Masking Countermeasures in Cryptographic Hardware: Part I

Cryptographic Hardware for Embedded Systems ECE 3170

Fall 2025

Assoc. Prof. Vincent John Mooney III
Georgia Institute of Technology

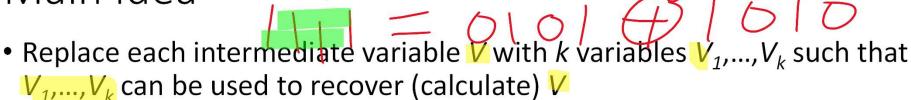
Reading

- This lecture is based on three sources:
- Chapter 9 of Power Analysis Attacks: Revealing the Secrets of Smart Cards by Mangard et al., 2007, ISBN-13: 978-0-387-30857-9, ISBN-10: 0-387-30857-1, e-ISBN-10: 0-387-38162-7.
- L. Goubin and J. Patarin, "DES and Differential Power Analysis The 'Duplication' Method," Cryptographic Hardware for Embedded Systems (CHES) conference, 1999.
- Chapter 2 of *Handbook of Applied Cryptography* by Menezes et al., 1996, ISBN: 978-1-119-09672-6.

(atb) t(=at(6tc) Mathematical Background=

- Recall that \mathbb{Z} is the set of integers (including negative numbers and zero)
 - The CHES paper by Goubin and Patarin use Z instead of Z
- Let n be a positive integer. Then \mathbb{Z}_h is $\{0,1,2,...,n-1\}$
- gcd(x,y) is the greatest common divisor of x and y
- The multiplicative group of \mathbb{Z}_n is $\mathbb{Z}_n^* = \{a \in \mathbb{Z}_n \mid \gcd(a,n) = 1\}$. In particular, if n is prime, then $\mathbb{Z}_n^* = \{a \mid 1 \le a \le n-1\}$.
- Recall that \oplus is linear, i.e., $f(V_1 \oplus V_2) = f(V_1) \oplus f(V_2)$
- S-boxes are nonlinear, i.e., $S(V_1 \oplus V_2) \neq S(V_1) \oplus S(V_2)$

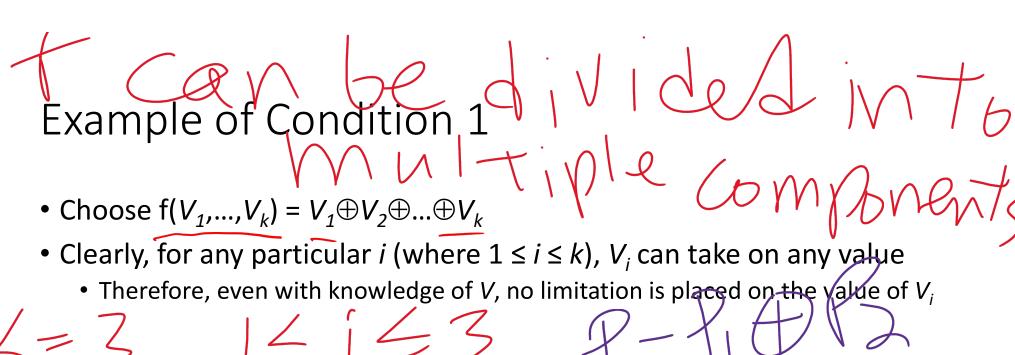
Main Idea



- Condition 1: from the knowledge of V and for any i (where $1 \le i \le k$), it is not feasible to deduce information about the set of possible values of V_i such that there exists values $V_1, ..., V_{i-1}, V_{i+1}, ..., V_k$ satisfying the equation $f(V_1, ..., V_k) = V$
 - Obviously, take for example V_i has 8 bits, clearly V_i is equal to an 8-bit value between 0x00 and 0xFF. This fact is not information "deduced" about V_i from the value of V_i
- Condition 2: the function f() is such that the transformations to be performed on $V_1, V_2, ...,$ or V_k during the computation (instead of transformations performed on V) can be implemented without explicit calculation of V

.

