DES and Differential Power Analysis
The “Duplication” Method*

Louis Goubin, Jacques Patarin
Bull SmartCards and Terminals
68, route de Versailles - BP45
78431 Louveciennes Cedex - France
{L.Goubin, J.Patarin}@frlv.bull.fr

Abstract. Paul Kocher recently developped attacks based on the elec-
tric consumption of chips that perform cryptographic computations. A-
mong those attacks, the “Differential Power Analysis” (DPA) is probably
one of the most impressive and most difficult to avoid.

In this paper, we present several ideas to resist this type of attack, and
in particular we develop one of them which leads, interestingly, to rather
precise mathematical analysis. Thus we show that it is possible to build
an implementation that is provably DPA-resistant, in a “local” and re-
stricted way (i.e. when given a chip with a fixed key the attacker
only tries to detect predictable local deviations in the differentials of
mean curves). We also briefly discuss some more general attacks, that
are sometimes efficient whereas the “original” DPA fails. Many measures
of consumption have been done on real chips to test the ideas presented
in this paper, and some of the obtained curves are printed here.

Note: An extended version of this paper can be obtained from the authors.

1 Introduction

This paper is about a way of securing a cryptographic algorithm that makes use
of a secret key. More precisely, the goal consists in building an implementation
of the algorithm that is not vulnerable to a certain type of physical attacks
so-called “Differential Power Analysis”.

These DPA attacks belong to a general family of attacks that look for infor-
mation about the secret key by studying the electric consumption of the elec-
tronic device during the execution of the computation. In this family, we usually
distinguish between SPA attacks (“Simple Power Analysis”) and DPA attacks.

In SPA attacks, the aim is essentially to guess from the values of the
consumption which particular instruction is being computed at a certain time
and with which input or output, and then to use this information to deduce some
part of the secret. Figure 1 shows the electric consumption of a chip, measured
during a DES computation on a real smartcard. The fact that the 16 rounds of
the DES algorithm are clearly visible is a good sign that power analysis attacks
may indeed provide information about what the chip is doing.

* Patents Pending

0 5000 10000 15000 20000 25000 30000 35000 40000

Fig. 1. Electric consumption measured on the 16 rounds of a DES computation

In DPA attacks, some differentials on two sets of average consumption are
computed, and the attacks succeed if an unusual phenomenon appears on
these differentials of consumption — for a good choice of some of the key bits
(we give details below), so that we are able to find out those key bits. What
makes DPA attacks so impressive, when they work, is the fact that they can
find out the secret key of a public algorithm (for example DES, but also many
other algorithms) without knowing anything (nor trying to find anything) about
the particular implementation of that algorithm. Implementations exist that are
DPA-resistant (differentials do not show anything special) but not SPA-resistant
(some critical information can be deduced from the consumption curves). On
the contrary, other implementations exist that are SPA-resistant but not DPA-
resistant (some critical information can be found by studying differentials of two
mean curves of consumption). Finally, some implementations can be found that
resist both types of attack (at least at the present), or none of them.

Throughout this paper, we study more particularly DPA and we will not deal
any longer with SPA. Indeed, as we see below, DPA can easily be analyzed in a
mathematical way (and not only in an empirical way). There exist many attacks
based on the electric consumption. We do not claim to give here solutions to all
the problems that may result from these attacks.

The cryptographic algorithms we consider here make use of a secret key in
order to compute an output information from an input information. It may be a
ciphering, a deciphering or a signature operation. In particular, all the material

described in this paper applies to “secret key algorithms” and also to the so-
called “public key algorithms”.

