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Reading

• Please read chapter 17.4 and 17.6 of the course textbook by Schneier
• Please also note that these lecture notes contain significant additional 

content not in Schneier
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Math Background: Definitions

• A group (G,*) consists of a set G with a binary operation * on G satisfying the 
following three axioms:
i. The group operation is associative: a*(b*c) = (a*b)*c for all a, b, c ϵ G
ii. There is an element 1 ϵ G, called the identity element, such that a*1=1*a=a for all a ϵ G
iii. For each a ϵ G there exists an element a-1 ϵ G, called the inverse of a, such that a*a=a*a=1

• A group G is Abelian (or commutative) if, furthermore,
iv. a*b = b*a for all a, b ϵ G
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Math Background: Definitions continued

• A ring (R,+,×) consists of a set R with two binary operations arbitrarily denoted 
+ (addition) and × (multiplication) on R, satisfying the following axioms:
i. (R,+) is an Abelian group with identity denoted 0.
ii. The operation × is associative: a × (b × c) = (a × b) × c for all a, b, c ϵ R
iii. There is a multiplicative identity denoted 1, with 1 ≠ 0, such that 1×a=a×1=a for all a ϵ R
iv. The operation × is distributive over +.  That is, a × (b + c) = (a × b) + (a × c) for all a,b,c ϵ R

• The ring is a commutative ring if a × b = b × a for all a, b ϵ R
• A field is a commutative ring in which all non-zero elements have multiplicative 

inverses
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Notation

Qi
=

D Q

QClk
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LFSR Notation 1

• Some authors call this type of LFSR “external-XOR”; others “Fibonacci”
• For n FFs, the initial state is a0, a-1, a-2, …, a-n

• Note that we always have c0 = 1 (feedin to register Q1) and cn = 1, i.e., 
the switch for the last tap makes a feedback connection

• (cn = 0 would imply connection to ground)

Q1

c1
Q2

c2
Q3

cn

a-1a0 a-na-2

c0
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LFSR Notation 2

• Some authors call this type of LFSR “internal-XOR”; others “Galois”
• For n FFs, the initial state is a0[0], a1[0], a2[0], …, an-1[0] 
• Note that we always have c0 = 1 (feedin to the first register) and   

cn = 1, i.e., the output for the last register is always fed back

D Q

QClk

a1[t]

c2

D Q

QClk

a0[t]

c1c0

D Q

QClk

a2[t]

c3
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Bit vectors as field elements

Example 1.  Let the state of the n-bit Linear Feedback Shift Register (LFSR) above be expressed as 
A(x)[t] = ௡ିଵ ଶ ଵ ଴ which can be represented in polynomial space as 

௡ିଵ
௡ିଵ

ଶ
ଶ

ଵ ଴ where ௜, , is indeterminate, i.e., ௜ is not 
evaluated numerically but indicates position – specifically, ௜ is the output of flip-flop ௜ and 
thus ௜ is the coefficient associated with ௜ in the polynomial.  Polynomial addition and 
multiplication are formed with coefficients added modulo 2, i.e., with exclusive-OR logic.  Each 
clock causes this LFSR to perform polynomial modulo on A(x)[t] shifted by one flip flop (i.e., 
multiplied by 𝑥) with the modulo polynomial 𝑐௡𝑥௡ + 𝑐௡ିଵ𝑥௡ିଵ + ⋯ + 𝑐ଶ𝑥ଶ + 𝑐ଵ𝑥 + 𝑐଴ which is also 
known as the characteristic polynomial P(x) of the LFSR. 

Clk

a1[t]

c2

D0 Q0

Q0Clk

a0[t]

c1c0

Clk

a2[t]

c3

D1 Q1

Q1

D2 Q2

Q2



©Georgia Institute of Technology, 2018-2025 9

Bit vectors as field elements (cont’d)

A(x)[t] = ௡ିଵ ଶ ଵ ଴ which can be represented in polynomial space as 
௜

௜௡ିଵ
௜ୀ଴ ௡ିଵ

௡ିଵ
ଶ

ଶ
ଵ ଴

A(x)[t+1] = ௡ିଵ ଶ ଵ ଴ = xA(x)[t] mod P(x)