OGeorgia Astitute of Technology, 2018-2025 5 notknown CGeorgia Institute of Tethnology, 2018-2029



Example of Condition 2

- Let V_{ϵ} multiplicative group \mathbb{Z}_n^*
 - The CHES paper by Goubin and Patarin use $\mathbb{Z}/n\mathbb{Z}$ instead of \mathbb{Z}_n^* to indicate a multiplicative group
- $f(V_1,...,V_k) = V_1 * V_2 * ... * V_k \mod n$ where, for each $i, 1 \le i \le k, V_i \in \text{multiplicative group } \mathbb{Z}_n^*$
- Clearly, for $f(V_1,...,V_k)$ as defined, individual transformations can be performed on V_1 , V_2 , ..., V_k without calculating V
- Condition 1 is also satisfied as well

Mathematical Background (cont'd)

(a+b)+c=a+(b+c)

- Handbook of Applied Cryptography, Chapter 2.4, pp. 63-75
- Definition

$$0 \cdot a^{-1} = 1$$

- The multiplicative group of \mathbb{Z}_n is $\mathbb{Z}_n^* = \{a \in \mathbb{Z}_n \mid \gcd(a,n) = 1\}$
- In particular, if n is prime, then $\mathbb{Z}_n^* = \{a \mid 1 \le a \le n-1\}$
- Definition
 - The order of \mathbb{Z}_n^* is the number of elements in \mathbb{Z}_n^* , i.e., $|\mathbb{Z}_n^*|$

• Note that if $a \in \mathbb{Z}_n^*$ and $b \in \mathbb{Z}_n^*$ then $a \cdot b \in \mathbb{Z}_n^*$, i.e., \mathbb{Z}_n^* is closed under multiplication (recall that all multiplication in \mathbb{Z}_n is mod n)

- Example 1: $\mathbb{Z}_{21}^* = \{1,2,4,5,8,10,11,13,16,17,19,20\}$

• Example 2: $\mathbb{Z}_{13}^* = \{1,2,3,4,5,6,7,8,9,10,11,12\}$ \fund \text{more Set of Figure 1.2.2.3.}

Example of Example of Condition 2 4(6 + 1) * 5 * 8) = 66 * 90 = 12649 mod 13

• First note the multiplicative groups are important for asymmetric encryption schemes such as RSA () 2640 ー 203 メルシーン () シラ

encryption schemes such as RSA \times Consider \mathbb{Z}_{13}^* (66) nod 13 \times Ho mod 13

• So if
$$V = 12$$
, $V_1 = 3$ and $V_2 = 4$, $f(V_1, ..., V_k) = V_1 * V_2 \mod 13$

• The mod function provides the result that Condition 2 holds

A DES Round

- Key bits shifted, then
 48 bits selected
- 1) R_{i-1} expanded to 48 bits
- 2) Key bits permuted and XORed with R_{i-1} \ i \ CU
- 3) Eight S-boxes produce 32 bits
- 4) 32 bits are permuted
- Function f is comprised of the above four steps
- Output of f XORed w/L_{i-1}
 - Result: R_i
- L_i = R_{i-1}

Recall Slide 7 of Lecture 4 DES!

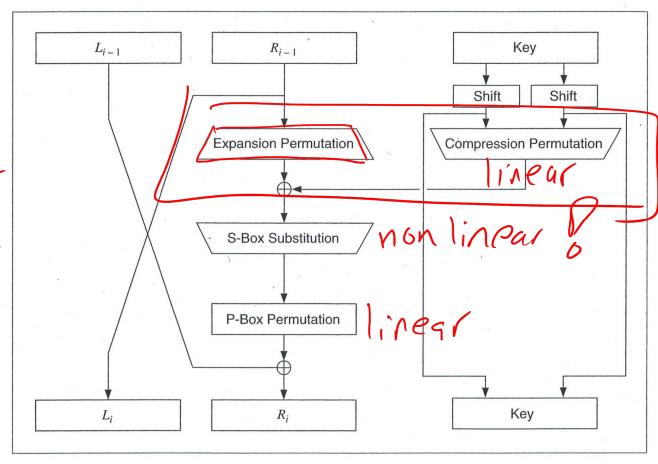


Figure 12.2 One round of DES.