2 The “Differential Power Analysis” attacks

The “Differential Power Analysis” attacks, developped by Paul Kocher and Cryp-
tographic Research (see [1]), start from the fact that the attacker can get many
more information (than the knowledge of the inputs and the outputs) during
the execution of the computation, such as for instance the electric consumption
of the microcontroller or the electromagnetic radiations of the circuit. The “Dif-
ferential Power Analysis” (DPA to be brief) is an attack that allows to obtain
information about the secret key (contained in a smartcard for example), by per-
forming a statistical analysis of the electric consumption records measured for
a large number of computations with the same key. Let us consider for instance
the case of the DES algorithm (Data Encryption Standard). It executes in 16
steps, called “rounds”. In each of these steps, a transformation F' is performed
on 32 bits. This F' function uses eight non-linear transformations from 6 bits to
4 bits, each of which is coded by a table called “S-box”. The DPA attack on
the DES can be performed as follows (the number 1000 used below is just an
example):

Step 1: We measure the consumption on the first round, for 1000 DES computa-
tions. We denote by Ej, ..., E1ggo the input values of those 1000 computations.
We denote by C1, ..., Cigog the 1000 electric consumption curves measured dur-
ing the computations. We also compute the “mean curve” MC' of those 1000
consumption curves.

Step 2: We focus for instance on the first output bit of the first S-box during the
first round. Let b be the value of that bit. It is easy to see that b depends on only
6 bits of the secret key. The attacker makes an hypothesis on the involved 6 bits.
He computes — from those 6 bits and from the E; — the expected (theoretical)
values for b. This enables to separate the 1000 inputs Fi, ..., Figgg into two
categories: those giving b = 0 and those giving b = 1.

Step 3: We now compute the mean M C' of the curves corresponding to inputs
of the first category (i.e. the one for which b = 0). If MC and MC' show an
appreciable difference (in a statistical meaning, i.e. a difference much greater
than the standard deviation of the measured noise), we consider that the chosen
values for the 6 key bits were correct. If M C and M C' do not show any sensible
difference, we repeat step 2 with another choice for the 6 bits.

Note: In practice, for each choice of the 6 key bits, we draw the curve repre-
senting the difference between MC and MC'. As a result, we obtain 64 curves,
among which one is supposed to be very special, i.e. to show an appreciable
difference, compared to all the others.

Step 4: We repeat steps 2 and 3 with a “target” bit b in the second S-box, then
in the third S-box, ..., until the eighth S-box. As a result, we finally obtain 48
bits of the secret key.

Step 5: The remaining 8 bits can be found by exhaustive search.

Note: Tt is also possible to focus (in steps 2, 3 and 4) on the set of the four
output bits for the considered S-boxes, instead of only one output bit. This is
what we actually did for real smartcards. In that case, the inputs are separated
into 16 categories: those giving 0000 as output, those giving 0001, ..., those
giving 1111. In step 3, we may compute for example the mean M C' of the curves
corresponding to the last category (i.e. the one which gives 1111 as output). As
a result, the mean M C" is computed on approximately % of the curves (instead
of approximately half of the curves with step 3 above): this may compel us to
use a number of DES computations greater than 1000, but it generally leads to
a more appreciable difference between M C and M C'.

We presented in figures 2 and 3 two mean curves, resulting from steps 2 and 3,
for a classical implementation of DES on a real smartcard (with ‘1111’ as target
output of the first S-box and with 2048 different inputs, even if we noted that
512 inputs are sufficient). A detailed analysis of the 64 obtained curves (that we
cannot all print here, due to the lack of place) shows that the one corresponding
to the correct choice of the 6 key-bits can easily be detected (it contains much
greater peaks than all the others).

30

Moyenne gé nérale - Moyenne selec tion Rou nd 1

-30

Fig. 2. An example of difference of the curves MC and M C' when the 6 bits are false

30

Moyenne gé nérale - Moyenne selec tion Rou nd 1

112 B12 912] 12 ‘“ 912 12 312 151 }Il i g 3 14312

-30

Fig. 3. Difference of the curves MC and MC' when the 6 bits are correct

This attack does not require any knowledge about the individual electric
consumption of each instruction, nor about the position in time of each of these
instructions. It applies exactly the same way as soon as the attacker knows the
outputs of the algorithm and the corresponding consumption curves. It only
relies on the following fundamental hypothesis:

Fundamental hypothesis: There exists an intermediate variable, that ap-
pears during the computation of the algorithm, such that knowing a few key bits
(in practice less than 32 bits) allows us to decide whether two inputs (respectively
two outputs) give or not the same value for this variable.

All the algorithms that use S-boxes, such as DES, are potentially vulnerable
to the DPA attack, because the “natural” implementations generally remain
within the hypothesis mentioned above.

