Power Analysis Part III Cryptographic Hardware for Embedded Systems ECE 3170

Fall 2025

Assoc. Prof. Vincent John Mooney III
Georgia Institute of Technology

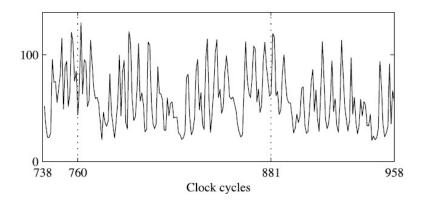
Reading

- This lecture covers a portion of Chapter 4 and a very small portion of Chapter 5 of *Power Analysis Attacks: Revealing the Secrets of Smart Cards* by Mangard et al., 2007, ISBN-13: 978-0-387-30857-9, ISBN-10: 0-387-30857-1, e-ISBN-10: 0-387-38162-7.
 - Specifically, sections 4.4, 5.1 and 5.2 are covered

Question Answered by This Lecture

 How specifically are different power traces gathered and what is their design in order to reveal the information claimed to have been learned?

Power Analysis


- Recall that $P_{total} = P_{op} + P_{data} + P_{el. noise} + P_{const}$
- Note that P_{const} is a constant and we can use the same assembly instruction or operation so that P_{op} is also a constant
- Thus, the first component to model is electrical noise $(P_{el. noise})$
- The next component to model is data dependent power (P_{data})
- Therefore, we need power traces to isolate each

Data Dependent Energy Consumption / Power

- Consider a single assembly instruction which loads a byte from onchip memory to a register
 - Note we assume the closest level Level 1 or L1 of on-chip memory
 - Also notice that we are not varying the instruction at all
 - Finally, note that we assume byte-addressable memory (which may not be supported in modern 64-bit processors including those used in embedded devices!)
- Vary the eight bit memory data value among all 256 possible values
- 200 measurements for each value = 256* 200 = 51,200 total measurements
 - Note that for the data value of 0b00000000 = 0x00, there are only 200 measurements; thus, to obtain 10,000 power measurements for this case, an additional 9,800 must be taken

Operation Dependent Energy Consumption / Power

- Case 1: unpipelined single issue processor, e.g., microcontroller
 - Only one operation is underway at any point in time
 - Isolation of the operation-dependent power based on time of execution

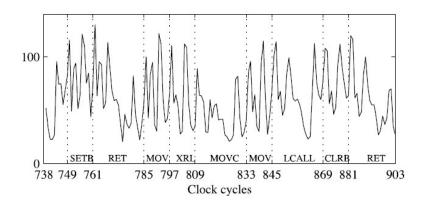


Figure 5.3. The sequence of AddRoundKey, SubBytes, and ShiftRows operations.

Figure 5.4. The annotated sequence of AddRoundKey, SubBytes, and ShiftRows operations.

```
LCALL SET_ROUND_TRIGGER

MOV A,ASM_input + 0 ; load a0

XRL A,ASM_key + 0 ; add k0

MOVC A,@A + DPTR ; S-box look-up

MOV ASM_input, A ; store a0

LCALL CLEAR_ROUND_TRIGGER
```

Figure 5.5. The sequence of assembly instructions that corresponds to Figure 5.4.

Operation Dependent Energy Consumption / Power

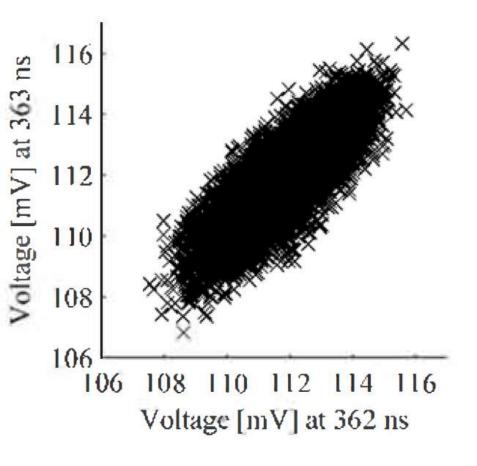
- Case 1: unpipelined single issue processor, e.g., microcontroller
 - Only one operation is underway at any point in time
 - Isolation of the operation-dependent power based on time of execution
- Case 2: pipelined single issue processor, e.g., 5 stages
 - E.g., Instruction Fetch (IF), Instruction Decode (ID), Execute (EX), Memory (MEM) and Write Back (WB); at any clock cycle there may be up to five instructions executing
 - Additional modeling and statistics are required beyond the scope of this course
- Case 3: pipelined multiple issue processor
 - Also beyond our scope
- Cases 4 and beyond: out of order, multicore, etc.
 - Even more complicated and also beyond our scope, but possible to analyze

Example

- A "case 1" processor operates on an 8-bit value where each bit is independent and uniformly distributed
- Assume that the value of the second bit is always the complement of the first bit in the experiments carried out
 - E.g., $0bX_7X_6X_5X_4X_3X_2X_10$ and $0bY_7Y_6Y_5Y_4Y_3Y_2Y_11$ where the first bit considered in our analysis is the case of the LSB = 0 and the second bit considered in our analysis is the case of the LSB = 1
 - The other 14 bits are independent and uniformly distributed
- P_{exp} consists of the energy consumed by the LSB
- $P_{switching}$ consists of the energy consumed by the rest of the bits

Example (continued)

- We have 51,200 power traces as computed already earlier
- Select the 25,600 traces with LSB = 1
- Figure 4.6 shows the resulting histogram at 362 ns


Correlation and Covariance

- Two points are correlated if they vary together in a related way
- Statistical measure: covariance
- Cov(X,Y) = E[(X-E(X))*(Y-E(Y))] = E(XY) E(X)E(Y)
- Theoretical and empirical formulas:

•
$$\rho(X,Y) = \frac{Cov(X,Y)}{\sqrt{Var(X)*Var(Y)}}$$

•
$$r = \frac{\sum_{i=1}^{n} (x_i - \overline{x_i}) * (y_i - \overline{y_i})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x_i})^2 * \sum_{i=1}^{n} (y_i - \overline{y_i})^2}}$$

• As defined, the correlation coefficient ρ varies between -1 and 1, i.e., $-1 \le \rho \le 1$ and also thus $-1 \le r \le 1$

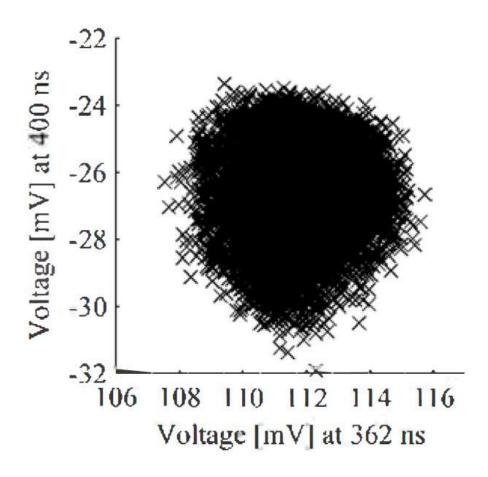


Figure 4.9. Scatter Plot: The power consumption at 362 ns is correlated to the power consumption at 363 ns. r = 0.82

ower conthe power sumption at 362 ns is largely uncorrelated to r = 0.82 the power consumption at 400 ns. r = 0.12©Georgia Institute of Technology, 2018-2025