Example: DES

- Consider intermediate variable
- Separate V into two components: V_1 and V_2
- E.g., choose a function $f(V_1, V_2) = V = V_1 \oplus V_2$
- Condition 1 is satisfied
- All DES transformations fall into one of the following 5 categories:
 Permutation of the bits of V (Permut (VI)) = Permutation (Permut (VI))

 - Expansion of the bits of V
 - \oplus between V and another variable V' of the same type \swarrow
 - \oplus between V and another variable C depending only on the key
 - Transformations of *V* using a substitution box

Example: DES (cont'd)

- First two consist of linear transformations
 - To satisfy Condition 2, just perform the permutation and expansion first on V_1 then V_2
 - From linearity, $f(V_1, V_2) = V$ holds after these transformations as well

- Permutation of the bits of V
- Expansion of the bits of V
 - ⊕ between *V* and another variable V' of the same type
 - ⊕ between *V* and another variable depending only on the key
 - Transformations of V using a substitution box
- For the third category, just replace $V'' = V \oplus V'$ by (1) $V_1'' = V_1 \oplus V_1'$
 - - Also from linearity, $f(V_1, V_2) = V$ and $f(V_1', V_2') = V'$ result in $f(V_1'', V_2'') = V''$
 - Thus, condition 2 also holds for this category
- The fourth category similarly maintains Condition 2, just replace $V \oplus C$ with $V_1 \oplus C$ (or with $V_2 \oplus C$)

be split up into two calc. (and recombinal)

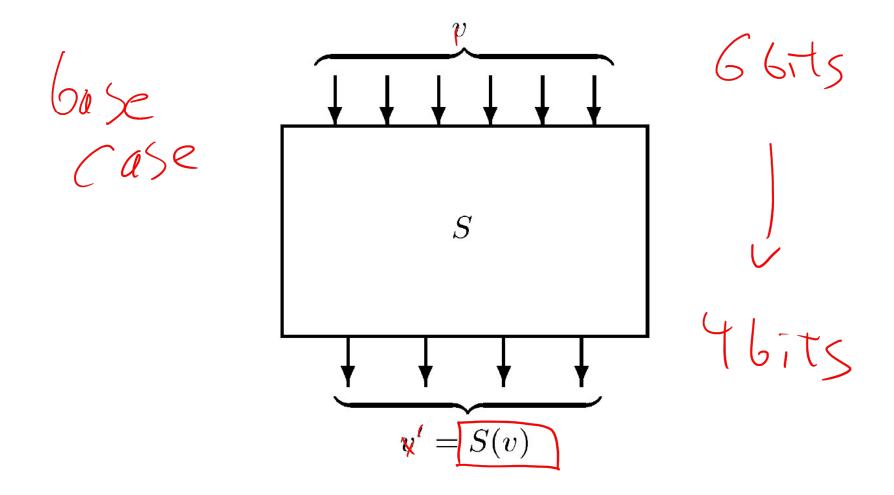
- Main Idea (REPEATED from Slide 4!) V_1 . Replace each intermediate variable V with K variables $V_1,...,V_k$ such that $V_1,...,V_k$ can be used to recover (calculate) V_1 in the V of file V in the V
- Condition 1: from the knowledge of V and for any i (where $1 \le i \le k$), it is not feasible to deduce information about the set of possible values of V_i such that there exists values $V_1, ..., V_{i+1}, ..., V_k$ satisfying the equation $f(V_1, ..., V_k) = V$
 - Obviously, take for example V_i has 8 bits, clearly V_i is equal to an 8-bit value between 0x00 and 0xFF. This fact is not information "deduced" about V_i from the value of V
- Condition 2: the function f() is such that the transformations to be performed on V_1 , V_2 , ..., or V_k during the computation (instead of transformations performed on V) can be implemented without explicit calculation of V

Example: DES (cont'd 2)