௜
௜௡

௜ୀ଴ = 𝑥௡ + 𝑐௡ିଵ𝑥௡ିଵ + ⋯ + 𝑐ଶ𝑥ଶ + 𝑐ଵ𝑥 + 1 since we always have ௡ = 1 and ଴ = 1

Clk

a1[t]

c2

D0 Q0

Q0Clk

a0[t]

c1c0

Clk

a2[t]

c3

D1 Q1

Q1

D2 Q2

Q2
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Example 1

Q1 Q2
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Example 2

Clk

a1[t]
D0 Q0

Q0Clk

a0[t]

c1c0 c2

D1 Q1

Q1
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Example 2

Clk

a1[t]
D0 Q0

Q0Clk

a0[t]

c1c0 c2

D1 Q1

Q1

A(x)[t] = 𝑎ଵ[𝑡], 𝑎଴[𝑡] = ∑ 𝑎௜[𝑡]𝑥௜௡ିଵ
௜ୀ଴

 = 𝑎ଵ[𝑡]𝑥 + 𝑎଴[𝑡]
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Example 2

Clk

a1[t]
D0 Q0

Q0Clk

a0[t]

c1c0 c2

D1 Q1

Q1𝑃 𝑥 = ∑ 𝑐௜𝑥௜௡
௜ୀ଴ = 𝑥ଶ + 𝑐ଵ𝑥 + 1

A(x)[t] = 𝑎ଵ[𝑡], 𝑎଴[𝑡] = ∑ 𝑎௜[𝑡]𝑥௜௡ିଵ
௜ୀ଴

 = 𝑎ଵ[𝑡]𝑥 + 𝑎଴[𝑡]
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Example 2

Clk

a1[t]
D0 Q0

Q0Clk

a0[t]

c1c0 c2

D1 Q1

Q1𝑃 𝑥 = ∑ 𝑐௜𝑥௜௡
௜ୀ଴ = 𝑥ଶ + 𝑐ଵ𝑥 + 1

A(x)[t+1] = ଵ ଴ = xA(x)[t] mod P(x)

A(x)[t] = 𝑎ଵ[𝑡], 𝑎଴[𝑡] = ∑ 𝑎௜[𝑡]𝑥௜௡ିଵ
௜ୀ଴

 = 𝑎ଵ[𝑡]𝑥 + 𝑎଴[𝑡]
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Example 2

Clk

a1[t]
D0 Q0

Q0Clk

a0[t]

c1c0 c2

D1 Q1

Q1𝑃 𝑥 = ∑ 𝑐௜𝑥௜௡
௜ୀ଴ = 𝑥ଶ + 𝑐ଵ𝑥 + 1

A(x)[t+1] = ଵ ଴ = xA(x)[t] mod P(x)

A(x)[t+1] = ଵ ଴ mod x2+x+1

A(x)[t+1] = ଵ
ଶ

଴ mod x2+x+1

A(x)[t] = 𝑎ଵ[𝑡], 𝑎଴[𝑡] = ∑ 𝑎௜[𝑡]𝑥௜௡ିଵ
௜ୀ଴

 = 𝑎ଵ[𝑡]𝑥 + 𝑎଴[𝑡]
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Example 2

Clk

a1[t]
D0 Q0

Q0Clk

a0[t]

c1c0 c2

D1 Q1

Q1𝑃 𝑥 = ∑ 𝑐௜𝑥௜௡
௜ୀ଴ = 𝑥ଶ + 𝑐ଵ𝑥 + 1

A(x)[t+1] = ଵ ଴ = xA(x)[t] mod P(x)

A(x)[t+1] = ଵ ଴ mod x2+x+1

A(x)[t+1] = ଵ
ଶ

଴ mod x2+x+1

A(x)[t+1] = ଵ ଴ ଵ = ଵ ଴ ଵ = ଵ ଴

A(x)[t] = 𝑎ଵ[𝑡], 𝑎଴[𝑡] = ∑ 𝑎௜[𝑡]𝑥௜௡ିଵ
௜ୀ଴

 = 𝑎ଵ[𝑡]𝑥 + 𝑎଴[𝑡]
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Example 3

Clk

a1[t]

c2

D0 Q0

Q0Clk

a0[t]

c1c0

Clk

a2[t]

c3

D1 Q1

Q1

D2 Q2

Q2
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Linear Feedback Shift Register (LFSR) Example 4

Example 2: Consider an LFSR (with the notation as defined) with n = 3, ଶ=1 and ଵ=0.

