Crypto VI: Message Integrity / Authentication Codes and Encryption Cryptographic Hardware for Embedded Systems ECE 3170

Fall 2025

Assoc. Prof. Vincent John Mooney III
Georgia Institute of Technology

Reading Assignment

- Please read Chapter 18 part 14 of the course textbook by Schneier
- Also NOTE that these lecture notes contain updated information not contained in the course textbook by Schneier – you are still responsible for understanding this lecture!!!

Notation from Katz and Lindell

- {X} is a set of elements of type X
- *m* is a message in plaintext
 - m is composed of smaller blocks m_i suitable for individual encryption steps
 - $m = \{m_i\}$
- c is ciphertext corresponding to message m
- c_i is a ciphertext block corresponding to message block m_i
- Enc_k is encryption with key k
 - $c \leftarrow Enc_k(m)$
- Dec_k is decryption with key k
 - $m \leftarrow Dec_k(c)$
- MAC_k is generation of a message authentication code t with key k
 - $t \leftarrow Mac_k(m)$ or, alternatively, $t \leftarrow Mac_k(c)$
- <a,b> is a concatenation of a followed by b

Message Authentication

- Recall that authentication is the act of declaring something (e.g., a person, a message, or an item such as a car) to be authentic, where an identity is said to be authentic if the claimed identity truly corresponds to the thing (person, message, car, etc.)
- A message is authenticated if the identity of the sender is authenticated and the integrity of the message is verified
- We want to prevent undetected message tampering
- We begin by assuming the existence of a procedure we call a Message Authentication Code or MAC
 - E.g., can use an appropriate one-way hash function with a key
 - Typically the message length is much larger than the MAC output

Approaches

- Two keys: k_E for encryption and k_M for message authentication
- Encrypt-and-authenticate
 - $c \leftarrow Enc_{k_E}(m)$
 - $t \leftarrow Mac_{k_M}(m)$
 - Transmit <*c*,*t*>
- Authenticate-then-encrypt
 - $t \leftarrow Mac_{k_M}(m)$
 - $c \leftarrow Enc_{k_F}(m, t)$
 - Transmit c
- Encrypt-then-authenticate
 - $c \leftarrow Enc_{k_E}(m)$
 - $t \leftarrow Mac_{k_M}(c)$
 - Transmit <*c*,*t*>

Encrypt-and-authenticate

- First problem: cryptanalyst can look for clues regarding m using t
 - $t \leftarrow Mac_{k_M}(m)$
 - E.g., suppose the first bit of the tag always equals the first bit of the message
- Second problem: deterministic MAC
 - For a deterministic MAC, the tag is identical if the message is identical and the same key (k_M) is used this is typically true during a single session
 - In practice, most one-way hash functions used for MACs are deterministic
 - An eavesdropper then knows when the same message has been sent twice,
 and hence this approach is not secure against CPA

Authenticate-then-encrypt

- Problem: CPA
 - Consider an attack based on error messages
 - If an error in the padding is detected, a "bad padding" error may be returned
 - Since it is the case that $c \leftarrow Enc_k(m,t)$, there are now *two* potential sources of decryption error
 - Consider the modified decryption algorithm...

Encrypt-then-authenticate

- Given k_E , k_M , MAC and π_E = (*Enc,Dec*)
- Define Enc' and Dec' as follows
 - *Enc'*(*m*):
 - $c \leftarrow Enc_{k_E}(m)$
 - $t \leftarrow Mac_{k_M}(c)$
 - Ciphertext output is <*c*,*t*>
 - *Dec'*(<*c*,*t*>):
 - First check if $Mac_{k_M}(c) = t$
 - If yes, output $Dec_{k_E}(c)$
 - If no, output that there has been an error