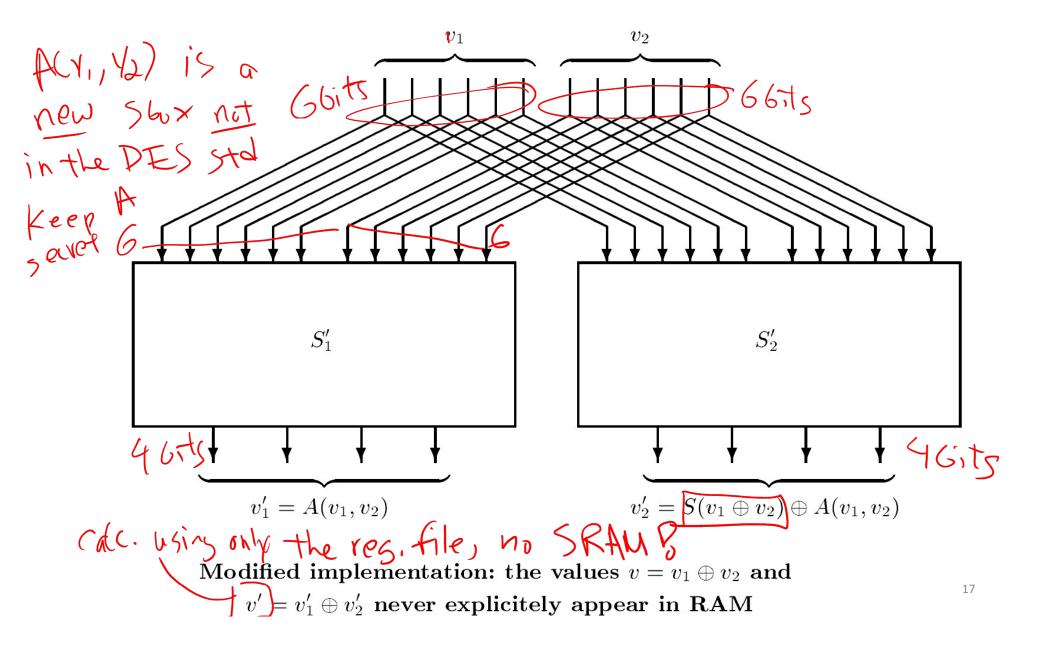
• The fifth category is nonlinear $(v_1, v_2) = v_1(s_1, v_2) = v_2(s_2, v_3)$

• Idea: design another substitution function A() from 12 bits to 4 such that $(V_1', V_2') = (A(V_1, V_2), S(V_1 \oplus V_2) \oplus A(V_1, V_2))$

 $V_1 + V_2 - A(V_1, V_2) + A(V_1, V_2) + A(V_1, V_2) - S(V_1, V_2) + S(V_1, V_2)$

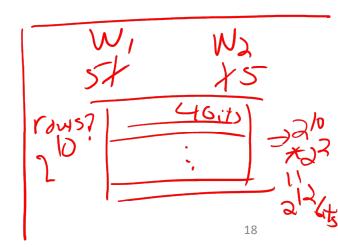


Initial implementation: the predictable values v and v' appear in RAM at some time



- The result is two larger substitution boxes S_1 and S_2
- S_1 ' implements function A from 12 bits to 4 such that V_1 ' = $A(V_1, V_2) = 0.56$ kg.
- S_2 ' implements function $S(V_1, V_2) \oplus A(V_1, V_2)$ from 12 bits (V_1, V_2) to 4 (V_2') such that $V_2' = S(V_1 \oplus V_2) \oplus A(V_1, V_2)$
- Substitution function A satisfies Condition 1
- Table look-up never explicitly calculates $V_1 \oplus V_2$
 - Thus, Condition 2 is satisfied

predictions of power curve diff. fail bec. 1,12 So there is not any @Georgiappillurg & Technology



