

Basics of Energy & Power Dissipation

Lecture notes S. Yalamanchili, S. Mukhopadhyay and A. Chowdhary

Georgia Tech

Outline

- Basic Concepts
- Dynamic power
- Static power
- Time, Energy, Power Tradeoffs
- Activity model for power estimation
 - Combinational and sequential logic

(2)

Reading

- http://en.wikipedia.org/wiki/CPU power dissipation
- http://en.wikipedia.org/wiki/CMOS#Power: switching a nd leakage
- http://www.xbitlabs.com/articles/cpu/display/core-i5-2500t-2390t-i3-2100t-pentium-g620t.html
- http://www.cpu-world.com/info/charts.html
- Goal: Understand
 - The sources of power dissipation in combinational and sequential circuits
 - Power vs. energy
 - Options for controlling power/energy dissipation

(3)

Georgia Tech

Where Does the Power Go in CMOS?

- Dynamic Power Consumption
 - ❖ Caused by switching transitions → cost of switching state
- Static Power Consumption
 - Caused by leakage currents in the absence of any switching activity
- Power consumption per transistor changes with each technology generation
 - No longer reducing at the same rate
 - What happens to power density?

(4)

- $V_{qs} < V_t$ transistor off V_t is the threshold voltage
- $V_{gs} > V_t$ transistor on
- · Impact of threshold voltage
 - \bullet Higher V_t , slower switching speed, lower leakage
 - Lower V_t, faster switching speed, higher leakage
- Actual physics is more complex but this will do for now!

(5)

Georgia Tech

Abstracting Energy Behavior

- How can we abstract energy consumption for a digital device?
- Consider the energy cost of charge transfer

Dynamic Power vs. Dynamic Energy Dynamic power: consider the rate at which switching (energy dissipation) takes place Voltage i_{DD} Input to Output Output **CMOS** Capacitor Capacitor inverter Charging Discharging activity factor = fraction of total capacitance that switches each cycle $Delay = k \cdot C \frac{V_{dd}}{\left(V_{dd} - V_{t}\right)^{3}}$ $V_{dd} \cdot V_{dd} \cdot F$ (13)

Gate Power Dissipation

- Switching activity depends on the input pattern and combinational logic
- Consider a $0\rightarrow 1$ transition on the output of a gate

$$\begin{array}{ccc} p_0 \times p_1 \\ \hline \text{Probability gate} & \text{Probability gate} \\ \text{output was 0} & \text{output is 1} \end{array}$$

$$p_0 = \frac{N_0}{2^n}$$
 $p_1 = \frac{N_1}{2^n}$

$$p_1 = \frac{N_1}{2^n}$$

 N_0 = number of 0's in the truth table

Example:

(16)

Temperature Dependence

As temperature increases static power increases¹

$$I_{leakage} = F(Temp)$$

¹J. Butts and G. Sohi, "A Static Power Model for Architects, MICRO 2000

(23)

Georgia Tech

The World Today

Yesterday→ scaling to minimize time (max F)

$$P_{dynamic} = \alpha \left(\frac{C_L}{2}\right) \cdot V_{dd} \cdot V_{dd} \cdot F \qquad Delay = k \cdot C \frac{V_{dd}}{\left(V_{dd} - V_t\right)^2}$$

- Maximum performance (minimum time) is too expensive in terms of power
 - ❖ Imaging scaling voltage by 0.7 and frequency by 1.5 → how does dynamic power scale?
- Today: trade/balance performance for power efficiency

(24)

Factors Affecting Power

- Transistor size
 - \diamond Affects capacitance (C_L)
- Rise times and fall times (delay)
 - Affects short circuit power (not in this course)

- Threshold voltage
 - Affects leakage power
- Temperature
 - Affects leakage power
- Switching activity
 - Frequency (F) and number of switching transistors (α)

$$P_{dynamic} = \alpha \left(\frac{C_L}{2}\right) \cdot V_{dd} \cdot V_{dd} \cdot F \qquad Delay = k \cdot C \frac{V_{dd}}{\left(V_{dd} - V_t\right)^2}$$

(25)

Georgia Tech

Low Power Design: Options?

$$P_{dynamic} = \alpha \left(\frac{C_L}{2}\right) \cdot V_{dd} \cdot V_{dd} \cdot F \qquad Delay = k \cdot C \frac{V_{dd}}{\left(V_{dd} - V_t\right)^2}$$

- Reduce V_{dd}
 - Increases gate delay
 - Note that this means it reduces the frequency of operation of the processor!
- Compensate by reducing threshold voltage?
 - Increase in leakage power
- Reduce frequency
 - Computation takes longer to complete
 - Consumes more energy (but less power) if voltage is not scaled

(26)

Georgia Tech Modeling Component Energy · Per-use energies can be estimated from Gate level designs and analyses Circuit-level designs and analyses · Implementation and measurement There are various open-source tools for analysis · Mentor, Cadence, Synopsys, etc. Hardware Estimation Circuit-level Design Results: Estimation Area, Energy, Technology Tool Timing, etc. **Parameters** (29)

Simple Power Model for Processors

- Per instruction energy measurements
 - Permits a software model of energy consumption of a program
 - Execution time use to assess power requirements
- A first order model of energy consumption for software
 - A table of energy consumption per instruction
 - More on this later!

(31)

Georgia Tech

What About Wires?

Lumped RC Model

 $R_{line} = r \cdot l$ Resistance per unit length

Capacitance per

- We will not directly address delay or energy expended in the interconnect in this class
 - Simple architecture model: lump the energy/power with the source component

(32)

Summary

- Two major classes of energy/power dissipation
 static and dynamic
- Managing energy is different from managing power → leads to different solutions
- Technology plays a major role in determining relative costs
- Energy of components are often estimated using approximate models of switching activity

(33)

Georgia Tech

Study Guide

- Explain the difference between energy dissipation and power dissipation
- Distinguish between static power dissipation and dynamic power dissipation
- What is the impact of threshold voltage on the delay and energy dissipation?
- As you increase the supply voltage what is the behavior of the delay of logic elements? Why?
- As you increase the supply voltage what is the behavior of static and dynamic energy and static and dynamic power of logic elements?

(34)

Study Guide (cont.)

- Do you expect the 0-1 and 1-0 transitions at the output of a gate to dissipate the same amount of energy?
- For a mobile device, would you optimize power or energy? Why? What are the consequences of trying to optimize one or the other?
- Why does the energy dissipation of a 32-bit integer adder depend on the input values?
- If I double the processor clock frequency and run the same program will it take less or more energy?

(35)

Georgia Tech

Study Guide (cont.)

- When the chip gets hotter, does it dissipate more or less energy? Why?
- How can you reduce dynamic energy of a combinational logic circuit?
- How can you reduce static energy of a combinational logic circuit?

(36)

Dynamic Energy Dynamic Power Load capacitance Static Energy Static Power Glossary Time constant Threshold voltage Switching delay Switching energy Static Power