Crypto VIII: Two Attacks on Encryption Cryptographic Hardware for

Embedded Systems

ECE 3170

Fall 2025

Assoc. Prof. Vincent John Mooney III
Georgia Institute of Technology

Reading Assignment

- Please read Chapter 3 of the optional course textbook by Katz and Lindell
- NOTE that you are responsible for everything that is explained in lecture!!!

Notation from Katz and Lindell

- {X} is a set of elements of type X
- *m* is a message in plaintext
 - m is composed of smaller blocks m_i suitable for individual encryption steps
 - $m = \{m_i\}$
- c_i is ciphertext corresponding to message block m_i
- c is ciphertext corresponding to message m
- Enc_k is encryption with key k
 - $c \leftarrow Enc_k(m)$
- Dec_k is decryption with key k
 - $m \leftarrow Dec_k(c)$
- MAC_k is generation of a message authentication code t with key k
 - $t \leftarrow Mac_k(m)$ or, alternatively, $t \leftarrow Mac_k(c)$
- <a,b> is a concatenation of a followed by b

CONSTRUCTION 3.30 (page 83 in Ch. 3 of K & L)

- F_k is a pseudorandom function which varies with a key k
 - Note: we will not cover elliptic curves in this course, but F_k can be implemented by such curves (this is known as elliptic curve cryptography)
- A uniformly random *n*-bit key is selected and provided to the sender and receiver (but not to the adversary, of course)
- Enc_k: given an n-bit message m, choose a uniformly random n-bit number r
 - $c := \langle r, F_k(r) \oplus m \rangle$
- Dec_k : given length 2n ciphertext $c = \langle r, s \rangle$
 - $m := F_k(r) \oplus s = F_k^{-1}(c)$

Chosen Ciphertext Attack (CCA)

- Katz and Lindell define CCA indistinguishability in Section 3.7.1 (page 97 of the second edition of their book) as follows
- Generate a uniformly random key k of length n
- Adversary A is given oracle access to Enc_k and Dec_k but is not allowed to query the actual challenge ciphertext
- A chooses two messages m_0 and m_1
- $b \in \{0,1\}$ is chosen and is hidden from A
- $c \leftarrow Enc_k(m_b)$ is given to A
- Test: given c, can A distinguish which case was encrypted?
- For example, consider m_0 = a plaintext of all zeros and m_1 = a plaintext of all ones

The Adversary Wins

Approach:

- take s and flip the most significant bit, resulting in s'
- decrypt r, s'
- if the answer of decryption is a 1 followed by all zeros, the original message was all zeros
- if the answer of decryption is a 0 followed by all ones, the original message was all ones

Takeaway

- Any encryption scheme which allows ciphertexts to "manipulated" in any controlled manner or way cannot be CCA-secure
- It is better if encryption schemes have the property that if the adversary tries to modify a given ciphertext, the results decrypts to a plaintext having no relationship to the original plaintext
 - Is enough to have no detectable relationship, i.e., which can be detected by a sequence of steps including an algorithm written in computer code

RECALL: Cipher Block Chaining

- Use results of previous block encryption
- Typical use is based on exclusive-or (XOR)
 - For encryption where i > 1 (i.e., after the first block), $C_i = E_k(P_i \oplus C_{i-1})$
 - For decryption (except for the first block, i.e., $i \neq 1$), $P_i = C_{i-1} \oplus D_k(C_i)$

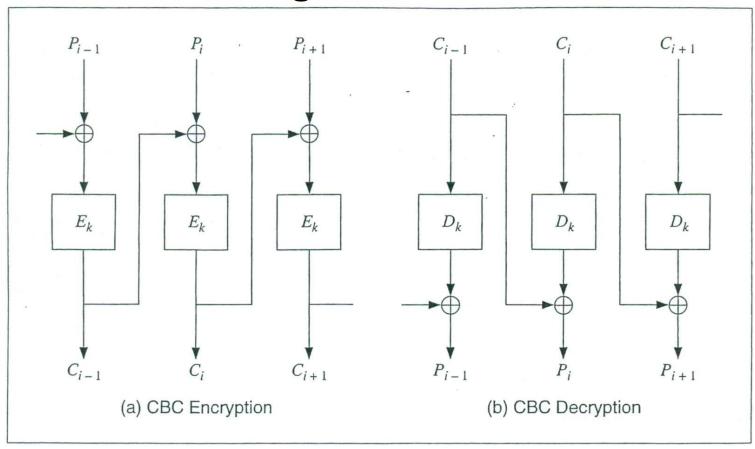


Figure 9.3 Cipher block chaining mode.