Input:
Output:

000

000
LFSR: 
P(x) = x3 + x2 + 1
Update 
implemented by 
flip flops = x

=
Clk

a1[t]

c2

D0 Q0

Q0Clk

a0[t]

c1c0

Clk

a2[t]

c3

D1 Q1

Q1

D2 Q2

Q2
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• Start with [001] = 1, multiply by x each iteration, 
and mod by characterisitic polynomial x3+x2+1.

BinaryResult after 
% x3+x2+1

UnsimplifiedOperation

010xx1 * x

100x2x2x * x

101x2 + 1x3x2 * x

111x2 + x + 1x3 + x(x2 + 1) * x

011x + 1x3 + x2 + x(x2 + x + 1) * x

110x2 + xx2 + x(x + 1) * x

0011x3 + x2(x2 + x) * x

Modulo by the characteristic polynomial

000

001

010110

100011

101111
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Linear Feedback Shift Register (LFSR) Example 5

Example 3: Consider an LFSR (with the notation as defined) with n = 3, ଶ=0 and ଵ=0.

 LFSR: 
P(x) = x3 + 1
U = x

=

111110101100011010001000

111101011001110100010000
Input = 𝒂𝟐(𝒕), 𝒂𝟏(𝒕), 𝒂𝟎(𝒕)
Output = 𝒂𝟐(𝒕 + 𝟏), 𝒂𝟏(𝒕 + 𝟏), 𝒂𝟎(𝒕 + 𝟏)

Clk

a1[t]

c2

D0 Q0

Q0Clk

a0[t]

c1c0

Clk

a2[t]

c3

D1 Q1

Q1

D2 Q2

Q2
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• Start with [001] = 1, multiply by x each iteration, 
and mod by characterisitic polynomial x3+1.

BinaryResult after 
% x3+1

UnsimplifiedOperation

010xx1 * x

100x2x2x * x

0011x3x2 * x

110x2 + xx2 + x(x + 1) * x

101x2 + 1x3 + x2(x2 + x) * x

011x + 1x3 + x(x2 + 1) * x

111x2 + x + 1x3 + x2 + x(x2 + x + 1) * x

Modulo by the characteristic polynomial

010100

001

101011

110

111

000
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LFSR Polynomial Notation

• An LFSR implements multiplication in a polynomial field
• Let A(t) be the current state of the LFSR 
• A(t) = ଶ ଵ ଴ which can be represented as ଶ

ଶ
ଵ ଴

• Let the feedback polynomial be P(x)
• A(t+1) = (xA(t)) (mod P(x))
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Polynomial Modulus
• Polynomial space

• E.g., for a 3-bit register, polynomial values range over ଶ
ଶ

ଵ ଴ where 
௜

• Each ௜ is a position placeholder, i.e., each ௜ maintains a position 
(as opposed to a numerical value)

• The values ଶ ଵ ଴ repeat themselves (i.e., for the current state 
of the next state is also ), so this state is referred to as an 
absorbing state and is not considered in the analysis of total number of states 
reachable by the LFSR

• Two polynomials a(x) and b(x) are congruent modulo m(x) if they 
leave the same remainder upon division by m(x); this may be 
expressed as a(x)  b(x) (mod m(x))
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Irreducible and Primitive Polynomials
• A polynomial ௡

௡ିଶ
௡ିଵ

ଵ
ଶ

଴ is said to have order n
• A polynomial a(x) of order n is said to be irreducible if there does not exist any 

b(x) of order , , such that a(x) / b(x) yields remainder zero
• A major question is when does a characteristic polynomial P(x) yield a full 

period of ௡ for an n-bit LFSR; a necessary but not sufficient condition is 
that the characteristic polynomial be irreducible

• Theorem: assuming nonzero initial state, an autonomous LSFR’s period is the 
smallest integer k for which P(x) evenly divides ௞ (i.e., there is no 
remainder)