3 Securing the algorithm

Several countermeasures against DPA attacks can be conceived. For instance:

1. Introducing random timing shifts, so that the computed means do not cor-
respond any longer to the consumption of the same instruction. The crucial
point consists here in performing those shifts so that they cannot be easily
eliminated by a statistical treatment of the consumption curves.

2. Replacing some of the critical instructions (in particular the basic assembler
instructions involving writings in the carry, readings of data from an array,
etc) by assembler instructions whose “consumption signature” is difficult to
analyze.

3. For a given algorithm, giving an explicit way of computing it, so that DPA
is provably unefficient on the obtained implementation. For instance, for a
DES-like algorithm, we detail in section 4 how to compute the non-linear
transformations of the S-boxes in order to avoid some DPA attacks.

In the present paper, we essentially study the third idea because it leads to
a quite precise mathematical analysis. We give in this section a general method
to implement an algorithm with a secret key so as to avoid the DPA attacks
described above. The basic principle consists in programming the algorithm so
that the fundamental hypothesis above is not true any longer (i.e. an interme-
diate variable never depends on the knowledge of an easily accessible subset of
the secret key).

The main idea

In this paper, we mainly study how this can be done by using the following main
idea: replacing each intermediate variable V', occuring during the computation
and depending on the inputs (or the outputs), by k variables Vi, ..., Vj, such
that Vi, V4, ..., Vi allows us if we want to retrieve V. More precisely, to
guarantee the security of the algorithm in its new form, it is sufficient to choose
a function f satisfying the identity V = f(Vi,...,V}), together with the two
following conditions:

Condition 1: From the knowledge of a value v and for any fixed value i, 1 <
i < k, it is not feasible to deduce information about the set of the values v; such
that there exist a (k — 1)-uple (v1,...,0;—1,0it1,..., V%) Satisfying the equation

flor,...;vp) = v,

Condition 2: The function f is such that the transformations to be performed
on Vi, Va, ..., or V}, during the computation (instead of the transformations
usually performed on V') can be implemented without calculating V.

First example for condition 1: If we choose f(v1,...,v0x) = v1 Bvs B ... B vy,
where @ denotes the bit-by-bit “exclusive-or” function, condition 1 is obviously
satisfied, because for any fixed index 7 between 1 and & the considered set of
the values v; contains all the possible values and thus does not depend on v.

Second example for condition 1: If we consider some variable V' whose
values lie in the multiplicative group of Z/nZ, we can choose the function
flur,...,v) = v1 - vy - ... - vp mod n, where the new variables vy, va, ..., vy also
have values in the multiplicative group of Z/nZ. Condition 1 is also obviously
true because — for any fixed index i between 1 and k — the considered set of the
values v; contains all the possible values and thus does not depend on v.

We then “translate” the algorithm by replacing each intermediate variable
V depending on the inputs (or the outputs) by the k variables Vi, ..., V. In the
following sections, we study how conditions 1 and 2 can be achieved in the case
of the DES or RSA algorithms.

4 The DES algorithm: first example of implementation
for DPA resistance

In this section, we consider the particular case of the DES algorithm. We choose
here to separate each intermediate variable V', occuring during the computation
and depending on the inputs (or the outputs), into two variables V7 and V4 (i.e.
we take k = 2). Let us choose the function f(vi,v2) = v = v1 @ vy (see the
first example of section 3), which satisfies condition 1. From the construction of
the algorithm, it is easy to see that the transformations performed on v always
belong to one of the five following categories:

. permutation of the bits of v;

. expansion of the bits of v;

. “exclusive-or” between v and another variable v’ of the same type;
. “exclusive-or” between v and a variable depending only on the key;
. transformation of v using a S-box.

T W N =

The first two cases correspond to linear transformations on the bits of the
variable v. For these ones, condition 2 is thus very easy to satisfy: we just have
— instead of the transformation usually performed on v — to perform the permu-
tation or the expansion on vy, then on vy, and the identity f(vi,ve) = v, which
was true before the transformation, is also true afterwards.

