
Masking Countermeasures in
Cryptographic Hardware: Part I

Cryptographic Hardware for
Embedded Systems

ECE 3170
Fall 2025

Assoc. Prof. Vincent John Mooney III
Georgia Institute of Technology

©Georgia Institute of Technology, 2018-2025 1

Reading

• This lecture is based on three sources:
• Chapter 9 of Power Analysis Attacks: Revealing the Secrets of Smart

Cards by Mangard et al., 2007, ISBN-13: 978-0-387-30857-9, ISBN-10:
0-387-30857-1, e-ISBN-10: 0-387-38162-7.

• L. Goubin and J. Patarin, “DES and Differential Power Analysis
The ‘Duplication’ Method,” Cryptographic Hardware for Embedded
Systems (CHES) conference, 1999.

• Chapter 2 of Handbook of Applied Cryptography by Menezes et al.,
1996, ISBN: 978-1-119-09672-6.

©Georgia Institute of Technology, 2018-2025 2

Mathematical Background

• Recall that is the set of integers (including negative numbers and
zero)

• The CHES paper by Goubin and Patarin use Z instead of

• Let n be a positive integer. Then n is {0,1,2,…,n-1}
• gcd(x,y) is the greatest common divisor of x and y

• The multiplicative group of n is Z௡∗ = {a Є n | gcd(a,n) = 1}. In
particular, if n is prime, then Z௡∗ = {a | 1 ≤ a ≤ n-1}.

• Recall that  is linear, i.e., f(V1 V2) = f(V1) f(V2)
• S-boxes are nonlinear, i.e., S(V1 V2) ≠ S(V1) S(V2)

©Georgia Institute of Technology, 2018-2025 3

Main Idea
• Replace each intermediate variable V with k variables V1,…,Vk such that

V1,…,Vk can be used to recover (calculate) V
• Condition 1: from the knowledge of V and for any i (where 1 ≤ i ≤ k), it is

not feasible to deduce information about the set of possible values of Vi
such that there exists values V1,…,Vi-1,Vi+1,…,Vk satisfying the equation
f(V1,…,Vk) = V

• Obviously, take for example Vi has 8 bits, clearly Vi is equal to an 8-bit value between
0x00 and 0xFF. This fact is not information “deduced” about Vi from the value of V

• Condition 2: the function f() is such that the transformations to be
performed on V1, V2, …, or Vk during the computation (instead of
transformations performed on V) can be implemented without explicit
calculation of V

©Georgia Institute of Technology, 2018-2025 4

©Georgia Institute of Technology, 2018-2025 5

©Georgia Institute of Technology, 2018-2025 6

Example of Condition 1

• Choose f(V1,…,Vk) = V1V2…Vk

• Clearly, for any particular i (where 1 ≤ i ≤ k), Vi can take on any value
• Therefore, even with knowledge of V, no limitation is placed on the value of Vi

©Georgia Institute of Technology, 2018-2025 7

Example of Condition 2

• Let V Є multiplicative group Z௡∗
• The CHES paper by Goubin and Patarin use Z/nZ instead of Z௡∗ to indicate a

multiplicative group

• f(V1,…,Vk) = V1*V2*…*Vk mod n
• where, for each i, 1 ≤ i ≤ k, Vi Є multiplicative group Z௡∗

• Clearly, for f(V1,…,Vk) as defined, individual transformations can be
performed on V1, V2, …,Vk without calculating V

• Condition 1 is also satisfied as well

©Georgia Institute of Technology, 2018-2025 8

Mathematical Background (cont’d)

©Georgia Institute of Technology, 2018-2025 9

• Handbook of Applied Cryptography, Chapter 2.4, pp. 63-75
• Definition

• The multiplicative group of Z௡ is Z௡∗ Z௡
• In particular, if n is prime, then Z௡∗

• Definition
• The order of Z௡∗ is the number of elements in Z௡∗ , i.e., Z௡∗

• Note that if Z௡∗ and Z௡∗ then Z௡∗ , i.e., Z௡∗ is closed under
multiplication (recall that all multiplication in Z௡ is mod n)

• Example 1: Zଶଵ∗

• Example 2: Zଵଷ∗

Example of Example of Condition 2

• First note the multiplicative groups are important for asymmetric
encryption schemes such as RSA

• Consider Zଵଷ∗

• 12 = 3 * 4
• So if V = 12, V1 = 3 and V2 = 4, f(V1,…,Vk) = V1*V2 mod 13
• The mod function provides the result that Condition 2 holds

©Georgia Institute of Technology, 2018-2025 10

©Georgia Institute of Technology, 2018-2025 11

• Key bits shifted, then
48 bits selected

1) Ri-1 expanded to 48 bits
2) Key bits permuted and

XORed with Ri-1

3) Eight S-boxes produce
32 bits

4) 32 bits are permuted
• Function f is comprised of

the above four steps
• Output of f XORed w/ Li-1

• Result: Ri

• Li = Ri-1

A DES Round Recall Slide 7 of Lecture 4 DES !

