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Reading

* This lecture covers Chapter 4, “Statistical Characteristics of Power
Traces,” of Power Analysis Attacks: Revealing the Secrets of Smart
Cards by Mangard et al., 2007, ISBN-13: 978-0-387-30857-9, ISBN-10:
0-387-30857-1, e-ISBN-10: 0-387-38162-7

 Specifically, sections 4.1,4.2,4.3 and 4.4

» Georgia Tech has purchased the right for students to download books

published by Springer, so you can download a pdf file

* All figures in this lecture are from the aforementioned manuscript



Questions A Wer@?by This Lecture

Y — R
* If one measure@% energy consumption or power of a microchip,

what do the power traces reveal?

* What is the statistical methodology used to reveal the information
claimed to have been learned?

128 6its
G- bt Gedd
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Energy Consumption / Power

* See lecture 22 (the next lecture) and your previous coursework, but
the overall result is that energy consumption and power are based in
part on actual bit values

* Consider an operation dependent on the most significant b|t MISB)
value of a register, e.g., rotate left shift (als
e |f MSB =1, shift left and XOR W|th 0x000002001; o.w., shift left one bit

* Such an operation will have differentfoower traces with many ones

versus few O 5 ‘ DD D DDO‘&
DX DOOETZ [ |




Execution Time

* Consider a processor without a barrel shift assembly instruction

* To implement barrel (rotate) left shift, assembly code must be written
to test the MSB and, if the MSB is a one, exclusive-or a one after

(non-rotate) left shift by one
* Such code will have data-dependent delay which can be measured
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Differential Power Analysis (DPA) W

‘A

* Consider an encryption chip with an embedded key not revealed, but
the hardware is in the possession of an adversary

* |dea: if a key-dependent energy consuming operation can be isolated
and executed 1000 times, perhaps the power traces can be added
and subtracted appropriately based on (i) knowledge of the exact
plaintext values input to encryption and (ii) a guess of the key value

* Notice that a substitution box (S-BOX or just “S”) in AES takes in an 8-
bit value and outputs an 8-bit value

* With a power model, predict the power trace and energy
. e .
consumption values, then make statistical comparisons
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Key Insight ( U \(\\Y,@\,\A_QQ)

* Since 8 bits of the key are used per S-BOX, 256 experiments can
reveal 8 bits of the key

e For a 128-bit key, 16 sets of these 256 experiments can reveal the full
128 bits

* This is 16*256 which is much smaller than 2128

* The hardware does not in general enforce 128 bits to be considered

asaunit,ont
—_ —
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Power Analysis

* Cryptographic operations executed on microchips exhibit variations in
energy consumption/power

* Note that power is a rate of energy consumption, i.e., joules per second

* The energy consumption of microchip implementations of cryptography
depends on the data values (P,,,,) and the specific operations (typically

hematical or memory storage) performed (P p)
()\q@? e is also anjelectrical nmchomponent (P, . ...) and constant (P

el. noise const)

total op i data Pel noise const
* This o;e | may ay be refined for certain situations, but suffices for most

* Note that cryptographic information may be revealed by P,, and P,

— ee———
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Figure 3.9. Picture of the meaSurement setup for the™dttacks on the 8-bit microcontroller.




Example Power Measurement Setup

* The previous slide shows the microcontroller power measurement
setup of Mangard et al.

* Microcontroller power supply is 5V and clock frequency 11 MHz

* VVoltage drop across a 1 Q2 resistor connected to the power supply
(Gnd) is measured by an oscilloscope

* Oscilloscope can sample 8 hits of resolution every nanosecond (GHz)

* Typically measure every four ns in experiments (250 Million Samples
per second or MS/s)




Consider a Single Point in a Power Trace

 Amomentin time

—
* Aim to determine the probability distributions o} Pop )Pdam)anj P,/ noise /

eV g
T
Q:’I\\ A\ W
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Figure 4.1. Power traces look very similar  Figure 4.2. Histogram of the power con-
if the same data is processed. sumption at 362 ns of Figure 4.1.
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Figures 4.1 and 4.2 from Mangard et al.

* Fig. 4.1 shows five power traces with the same data and instruction
(a load of a byte of data with value zero from on-chip memory to a

register) ,6 é /é =

* The differences in the power traces are due to noise

* Fig. 4.2 shows a histogram of 10,000 power traces of the same
operation considering the Voltage across the resister (recall P=IV and
| is typically a constant)

* Most of the measurements are near 112 mV
* Very few measurements are below 109 mV or above 115 mV




Gaussian (a.k.a. Normal) Distri

/;(x) - Zlna 8_71(%)2,7

Tu=EX) N

e 02 = Var(X) = E((X ~ E(X)?) /A= 0

 X~N(u, o) means that X is normally distributed (has a Gaussian
distribution) with mean.\ nd standard deviation o
* Thg “standard normal distribution” has u=0and o =1

=\

\6\5Q€

| —
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Back to Ou6Exper|ment t362 NS
—~\0,00
\‘\ * We can estimate u = E(X) with the

— —

1
*X :_Z?zlxi Y

n

ea empiricCa

* We can estimate 0 = \/Var(X) with the square root of the variance

also calcu piricatiy:
1 —
.« g2 — —_yn _ x}z

i=1\Xi —

following is calculated from the 10,000 traces

* Thus, X~N(111.86,1.63) where the units are |II|voIt\

X =X N(MHYT ) .
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Figure4.3. 'The ndrmal distribution N/(111.86, 1.63) models the power consumption at 362 ns
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(orossspie o \RC/ \Aw/ 'm?