In the same way, in the third case, we just have to replace the computation of
v" = v @& v by the computation of v} = v; @ v] and v} = vy & vj. The identities
flv1,v2) =v and f(vy,vy) =o' give indeed f(v{,vy) = ", so that condition 2
is true again.

As concerns the exclusive-or between v and a variable ¢ depending only on
the key, condition 2 is also very easy to satisfy: we just have to replace the
computation of v ¢ ¢ by v1 @ ¢ (or v2 & ¢) and that gives condition 2.

Finally, instead of the non-linear transformation v’ = S(v), given under
the form of a S-box (which in that example has 6-bits inputs and 4-bits out-
puts), we implement the transformation (v}, v}) = S’(v1,v2) by using two new
S-boxes (each of which sending 12 bits onto 4 bits). In order to keep the identity
f(vi,vh) = ', we may choose:

(v1,v5) = 8" (v1,v2) = (A(v1,v2), S(v1 B v2) B Av1,v2)).

where A denotes a randomly chosen secret transformation from 12 bits to 4
bits (see figure 4). The first of the new S-boxes corresponds to the table of the
transformation (vq,v9) = A(v1,v2), and the second one corresponds to the table
of the transformation (vy,ve) — S(v; @ va) B A(v1, v2). Thanks to the randomly

Tl

RER

v = 8(v)

Initial implementation: the predictable values

v and v appear in RAM at some time

voroor vy

~~

v = A(vi,v9) vy = S(v1 B v2) & A(vi, v2)

Modified implementation: the values v = v; ® v2 and

v' = v] @ vj never explicitely appear in RAM

Fig. 4. Standard transformation of a S-box

chosen function A, condition 1 is satisfied. Moreover, the use of tables allows us
to avoid the computation of v; @ vs, so that condition 2 is also true.

The solution presented in this section is quite realistic for chips that compute
DES in hardware (and are not embedded in a card), or for PCs, because in
those cases — enough memory is available. More precisely, the size of the memory
required to store the S-boxes is 32 Kbytes for the method described in this
section. It is too much for smartcards, for which specific variations using less

memories are described in section 5 below.

5 Smartcard implementations of DES

First variation

In order to reduce the ROM used by the algorithm, it is quite possible to use
the same random function A for the eight S-boxes (of the initial description of
the DES), so that we have only nine (new) S-boxes (i.e. 18 Kbytes) to store in

ROM, instead of sixteen S-boxes.

Second variation

In order to reduce the size of the ROM needed to store the S-boxes, we can also
use the following method: instead of each non-linear transformation v’ = S(v) of
the initial implementation, given under the form of a S-box (with 6-bits inputs
and 4-bits outputs in the case of the DES), we implement the transformation
(vy,v5) = S'(v1,v2) by using two S-boxes, each of which sending 6 bits onto 4
bits. The initial implementation of the computation v' = S(v) is replaced by the
two following successive computations:

— vg = p(v1 B ve)
— (v}, vh) = 8'(v1,v2) = (A(vo), S (vg)) B A(vg))

where ¢ is a bijective and secret function from 6 bits to 6 bits and where A
denotes a random and secret transformation from 6 bits to 4 bits. The first
of the two new S-boxes corresponds to the table of the transformation vy +—»
A(vg) and the second one corresponds to the table of the transformation vg —
S(¢ Y (vo)) & A(vo). From this construction, the identity f(v},v}) =o' is always
true. Thanks to the random function A, condition 1 is satisfied. Moreover, the
use of tables allows us to avoid the computation of ¢ ' (vg) = v; @ v, so that
condition 2 is also true. This solution (shown in figure 5) requires 512 bytes to
store the S-boxes.

In order to satisfy condition 2, it remains to choose the bijective transforma-
tion ¢ such that the computation of vg = ¢(v; Gvs) is feasible without computing
v1 @ vy. We give below two examples of possible choice for the function ¢.