• Given that the zero state in an autonomous n-bit LFSR repeats infinitely, the 
maximum size of a periodic state sequence is ௡

• Definition: a primitive polynomial yields a full period of ௡

• Clearly, then, a primitive polynomial P(x) evenly divides  ଶ೙ିଵ
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Examples
• Consider Example 3: n = 3, ଵ = 0 and ଴ = 0  P(x) = ଷ

• If we try k = 2, the result is ௞ = ଶ and P(x) does not evenly 
divide ଶ

• If we try k = 3, the result is ଷ and clearly P(x) divides itself and so 
the maximum period is 3!  However, since n = 3, the maximum period 
possible is larger (specifically, ௡ = 7)

• So consider Example 2: n = 3, ଵ = 1 and ଴ = 0  P(x) = ଷ ଶ

• If we try k = {2,3,4,5,6}, they all fail (i.e., the remainder is nonzero)

• If we try k = 7, the result is ଻ , and ௫
ళାଵ

௉(௫)
ସ ଷ ଶ with 

no remainder
• Clearly, P(x) = ଷ ଶ is primitive!
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How Many and How to Generate?
• There is a known mathematical formula for the number of primitive 

polynomials; the formula uses the Euler totient function [Handbook 
of Applied Cryptography (HAC) by Menezes, et al.]

• For example, for = 32, ௡ = ଷଶ 4,294,977,296, but there are 
67,108,864 primitive polynomials

• To test for a primitive polynomial, one approach is to simulate the full state 
sequence of ௡ , but this is not possible for large 

• Another approach to test for a primitive polynomial requires ௡ to 
have a known factorization

• If ௡ does not have a known factorization, there is no known efficient 
(i.e., polynomial time or faster) algorithm to test if the smallest for which 
P(x) divides ௞ with no remainder is when ௡

• In other words, given a candidate P(x) of order , if  ௡ does not have a 
known factorization, then there is no known efficient algorithm to test if 
P(x) is a primitive polynomial [HAC, pg. 157]
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LFSR implements polynomial modulus

• A(t+1) = (xA(t)) (mod P(x))
• This is a known result
• If the characteristic polynomial P(x) is a primitive polynomial, then 

the period of the -bit LFSR is ௡ , i.e., is full period
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Impact Scenarios

• Smart cards
• Low power IoT devices
• Trusted Platform Module (TPM) design
• Bump-in-the-wire interfacing devices in the power grid
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Some Comments on the Notation
• The first bit input to the first FF (with output Q1) is a0 at time zero
• The output of the first FF is the input to the first FF at the previous 

time step; if the current clock step is zero, let’s call the previous time 
step -1; hence the output of the first FF at time zero is a-1
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Q1

c1
Q2

c2
Q3a-1a0 a-3a-2

c3=1
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Q1

c1
Q2

c2
Q3

c3=1

Configurable Linear Feedback Shift Register



Initial State

• The input to the first FF is a bit value which is a function
• Each FF output defines a bit

• How many distinct values can the three output bits exhibit?
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Q1

c1
Q2

c2
Q3a-1a0 a-3a-2

c3=1



A Degenerate Case

• Suppose the initial state is all zeros, what happens each clock cycle?
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Q1

c1
Q2

c2
Q3

c3=1



A Question

• We must omit the initial state (IS) of all zeros from this design
• We also must omit any state of all zeros – otherwise the state will 

never change again!
• So for this design we cannot choose c1, c2 and c3 such that all 2n = 23 = 

8 states are used; can we achieve 2n - 1 = 7?
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An Answer

• Yes!
• The characteristic polynomial associated with the LFSR must be a so-

called primitive polynomial
• We will not cover the theoretical details of these polynomial 

describing an LFSR
• But you should be able to work out examples of LFSR bit sequences



Current State

• Clock cycle m

• For n FFs, the sequence is am, am-1, am-2, …, am-n
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Q1

c1
Q2

c2
Q3

c3

am-1am am-3am-2



Addition Modulus 2
• Note that binary addition modulus 2 becomes XOR

• am = c1am-1 + c2am-2 + c3am-3 (mod 2) = c1am-1  c2am-2  c3am-3

• Similarly, binary multiplication becomes AND
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Q1

c1
Q2

c2
Q3

c3

am-1am am-3am-2
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“Internal-XOR” Linear Feedback Shift Register