* From our current experimeén Kns:lt—ﬁg of 10, OO executions of the
same memory operation with a data value of zero, we find
« EP,.,..)= 111.86 mV -

* E(Pop))= E(Pdata, = E(Pel. noise)= 0
* Var('Dconst) =0

* Since the operation executed and the data used do not change, Var(P,,) =

Var(Pdam) 0
%a“"Q LVMAA

e/ noise N(O 1. 63)

*
Q J
}
D u ©Georgia Institute of Technology, 2018-2025 / 17
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Next: Data Dependence

* Instead of moving a constant zero from memory to a register location
as was done for estimating the distribution of noise on the power pin
of this microcontroller, we now vary theight bit memory data value
among all 256 possible values

/
* 200 measurements for each value = 256* 200 = 51 200 total
measurements

* Again, let us look at what happens at 362 ns

* (Quick note before we continue: this discussion will assume large
amounts of encrypted data values which are evenly distributed
among all possibilities, e.g.,zero does not occur mare often than any
other number; another way to say this is that data values are
unlformly distributed)
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Figure4.4. “Histogram of the power consumption at 362 ns if different data values are transferred
from the mtemal memory to a register.
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Histogram Comments on Figure 4.4

* A precise description (close to exact) is not possible with a single
Gaussian

* However, upon further inspection, there do appear to be nine
Gaussians

* Why could this be?

* Answer: consider the Hamming Weight (HW), i.e., the weight (counted in bits)
between each possible data value and zero

* NOTE: Mangard et al. define HW as the Hamming distance between a
binary data value and zero (i.e., the same number of bits but all zeros)

* For a Byte, the possible HW values are 0, 1, 2, 3,4, 5, 6, 7 and 8




5600000 (TOTAR-L, % N

00000001, 00000010, ..., 10000000 (IOTAL:Q) | } L o \

* HW 7:11111110, 11111101, ..., 01111111 (f(gtalzsﬂ % \ \,; q,

W 8:11111111 (TOTAL 1)

9 Result is a binomial distribution W\Q
* Probability of HW 4 is 27.3%, HW 3 or 5 have an equal probability of 21.9%,

..., HW 1 or 7 have a pﬁ)‘ﬁé‘bility of 3.125%, HW 0 or 8 have probability 0.39%
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Explanation for Figure 4.4

* Function of HW
* The greater the Hamming distance from 0b1111111 the greater the energy
consumption P,,,

* Add in Pe/. noise

* Load and store instructions in any ISA are known to have a large HW
energy consumption component due to the way SRAMs are designed
* Rows and columns have to be charged and discharged in an array of 6T single
bit memory elements
» Sense amplifiers are used to detect when a 1 is overpowered by a 0 and vice-
versa

* Furthermore, for this microcontroller, bus lines are precharged to 1 each time,
so case 0b11111111 (HW 8 measured from zero) has the least power

©Georgia Institute of Technology, 2018-2025 24



Question: How to Remove the Noise?

e Calculate the mean voltage for each HW

e In this example, find 111.9, 117.6, 123.2, 128.7, 134.0, 139.5, 145.1,
151.2 and 159.6 (all in mV)

e Earlier we found that P

el. noiseNN(0J1'63); i-e-; we know that o = s =
1.63 mV

©Georgia Institute of Technology, 2018-2025
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Question: How to Remove the Noise?

* Calculate the mean voltage for each HW

* In this example, find 111.9, 117.6, 123.2, 128.7, 134.0, 139.5, 145.1,
151.2 and 159.6 (all in mV)

* Earlier we found that P, , ..
1.63mV

* Answer: we cannot remove the noise
* This is due to the fact that the noise has u =0, i.e., E(P,; ,,ie) =0

~N(0,1.63), i.e., we know that g = s =

* However, we can account for the noise statistically!
e g=163mV



Result

e Can superpose nine Gaussian distributions to accurately model the
measurements

©Georgia Institute of Technology, 2018-2025
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Figure 4.5. The distribution of the power consumption when the microcontroller transfers
different data from the internal memory to a register.
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Nine Gaussian Distributions

* Mangard et al. propose the following on page 68
* E(P,,,) = 134 mV for each of the nine distributions

cons
* E(P,,.,) = 0 overall (for the combination of the nine distributions)