Insecure against the Padding Oracle Attack

- In the previous attack on the earlier slides, the adversary was given access to Enc_k and Dec_k but is not allowed to query the actual challenge ciphertext
 - Such access to Enc_k and Dec_k unlikely to happen in practice
- Here we consider an attack based on much less information
 - The adversary is informed if a modified ciphertext decrypts correctly
 - Such information is frequently easy to obtain
 - Retransmission request
 - Session termination
- "The attack has been shown to work in practice on various deployed protocols; we give one concrete example at the end of this section." (Page 98 of Katz and Lindell 2nd Edition, Section 3.7.2)

Set Up

- Cipher Block Chaining (CBC) mode, block length L (measured in bytes)
- Message m has some number of bytes but must be a multiple of L
- PKCS #5 padding
 - Let b be the number of bytes appended to m
 - Do not allow b = 0 in order to avoid ambiguous padding
 - If m is already a multiple of L, then add L bytes of padding
 - Append to the end of m a string containing b repeated b times
 - E.g., using hexadecimal format for each byte, if b = 1 then append 0x01
 - if b = 4 then append 0x04040404
- The padded message is then encrypted and sent

Decryption

- Padded data is decrypted using Construction 3.30 in CBC mode
- After decryption, the message is checked for correct padding
 - Simply read the last byte
 - The value b of the last byte should be repeated b times
- If the padding is found to be correct, it is stripped from the message
- Otherwise, a standard procedure is to return a "bad padding" error
 - E.g., in Java, javax.crypto.BadPaddingException
- Such an error message provides an adversary with a partial decryption oracle

The Padding Oracle Attack on a 3-block Message

- Attacker observes IV, c_1 , c_2 where IV is the Initialization Vector
- Let the correct message decrypted be m_1 , m_2
- Note that $m_2 = F_k^{-1}(c_2) \oplus c_1$ where key k is not known to the attacker
- Further note that m_2 ends in 0xb repeated b times

Attack Technique: Send IV, c_1' , c_2 for Decryption

- Let c_1 be identical to c_1 except for the final byte
- Consider IV, c_1' , c_2 : decryption will result in m_1' , m_2'
 - Will have $m_2' = F_k^{-1}(c_2) \oplus c_1'$
 - Recall $m_2 = F_k^{-1}(c_2) \oplus c_1$
 - $\Rightarrow m_2$ and m_2 differ only in the final byte
- Note that the value of m_1 has no discernable relationship to m_1 , but this will not matter for the attack to succeed
- Similarly, if c_1 ' is identical to c_1 except for byte i, then m_2 ' and m_2 differ only in the $i^{\rm th}$ byte
- In general, if $c_1' = c_1 \oplus \Delta$, then $m_2' = m_2 \oplus \Delta$

First Step: Discover the Padding Length

- Let c_1 be identical to c_1 except for the most significant byte of the total number of L bytes
- Send IV, c_1 ', c_2 : if there is a padding error, the message has length L bytes
- Otherwise now let c_1 " be identical to c_1 except for the second most significant byte
- Send IV, c_1'' , c_2 : if there is a padding error, the message has length L-1
- Otherwise now let $c_1^{\prime\prime\prime\prime}$ be identical to c_1 except for the third most significant byte
- Send IV, c_1 ", c_2 : if there is a padding error, the message has length L-2
- Otherwise...
- Continuing in this fashion, the padding length is discovered

Comment

- Note that we now have some of the plaintext of the final message
- Recall Cryptography Part I lecture:
- 2) Known plaintext attack
 - Cryptanalyst has a number of plaintext, ciphertext pairs
 - $(P_i, C_i) \mid C_i = E_k(P_i)$
 - May also have additional ciphertext without associated plaintext

Next Step: Discover the Final Message Byte

- We have currently that $m_2 = \dots$ B1 B0 0xb ... 0xb
 - Where message bytes ... B1 B0 are not yet known to the attacker
 - We aim now to discover the final message byte BO
- Recall that if $c_1' = c_1 \oplus \Delta$, then $m_2' = m_2 \oplus \Delta$
- Define $\Delta_i = 0x00 \dots 0x00 0xi 0x(b+1) \dots 0x(b+1)$ $\bigoplus 0x00 \dots 0x00 0x00 0xb \dots 0xb$
 - where $0 \le i < 2^8$
- Send IV, $c_1 \oplus \Delta_i$, $c_2 \Rightarrow m_2' = \dots$ B1 $0x(B0 \oplus i) 0x(b+1) \dots 0x(b+1)$
- Whenever $0x(B0\oplus i) = 0x(b+1)$ will not have a padding error anymore