Crypto V: Theory of Block Ciphers

Cryptographic Hardware for Embedded Systems ECE 3170

Fall 2025

Assoc. Prof. Vincent John Mooney III
Georgia Institute of Technology

Reading Assignment

• Please read Chapter 14 part 10 of the course textbook by Schneier

Confusion

- Hide the relationship between the plaintext, ciphertext and key
 - Consider an extreme case: a key dependent lookup table mapping 64 bits of plaintext to 64 bits of ciphertext
 - This would provide a very large search space
 - Problem: if the key has n bits, need $(2^n)^*(2^{64}) = 2^{(n+64)}$ amount of memory
 - Note that 2^{40} = Terabyte (TB), and a single storage rack in a server farm can handle a few TB
 - Schneier says that this would provide sufficient security, but the course text was published in 1996; today there is agreement that a key size of at least 80 bits is needed
 - Modern block ciphers use much smaller tables (so-called "substitution boxes" or s-boxes)
 - Smaller size may allow brute-force attacks to succeed
 - In other words, the reduction in size helps make the block cipher computable with reduced memory but also helps the adversary

Table 12.6 S-Boxes

	S-bo	x 1:												
14,	4,	13,	1,	2,	15,	11,	8,	3,	10,	6,	12,	5,	9, 0	, 7,
0,	15,	7,	4,	14,	2,	13,	1,	10,	6,	12,	11,	9,	5, 3	, 8,
4,	1,	14,	8,	13,	6,	2,	11,	15,	12,	9,	7,	3,	10, 5	, 0,
15,	12,	8,	2,	4,	9,	1,	7,	5,	11,	3,	14,	10,	0, 6	, 13,
	S-bo	x 2:												
15,	1,	8,	14,	6,	11,	3,	4,	9,	7,	2,	13,	12,	0, 5	, 10,
3,	13,	4,	7,	15,	2,	8,	14,	12,	0,	1,	10,	6,	9, 11	, 5,
0,	14,	7,	11,	10,	4,	13,	1,	5,	8,	12,	6,	9,	3, 2	, 15,
13,	8,	10,	1,	3,	15,	4,	2,	11,	6,	- 7,	12,	0,	5, 14	, 9,
	S-bo.	x 3:												, hel
10,	0,	9,	14,	6,	3,	15,	5,	1,	13,	12,	7,	11,	4, 2	., 8,
13,	7,	0,	9,	3,	4,	6,	10,	2,	8,	5,	14,	12,	11, 15	, 1,
13,	6,	4,	9,	8,	15,	3,	0,	11,	1,	2,	12,	5,	10, 14	-, 7,
1,	10,	13,	0,	6,	9,	8,	7,	4,	15,	14,	3,	11,	5, 2	, 12,
	S-bo	x 4:												
7,	13,	14,	3,	0,	6,	9,	10,	1,	2,	8,	5,	11,	12, 4	, 15,
13,	8,	11,	5,	6,	15,	0,	3,	4,	7,	2,	12,	1,	10, 14	·, 9,
	_	_			-	-				_	100	Constant	_	

Diffusion

- Spread the influence of changing a few bits of plaintext or the key over as much of the ciphertext as possible
 - Helps hide statistical relationships

Combining Confusion and Diffusion

- Substitute (confuse) and permute (diffuse)
 - Product cipher
 - Substitution-permutation (SP) network
- Consider function f in DES
 - Diffusion: expansion permutation and P-box
 - Both are linear
 - Confusion: S-boxes
 - Nonlinear
 - All operations are fairly simple (fast) to compute
- Iterated block cipher
 - Two rounds of DES is not strong; five rounds must occur before all of the output bits are dependent on all of the input bits and all of the key bits
 - DES has 16 rounds

Feistel Networks

- Horst Feistel worked for IBM Research
- Take a block of length n and divide into two equal halves L and R
 - *n* must be even
- Define an iterated block cipher
- This function is reversible
- Therefore, a cipher based on a Feistel network is guaranteed to be invertible
- Note that reversibility is not dependent on f being reversible
- Further note that the same algorithm works for decryption

•
$$L_i = R_{i-1}$$

- $R_i = L_{i-1} \text{ XOR } f(R_{i-1}, K_i)$
 - where K_i is the subkey used in round i and f is the round function used
- L_{i-1} XOR $f(R_{i-1}, K_i)$ XOR $f(R_{i-1}, K_i) = L_{i-1}$

Comments on DES

- If $C = E_k(P)$, then $C' = E_{k'}(P')$
 - where C', K' and P' are the bitwise complements of C, K and P
- Brute force attack complexity reduced by a factor of 2
- Simple relation:
 - If $E_k(P) = C$, then $E_{f(k)}(g(P,K)) = h(C,K)$
 - where f, g and h are simple functions, i.e., easy to compute
- A good block cipher has no simple relations

Weak Keys

- DES has been shown to have a few weak keys
- Not a practical problem: just avoid them in key generation
- Preferable to have all keys be equally strong

S-Box Design

- S-Box: a mapping from m bits to n
- Typically implemented as a look-up table
- Non-linear and non-degenerate, i.e., no way to compute the relation with a function
 - => must perform a look-up in memory!
- Boolean properties: balance of zeros and ones, no correlations between different bit combinations, avalanche effect
 - Avalanche: one bit of input should on average change approximately half of the output bits
- Provides strong resistance to cryptanalysis
 - In other words, forces the adversary to only use brute force attacks

Advanced Encryption Standard (AES)

- In 1997, NIST organized a public competition for a new cryptographic algorithm to replace DES
 - 15 algorithms were submitted from all over the world
 - The submissions were analyzed by NIST, the public, and especially by competing teams!
 - Workshops were held in 1998 and 1999, finally narrowing down to five submissions
 - Third and final workshop held in April 2000
 - In October 2000 NIST selected the algorithm of two cryptographers from Belgium,
 Vincent Rijmen and Joan Daemen, who names the algorithm Rijndael
 - NIST stated that all five candidates were excellent