \times D$ -FF	17.67	5	3.5

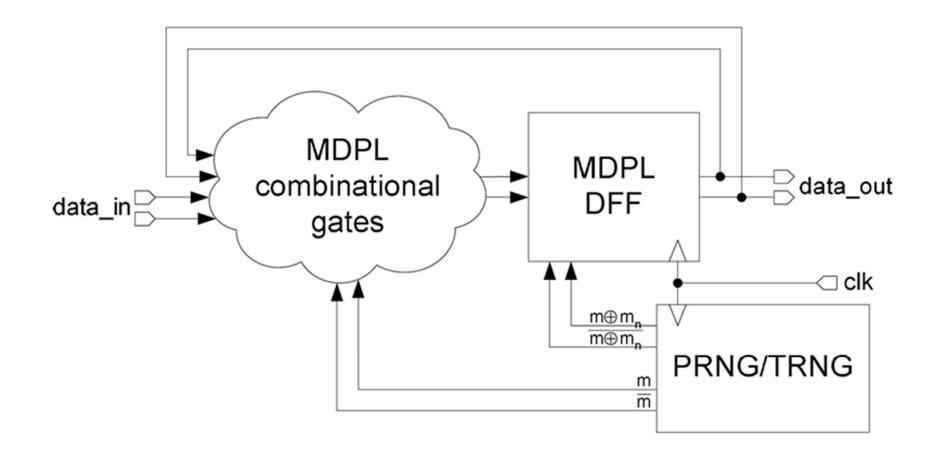


Fig. 5. Architecture of an MDPL circuit

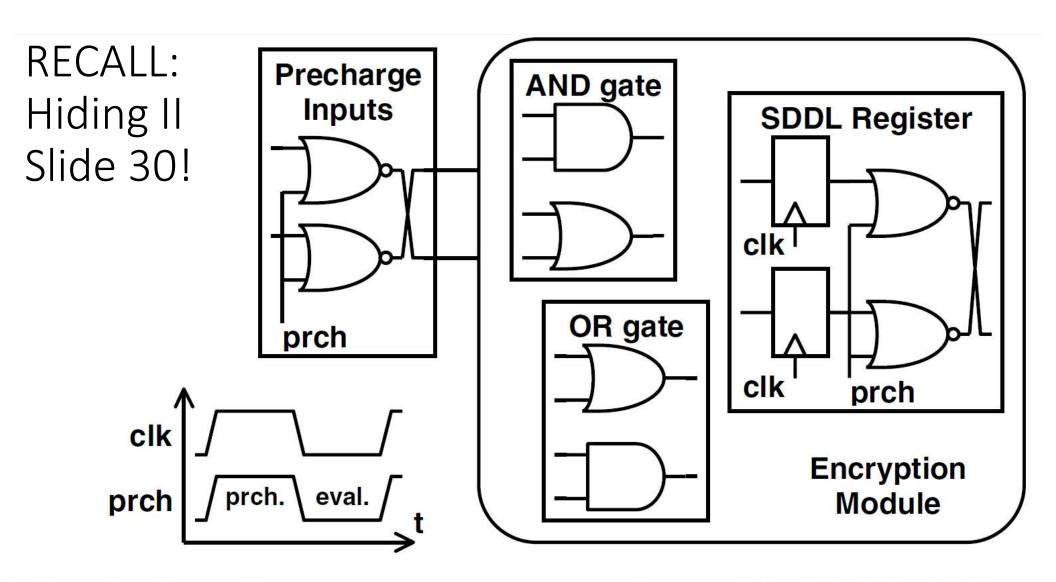
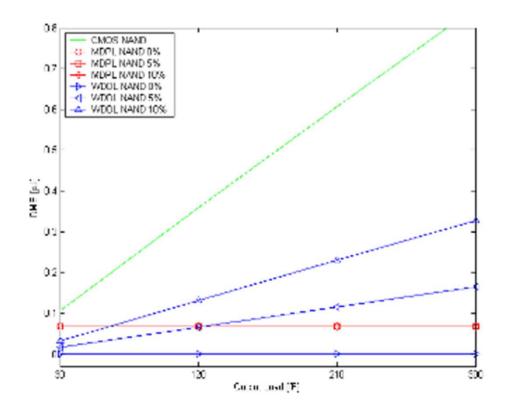
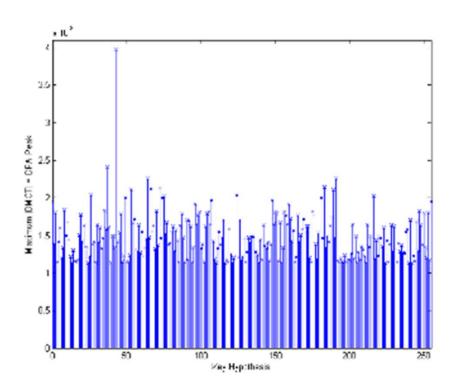




Fig. 3. Precharge wave generation with SDDL FF's

 $\bf Fig.\,6.$ Comparison of the DME of CMOS, WDDL and MDPL implementations NAND gate

Fig. 7. DPA peaks for all key hypothesis for a DPA attack on an AES implemented in CMOS

Fig. 8. DPA peaks for all key hypothesis for a DPA attack on an AES implemented in MDPL

Table 6. Comparison of AES implementations in CMOS and MDPL

	CMOS	MDPL	Ratio $\frac{MDPL}{CMOS}$
Area (gate equivalents)	3628	16465	4.54
Speed (MHz; worst-case speed corner)	16.91	9.82	0.58

Conclusion