Data
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Linear Feedback Shift Register Example Input

0110

1100

0011

Initial State

Cycle 1

Cycle 2

111110101011010

XOR 
Gate
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Q

QSE T

CLR

D

Q

QSE T

CLR

D

Q

QSE T

CLR

D

Q

QSE T

CLR

D

Q

QSE T

CLR

D

Q

QSE T

CLR

D

Q

QSE T

CLR

D

Q

QSET

CLR

D

Q

QSE T

CLR

D

Q

QSE T

CLR

D
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Shift Register Based Hash Function: LFSR
Linear Feedback Shift Registers (LFSRs):
• Are composed of XOR gates and D-

flip-flops,
• Can be used as pseudorandom 

sequence generators,
• Do polynomial division,

• Where H is a polynomial with 
coefficients in GF(2) representing the 
final register state, I is another such 
polynomial representing the initial 
state, and P is another such polynomial 
representing the feedback function:

• H = (x · I) mod P

• Have maximum period when the 
feedback polynomial is primitive,
• an irreducible polynomial that that 

divides x2^n – 1 + 1, but not xd + 1 for any 
d that divides 2n – 1

• And can be Fibonacci (internal-XOR) 
or Galois (external-XOR) type
• Galois is typically faster to implement 

in software
• Galois output is the reverse of 

Fibonacci output
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Galois Field

• Finite field with pn elements where p is a prime number and n is a 
positive integer

• Usual operations on integers, then mod p
• GF(2)

Mod-2 (xn + xn = xn – xn = 0)
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Binary Operations

Mod-2 (xn + xn = xn – xn = 0)
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Example 6:



Generating Function

• With no external input, we have an autonomous LFSR
• We can associate each ai with a distinct coefficient in a polynomial
• We use variable x in the polynomial, but x is never assigned any value
• In a way, x keeps track of time where the power indicates the clock 

cycle (except for zero which indicates the input to the first FF)
• G(x) is an infinite sequence
• G(x) = a0 + a1x1 + a2x2 + … + amxm + … = ௠

௠
௠ୀ଴

• Note that there is an initial sequence where a0 works its way from the 
input to the output; this initial sequence is n clock cycles long
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Example 7
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Q1

c1
Q2

c2
Q3

c3=1
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Example 8

Q1

c1
Q2

c2
Q3

c3=1
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Example 9

Q1

c1
Q4Q3

c3
Q2

c2 c4=1



Some Mathematical Results
• ௠ ௜

௡
௜ୀଵ ௠ି௜

• E.g., if n = 3 then am = c1am-1 + c2am-2 + c3am-3

• ௠
௠

௠ୀ଴ ௜
௡
௜ୀଵ ௠ି௜

௠
௠ୀ଴ ௜

௜
௠ି௜

௠ି௜
௠ୀ଴

௡
௜ୀଵ

• ௜
௜

ି௜
ି௜

ିଵ
ିଵ

௠
௠

௠ୀ଴
௡
௜ୀଵ

• ௜
௜

ି௜
ି௜

ିଵ
ିଵ௡

௜ୀଵ

• ௜
௜௡

௜ୀଵ ௜
௜

ି௜
ି௜

ିଵ
ିଵ௡

௜ୀଵ

• 
∑ ௖೔௫೔(௔ష೔௫ష೔ା⋯ା௔షభ௫షభ)೙

೔సభ

ଵା∑ ௖೔௫೔೙
೔సభ

, which for a-i = 0 except a-n = 1

•  ௖೙௫೙(௔ష೙௫ష೙) 

ଵା∑ ௖೔௫೔೙
೔సభ

= ଵ

ଵା∑ ௖೔௫೔೙
೔సభ

since cn = 1 always for an n-bit LFSR

• The denominator is referred to as the characteristic polynomial of the sequence:
• P(x) = 1 + c1x + c2x2 + … + cnxn
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Some Mathematical Results (Continued)