Tl

TI 77

v’ = S(v)

Initial implementation: the predictable values

v and v appear in RAM at some time

U1 ()

Lhiddd bhaddd

Computation of

vo = @(v1 @ v2)

St S5
Y oYoY TYov oy
S—— N——r
v = A(vo) vy = S(¢™ ' (v0)) & A(vo)

Modified implementation: the values v = v; © v2 and

v’ = v] @ v} never explicitely appear in RAM

Fig. 5. Transformation of a S-box (second variation)

Exemple 1: a linear bijection

We choose ¢ as a linear secret and bijective function from 6 bits to 6 bits (we
consider the set of the 6-bits values as a vectorial space of dimension 6 on the
finite field Fy with 2 elements). In practice, choosing ¢ is equivalent to choosing
a random and invertible 6 x 6 matrix whose coefficients are 0 or 1. With this
choice of ¢, it is easy to see that condition 2 is satisfied. Indeed, to compute
p(v1 @ vy), we just have to compute p(v1), then ¢(vs) and finally to compute

the “exclusive-or” of the two obtained results.
110100

110101
011010
111010
011110
001101
linear bijection ¢ from 6 bits to 6 bits defined by @(u1, us, us,us, us, ug) = (ug S
U DUg, U1 PU2DBUL DB UG, U2 DU3ID U5, U DU2DU3ID U5, UsDU3BULD U5, U3€BU4@U6).

Let v7 = (v1,1,v1,2,1,3,01,4,015,01,6) and v2 = (v2,1,022,023,02.4,025,
va.6). To compute ¢(v; @ va), we successively compute:

For instance, the matrix is invertible. It corresponds to the

—) = (1 B2 PV 4,01, BUI2PVI4PVIGVI2PUI3BUI5 V11 B
V2 D13 DUI5, V12 BUI3 DV D5, V13D VI D VIg)

— p(va) = (v2,1 B2 B V24,021 BUro D VU2 B VG, V22 DUz D V25,021 B
V2,2 D V23 B V25,022 B V2,3 D V2a D V25,023 B V24 B V)

Then we compute the “exclusive-or” of the two obtained results.

Exemple 2: a quadratic bijection

We choose ¢ as a quadratic secret and bijective function from 6 bits to 6 bits.
Here, “quadratic” means that each bit of the output is given by a polynomial
function of total degree two of the 6 bits of the input (which are identified to 6
elements of the finite field F5). In practice, we may choose the function ¢ defined
by ¢(x) = t(s(x)%), where s is a secret linear bijection from (F3)® to £, t is a
secret linear bijection from £ to (F3)% and £ denotes an algebraic extension of
degree 6 over the finite field F5. The bijectivity of this function ¢ follows from
the fact that a — a® is a bijection on the extension £ (whose inverse is b — b%).
To be convinced that condition 2 is still satisfied, just notice that we can write:

(v1 ®v2) = P(vi,v1) © Y(v1,v2) S Y(va,v1) S YP(va,v2),

where the function 1) is defined by ¥ (z,y) = t(s(x)* - 5(y)).
For instance, if we identify £ to Fo[X]/(X%+ X +1) and if we choose s and ¢

110100 010011
110101 110100

. 011010 101011 . .

whose matrices are 111010 and 011100 with respect to the basis
011110 101010

001101 001011

(1,X,X2, X3 X% X%) of £ over Fy and to the canonical basis of (F5)® over Fa,
we obtain the following quadratic bijection ¢ from 6 bits to 6 bits:

<p(u,1,u,2, usz, Uq, Us, uﬁ) = (71,211,5 DB Uiy D ug D ug D uga Ugug B us © us D us D
UgU3, UUs D UsU] DUty Dug G ug D Uusgts S us G usz @ uguy, usus G usuy G ugus &
UTU4 D uUzU5 D U D UsUg D UgU3 D U4UZ D UIUT, UT1U4 D U2U3 D UgU1 D UgUg D Us D
UgU3z D ULUZ, UsU D UTU4L B Ug D UzUs D UsUs D U D ugU D Usug D Uz © ugus &
Ualo, Ug B Ug B uzus B ur B usug P ugus).