Example: DES
• Consider intermediate variable V
• Separate V into two components: V1 and V2

• E.g., choose a function f(V1,V2) = V = V1V2

• Condition 1 is satisfied
• All DES transformations fall into one of the following 5 categories:

• Permutation of the bits of V
• Expansion of the bits of V
•  between V and another variable V’ of the same type
•  between V and another variable C depending only on the key
• Transformations of V using a substitution box

©Georgia Institute of Technology, 2018-2025 12

Example: DES (cont’d)
• First two consist of linear transformations

• To satisfy Condition 2, just perform the
permutation and expansion first on V1 then V2

• From linearity, f(V1,V2) = V holds after these
transformations as well

©Georgia Institute of Technology, 2018-2025 13

• Permutation of the bits of V
• Expansion of the bits of V
•  between V and another variable

V’ of the same type
•  between V and another variable

depending only on the key
• Transformations of V using a

substitution box

• For the third category, just replace V’’ = V V’ by (1) V1’’ = V1 V1’
and (2) V2’’ = V2 V2’

• Also from linearity, f(V1,V2) = V and f(V1’,V2’) = V’ result in f(V1’’,V2’’) = V’’
• Thus, condition 2 also holds for this category

• The fourth category similarly maintains Condition 2, just replace V C
with V1 C (or with V2 C)

Main Idea (REPEATED from Slide 4!)
• Replace each intermediate variable V with k variables V1,…,Vk such that

V1,…,Vk can be used to recover (calculate) V
• Condition 1: from the knowledge of V and for any i (where 1 ≤ i ≤ k), it is

not feasible to deduce information about the set of possible values of Vi
such that there exists values V1,…,Vi-1,Vi+1,…,Vk satisfying the equation
f(V1,…,Vk) = V

• Obviously, take for example Vi has 8 bits, clearly Vi is equal to an 8-bit value between
0x00 and 0xFF. This fact is not information “deduced” about Vi from the value of V

• Condition 2: the function f() is such that the transformations to be
performed on V1, V2, …, or Vk during the computation (instead of
transformations performed on V) can be implemented without explicit
calculation of V

©Georgia Institute of Technology, 2018-2025 14

Example: DES (cont’d 2)

• The fifth category is nonlinear
• Idea: design another substitution function A() from 12 bits to 4 such that

(V1’,V2’) = (A(V1,V2), S(V1V2) A(V1,V2))

©Georgia Institute of Technology, 2018-2025 15

©Georgia Institute of Technology, 2018-2025 16

©Georgia Institute of Technology, 2018-2025 17

©Georgia Institute of Technology, 2018-2025 18

Example: DES (cont’d 3)

• The result is two larger substitution boxes S1’ and S2’
• S1’ implements function A from 12 bits to 4 such that V1’ = A(V1,V2)
• S2’ implements function S(V1,V2) A(V1,V2) from 12 bits (V1,V2) to 4 (V2’)

such that V2’ = S(V1V2) A(V1,V2)
• Substitution function A satisfies Condition 1
• Table look-up never explicitly calculates V1 V2

• Thus, Condition 2 is satisfied

©Georgia Institute of Technology, 2018-2025 19

©Georgia Institute of Technology, 2018-2025 20

Summary of Masking Types

• Boolean
• Intermediate value v is concealed by XOR with mask m
• vm = vm

• Additive
• Intermediate value v is concealed by modular addition with mask m
• vm = v + m (mod n)

• Multiplicative
• Intermediate value v is concealed by modular multiplication with mask m
• vm = v * m (mod n)

©Georgia Institute of Technology, 2018-2025 21

©Georgia Institute of Technology, 2018-2025 22

Arithmetic Masking Example: RSA

• Consider the “square and multiply” implementation
• Perform computation of xd mod n
• Exponent d is part of the key
• d has m bits dm-1dm-2 … d1d0

• 1. z 1;
• For i going backwards from m - 1 to 0 do:
• 2. z z2 mod n ;
• 3. if di = 1 then z z * x mod n ;

©Georgia Institute of Technology, 2018-2025 23

Arithmetic Masking Example: new RSA

• Consider again the “square and multiply” implementation
• Recall we replace intermediate variable V with variables V1 and V2

• In this case we replace x by x1 and x2

• Need to compute x1
d mod n and x2

d mod n
• Final computation will be xd mod n = (x1

d mod n)*(x2
d mod n) mod n

• As before d has m bits dm-1dm-2 … d1d0

• The above steps can be done in a random fashion including variations on
overlapping versus sequential execution

1. z1 1;
For i going backwards from m - 1 to 0 do:
2. z1 z1

2 mod n ;
3. if di = 1 then z1 z1 * x1 mod n ;

1. z2 1;
For i going backwards from m - 1 to 0 do:
2. z2 z2

2 mod n ;
3. if di = 1 then z2 z2 * x2 mod n ;