• recall ௠
௠

௠ୀ଴ = a0 + a1x + a2x2 + … + amxm + …
• and if we choose initial state (IS) a-1 = 0, a-2 = 0, …, a-(n-1) = 0, a-n = 1

•  ଵ

ଵା∑ ௖೔௫೔೙
೔సభ

ଵ

ଵା௖భ௫ା௖మ௫మା⋯ା௖೙௫೙

ଵ

௉(௫)
and note G(x) periodic (say, p) 

•  ଵ

௉(௫)
= (a0 + a1x + a2x2 + … + ap-1xp-1) +

xp(a0 + a1x + a2x2 + … + ap-1xp-1) + x2p(a0 + a1x + a2x2 + … + ap-1xp-1) + …

•  ଵ

௉(௫)
= (a0 + a1x + a2x2 + … + ap-1xp-1 )(1 + xp + x2p + …)

௔బା௔భ௫ା௔మ௫మା⋯ା௔೛షభ௫೛షభ

ଵି௫೛
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Example 10
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Comments

• There can also be derived what is called the reciprocal polynomial 
P*(x) = xnP(1/x) = cn + cn-1x + cn-2x2 + … + c1xn-1 + xn

• As a result, this LFSR can be described by two types of polynomials
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Example 11
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Example 12
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Periodicity
• Maximum length of period p for an LFSR with n FFs is 2n – 1
• Theorem: Given an LFSR with initial state a-1 = 0, a-2 = 0, …, a-(n-1) = 0, a-n = 

1, the LFSR sequence {am} is periodic with the smallest integer k for which 
P(x) divides (1-xk)

• Note that “divides” in the theorem means there is no remainder 

• recall ଵ

௉(௫)

௔బା௔భ௫ା⋯ା௔೛షభ௫೛షభ

ଵି௫೛ , this implies ଵି௫೛

௉(௫)
𝑎଴ + 𝑎ଵ𝑥 + ⋯ + 𝑎௣ିଵ𝑥௣ିଵ

• Defn.: If the sequence generated by an LFSR with n FFs has period 2n – 1, 
then it is called a maximum-length sequence

• Defn.: the characteristic polynomial associated with a maximum-length 
sequence is called a primitive polynomial 
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More Comments

• We will not cover how to generate primitive polynomials
• However, the sequences they generate have the following properties:
• Property 1: given a sequence of m bits, the number of ones differs 

from the number of zeros by at most one
• Property 2: given a sequence of m bits, the number of runs of ones 

equals the number of runs of zeros
• Property 3: given a sequence of m bits, one half of the runs have 

length one, one fourth have length two, one eighth have length three, 
and so forth, as long as the fractions result in integral numbers of runs
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Signature Analyzers
• LFSRs can be used to compress test bit data (stuck-at fault testing)
• Consider an input of m bits: there are 2m possible inputs from the testing
• However, the n-bit LFSR can produce a periodic output with 2n possible out-puts 

(note the all-zero state is now allowed due to the presence of input)
• It has been shown that the number of bitstreams of length m that produce the 

same output of length n is 2m/2n

• Thus 2m/2n – 1 = 2m-n – 1 erroneous bitstreams exist that produce the same 
signature (i.e., there is a test failure but the n-bit output is identical to a passing 
value)

• Since there are 2m – 1 erroneous bitstreams possible, the proportion of erroneous 
bitstreams exist that produce the same signature is (2m-n – 1)/(2m – 1 )  2-n

• For n = 16, 100(1 – 2-n) = 99.9984 percent

©Georgia Institute of Technology, 2018-2025 60



©Georgia Institute of Technology, 2018-2025 61

Characteristic Polynomial
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• A MISR is an LFSR extended by including another input into each XOR 
gate

• A MISR can be used as a signature generator by having a message 
input block by block into the MISR and reading the final register state

• Key:
• The initial state of the register, and
• The fact that the MISR performs polynomial division.

• Where H is a polynomial with coefficients in GF(2) representing the final register 
state, I is another such polynomial representing the initial state, M is another such 
polynomial representing the input message, and P is another such polynomial 
representing the feedback function H = (x · I + M) mod P

Multiple Input Signature Register (MISR)
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MISR Example
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Linear Feedback Shift Register Example

Qi Qi Qi