To compute ¢(v; © v2), we use the function (z,y) = t(s(x)* - s(y)) from 12
bits to 6 bits, which gives the 6 output bits from the 12 input bits as follows:

(w1, 2,23, Ta, Ts, T6, Y1, Y2, Y3, Y4, Y5, Y6) = (£3Ys D Tey2 B r6Yy3 D Teys O x3y1
TeY1 D T1Y3 Dx1Ys D T5Yy2 D T5Ys D T5y1 © TeYe © T1Ys D T1Y2 O T1Ys O x2y1 D
ToY2 BraYs Dr3ys Bx3Ye DTaY3 D T5Y3, TaYs DT3y1 B xey1 BTays BTsy1 S TeYe D
T1Ys BT1Y2 D X2Y1 B X2Y2 B TaY1 D TaYs ©X3Y3, TelY2 B TeY3 D TeYa B TeYs B x3ys &
TeY1 B T2Ys B x5Y1 D T1Ys D T1Y1 B T1Y2 B T1Ya B T2Y1 D Tays D Tay2 D T2ye D
T3Ya Bx5Y3, T3Y1 DTeY2 D T2Ys T5Y3 DT5Ys D T5Ys D T6Y3s B T2ys D TaYs S T6yYs B
T1Y3 Bx5Ys DT2ys ©T4Y2 B T4Ys D T3Ys Bx4ys B T6Y1 DTaY1, T3Y1 D T6Ys S T5y3 D
T5Ye D TsY2 D x1Ys D T1Y1 D T1Y2 D T2y1 © T2y3s O x3Ys D TeYs O T1Y3 O Tays D
T3Y3 P L4Ys PT2Ys BTeY1 BLaY1 PT6Ys BT3Y2, TeY6 PLaYs BT5Ys B T5Y6 B T6Y3 D
T1Y6 B T1Y1 B 21Y2 P T2yt B TeYs D Toys D Tay2 D TaYs B T3Ys B TeY1 D TeYa)-

By using these formulas, we successively compute ¢ (vy, v1), 1 (v1,v2), ¥(va, v1)

and 1 (va, v2). Finally, we compute the “exclusive-or” of the four obtained results.

Third variation

To further reduce the size of the ROM needed to store the S-boxes, we can apply
simultaneously the ideas of both variations 1 and 2: we use the second variation,
with the same secret bijection ¢ (from 6 bits to 6 bits) and the same secret
random function A (from 6 bits to 6 bits) in the new implementation of each
non-linear transformation given by a S-box. This variation thus requires only
288 bytes to store the S-boxes. We have applied the Differential Power Analy-
sis on real smartcard implementations of this third variation. Two examples of
differential mean curves (with 2048 inputs and with ‘1111’ as target output of
the first S-box) are presented in figures 6 and 7. A precise analysis of the 64
curves given by the DPA (see note after step 3, in section 2) shows that none of
them appears to be “very special”, compared to the others, so that we can say
that this implementation resists the DPA attack (at least in its basic form, see
appendix 2 for a possible generalization that could still be dangerous).

Fourth variation

In this last variation, instead of implementing the transformation (v{,v}) =
S'(v1,v2) (which replaces the non-linear transformation v = S(v) of the initial
implementation, given by a S-box) by using two S-boxes, we perform the com-
putation of v] (respectively v}) by using a simple algebraic function (i.e. the bits

30

25 +

20 +

15 +

10 +

210 L

.15 L

20 L

25 L

Moyenne Générale - Moyenne Selection Round 1

I 14 2421 13421 44p B4l 6h21

. 6. An example of difference of the curves MC and MC’' when the 6 bits are false

30

25 +

15 +

10 +

Moyenne Générale - Moyenne Selection Round 1

4 4211 421 3421 4421 5421 6401

210 L

215 L

20 L

Fig. 7. Difference of the curves MC and MC' when the 6 bits are correct

of v} (respectively v}) are given by a polynomial function of total degree 1 or 2
of the bits of v; and wvy), then we compute v} (respectively v}) by using a table.
This enables to reduce again the needed ROM for the implementation. This last
variation requires only 256 bytes to store the S-boxes.

6 The RSA algorithm

The “Power Analysis” attacks also threaten the classical implementations of the
RSA algorithm. Indeed, these implementations often use the so-called “square-
and-multiply” principle to perform the computation of ¢ mod n. It consists in
writing the binary decomposition d = dp, 12™ ' 4+ dpm 22™ 2 +... 4+ d1 2! 4+ d2°
of the secret exponent d, and then in performing the computation as follows:

1. 2z« 1;

For i going backwards from m — 1 to 0 do:
2. z + 22 mod n;
3. if d; =1 then z + z x x mod n.