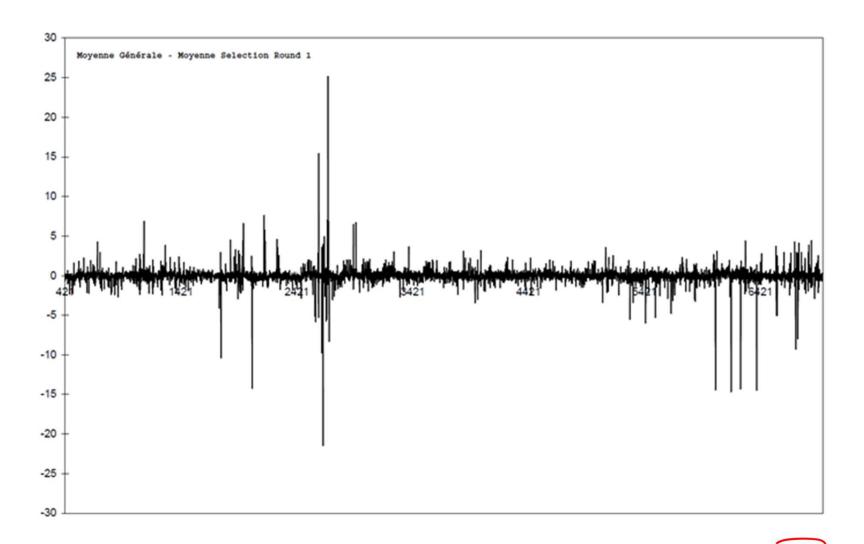


Fig. 6. An example of difference of the curves MC and MC' when the 6 bits are false ©Georgia Institute of Technology, 2018-2025

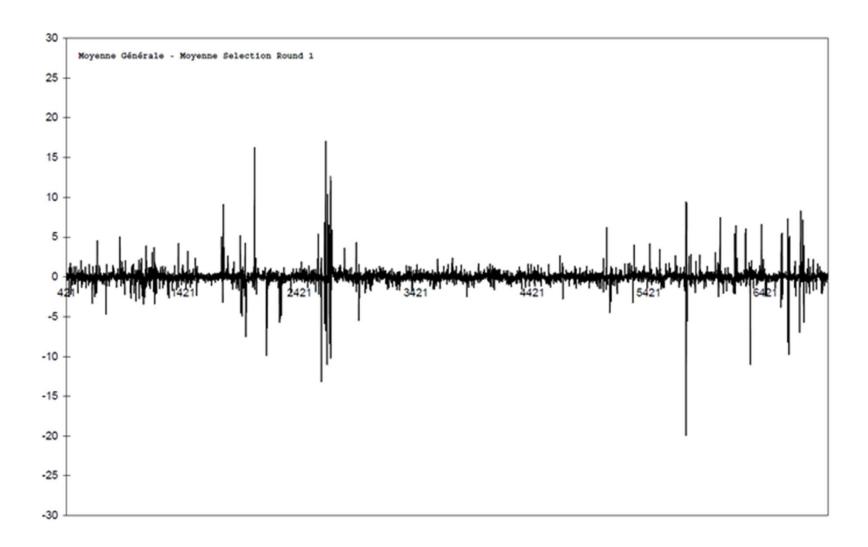


Fig. 7. Difference of the curves MC and MC' when the 6 bits are correct

Summary of Masking Types

- Boolean
 - Intermediate value v is concealed by XOR with mask m
 - $v_m = v \oplus m$
- Additive
 - Intermediate value v is concealed by modular addition with mask m
 - $v_m = v + m \pmod{n}$
- Multiplicative
 - Intermediate value v is concealed by modular multiplication with mask m
 - $v_m = v * m \pmod{n}$



- Consider the "square and multiply" implementation
 - Perform computation of x^d mod n
 - Exponent d is part of the key
 - d has m bits $d_{m-1}d_{m-2} ... d_1d_0$
 - 1. $z \leftarrow 1$;
 - For *i* going backwards from *m* 1 to 0 do:
 - 2. $z \leftarrow z^2 \mod n$:
 - 3. if $d_i = 1$ then $z \leftarrow z * x \mod n$;

Original alg.

side

- Consider again the "square and multiply" implementation
 - Recall we replace intermediate variable V with variables V_1 and V_2
 - In this case we replace x by x_1 and x_2
 - Need to compute $x_1^d \mod n$ and $x_2^d \mod n$ w / Yandom Swith
 - Final computation will be $x^d \mod n = (x_1^d \mod n) * (x_2^d \mod n) \mod n$

As before a has m bits $d_{m-1}d_{m-2} \dots d_1d_0$

$$1. z_1 \leftarrow 1;$$

For *i* going backwards from *m* - 1 to 0 do:

2.
$$z_1 \leftarrow z_1^2 \mod n$$
;

3. if
$$d_i = 1$$
 then $z_1 \leftarrow z_1 * x_1 \mod n$;

 $1. z_2 \leftarrow 1$;

For *i* going backwards from m - 1 to 0 do:

$$2. z_2 \leftarrow z_2^2 \mod n$$
;

3. if
$$d_i = 1$$
 then $z_2 \leftarrow z_2 * x_2 \mod n$;

The above steps can be done in a random fashion including variations on overlapping versus sequential execution