* Taken individually, -22.67,-16.92, -11.35, -5.86, -0.49, 4.96, 10.53, 16.68 and 25.12 mV
* Each HW has a Gaussian weighted by the binomial distribution of P,

* Figure 4.4 shows the result where the sum under the curve results in
a total of 1 (i.e., the sum of the probabilities sums to 1)

©Georgia Institute of Technology, 2018-2025
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Next: Energy Consumption per Operation

 Similar to previous, but now alter the ISA operation type

» Some operations, e.g., load and store or add and subtract, can be grouped
together

* Some operations are very specific, e.g., floating point multiply
* Also may have to account for multicycle operations
* As stated in the book, the result is that P, can also be approximated

reasonably accurately for this microcontroller (and many other instruction-set

architectures or ISAs) by a Gaussian distribution

©Georgia Institute of Technology, 2018-2025

31



Signal t?Nmse Ratlo{i‘ . +@ n

* Two questlons what information is the attacker seeki see ker seeking and wha
the points of a power trace provide towards revealing this
information?

* We begin with a distinction between exploitable power measurement
dat hich must be due to either P, or Pop

* The aspects of P, and/or P,, which may not be exploitable, e.g., due to
various bits switching back and forth not under observation are called P

switchin
O g
* Therefore P exp 2 Pswitching(% Pdal'a t POP J
* Furthermore, P,,, =' Pexp + Pswitching SP

+ P

el. noise const

©Georgia Institute of Technology, 2018-2025 32



SNR Continued

Vo

« SNR = Var(Slgnal)
Var(Noise)
var(P.,, )
* SNR = =z
var(P switching +P el. noise)

W»M
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Example

* A processor operates on an Eiblt value where each blt is independent
and uniformly distributed

* Assume that the value of the second bit is always the complement of
the first bitin the ex nts carried ou

* E.8.{ ObXXXX XX X,0 Angl ObYVOYeY, YoV Y,
in our ana ysn

"1 where the first bit considered
e second bit considered in our

se of the LSB U and
analysis is the case of the LSB =1

* The other 14 bits are independent and uniformly distributed

|
/- P, consists of the energy consumed by the LSB

A- Pesiich consg/sts of the energy consumed by the rest of the bits
?/ J )/\
\
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Example (continued) } 0 gm@\/ \JC\\\/\ﬁ

* We have|51,200 power traces as computed already earlier L
* Select the 25,600 traces with LSB = 1 ;{/>

* Figure 4.6 shows the resulting histogram at 362 ns

©Georgia Institute of Technology, 2018-2025 35



/—
o)
-
o
T
)

3] | i
@ | By
IS A
5 400 \ :
o
) 7§
=
S 200} .. :
o

0

\120

7
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the LSB of the byte that the microcontroller processes. This noise is approximately normally
distributed.
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NOTE: Recall that we have defined P

switching

to be identical to (i.e., another name for) P 36

SW. noise
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Fig. 4.6 has a binomial distribution V\\
includes P =

el. noise

shown,\ part ularsince we assume data is unﬂﬁr’rﬁlﬁmrrb‘uted%>

e The result isto =

find that o of Py ping + Per. noise = 7-54 mV

+ P, noise)‘= (LS4 mV)? = 56.85 mV?
* Also, earlier we found that o of P, ;.. for one bit = 1.63 mV

=(1.63 mV)? = 2.67 mV?

¢ Hence; Var(Pswitching
——

¢ Hence, Var(Pel. noise)
T~

©Georgia Institute of Technology, 2018-2025
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AR ‘
Table 4.¥ Variance of the ﬁl@ﬂ@lﬁf@power consumption according to the models

discussed in (4.1) a@ (4.8).

9 : \ Varjance VYI v
A\ Component -bit scenario || 1-bit Scenalj/

Pdata, 61.12 61.12

[ A

Pop 0.00 0.00 ’
_ P | 267 2 67 gzééééFL
(/ Pewy 61.12 6.87 /
2.67

Fowenpise T el maise 56.85 \ 0 )/

RN,




Comparison

* SNR is much higher for 8-bits than for 1-bit
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Mean Traces for the 9 Different Hamming Weights
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Figure 4.7. The signal levels, the standard deviation of the noise, and the SNR when attacking
a uniformly distributed 8-bit data value on our microcontroller.
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Mean Traces for LSB=0 and LSB=1
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Correlation and Covariance

* Two points are correlated if they vary together in a related way
e Statistical measure: covariance

* Cov(X,Y) = E[(é(-E(X)]) *(Q-E(Y?] = E(XY) — E(X)E(Y)

* Theoretical and empirical formulas:
. . Cov(X,)Y)
pXY) = Jvar(X)=Var(Y)

- 2it1 (xi—X)*(vi=Yi)
I im0 E 7

* As defined, the correlation coefficient p varies between -1 and 1, i.e.,
-1<p<landalsothus-1<r<1
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