In this computation, we see that among the successive values taken by
the z variable the first ones depend on only a few bits of the secret key d.
The fundamental hypothesis that enables the DPA attack is thus satisfied. As
a result, we can guess for instance the 10 most significant bits of d by studying
the consumption measures on the part of the algorithm corresponding to i going
from m — 1 to m — 10. We can then continue the attack by using comsumption
measures on the part of the algorithm corresponding to i going from m — 11 to
m — 20, which gives the 10 next bits of d, and so on. We finally find all the bits
of the secret exponent d.

The method described in section 3 also applies to securing the RSA algorithm.
We use here a separation of each intermediate variable V' (whose values lie in the
multiplicative group of Z/nZ), occuring during the computation and depending
on the inputs (or the outputs), into two variables V; and V3 (i.e. we take k = 2),
and we choose the function f(vy,v2) = v = vy - v3 mod n. We already saw in
section 3 (cf “second example”) that this function f satisfies condition 1.

We thus replace x by (z1,22) such that & = z1 - £9 mod n and z by (21, 22)
such that z = z; - 2o mod n (in practice, we can for instance choose x; randomly
and deduce z,). Considering again the three steps of the “square-and-multiply”
method, we perform the following transformations:

1. z < 1is replaced by z; < 1 and 2z, < 1;
2. z + 2> mod n is replaced by z; < 2} mod n and z» < 23 mod n;
3. z < zxx mod n is replaced by z; < 21 X 1 mod n and 23 < 29 X £2 mod n.

Tt is easy to check that the identity z = f(z1, 22) remains true all along the
computation, which shows that condition 2 is satisfied.

Let us notice that the computations performed respectively on the z; variable
and on the 25 variable are completely independent. We thus can imagine to

perform the two computations either in a sequential way, or in an overlapped
way, or simultaneously in the case of multiprogrammation, or simultaneously in
different processors working concurrently.

7 Generalized Attacks

Recently, more general attacks were introduced, where the attacker tries to cor-
relate different points of a power consumption curve. We have no place here to
analyze in detail the effect of this idea on the “Duplication Method”. However,
it is possible to show that if each variable is splitted in, say, k variables, then
the complexity of the implementation increases in O(k), while the complexity of
the attack increases exponentially in k.

As concerns DES implementations, we also recommend, when it is possible,
to use different S-Boxes for each smartcard (stored in EEPROM). In particular,
this avoids some attacks which use a smartcard with a known key to help finding
the key in another smartcard whose key is unknown.

8 Conclusion

In this paper, we investigate how the study of the electric consumption measures
of an electronic device can be used by an attacker to get information about the
secret key of the cryptographic algorithm computed by the chip. More precisely,
we focus on the so-called Differential Power Attacks, which were recently intro-
duced by Paul Kocher, and which use a statistical analysis of a set of consumption
curves measured for many different inputs of the cryptographic algorithm.

We study more precisely how DPA attacks work, and what precise hypotheses
they rely on. We then present several ways of securing cryptosystems. In par-
ticular, concrete examples of such countermeasures are described in the cases of
DES and RSA, which are the most used cryptographic algorithms at the present.

To secure those algorithms, we essentially study the main idea that consists
in splitting each intermediate variable, occuring in the computation, into two
(or more) variables, such that the values of these new variables cannot be easily
predicted. The obtained implementations can be proved to resist the “local”
version of Differential Power Analysis (where the attacker only tries to detect
local deviations in the differentials of mean curves). Nevertheless other attacks
can be conceived, still using the analysis of electric consumption. We do not
pretend to solve all security problems linked to these threats. These latter attacks
are not only theoretical, since we found real products that are defeated by them,
but it also shows that theoretical investigations have to be continued in that
sensitive subject.

References

1. Paul Kocher, Joshua Jaffe, Benjamin Jun, Introduction to Differential
Power Analysis and Related Attacks, 1998. This paper is available at
http://www.cryptography.com/dpa/technical/index.html

