
DES and Di�erential Power AnalysisThe \Dupli
ation" Method?Louis Goubin, Ja
ques PatarinBull SmartCards and Terminals68, route de Versailles - BP4578431 Louve
iennes Cedex - Fran
efL.Goubin, J.Pataring�frlv.bull.frAbstra
t. Paul Ko
her re
ently developped atta
ks based on the ele
-tri

onsumption of
hips that perform
ryptographi

omputations. A-mong those atta
ks, the \Di�erential Power Analysis" (DPA) is probablyone of the most impressive and most diÆ
ult to avoid.In this paper, we present several ideas to resist this type of atta
k, andin parti
ular we develop one of them whi
h leads, interestingly, to ratherpre
ise mathemati
al analysis. Thus we show that it is possible to buildan implementation that is provably DPA-resistant, in a \lo
al" and re-stri
ted way (i.e. when { given a
hip with a �xed key { the atta
keronly tries to dete
t predi
table lo
al deviations in the di�erentials ofmean
urves). We also brie
y dis
uss some more general atta
ks, thatare sometimes eÆ
ient whereas the \original" DPA fails. Many measuresof
onsumption have been done on real
hips to test the ideas presentedin this paper, and some of the obtained
urves are printed here.Note: An extended version of this paper
an be obtained from the authors.1 Introdu
tionThis paper is about a way of se
uring a
ryptographi
 algorithm that makes useof a se
ret key. More pre
isely, the goal
onsists in building an implementationof the algorithm that is not vulnerable to a
ertain type of physi
al atta
ks {so-
alled \Di�erential Power Analysis".These DPA atta
ks belong to a general family of atta
ks that look for infor-mation about the se
ret key by studying the ele
tri

onsumption of the ele
-troni
 devi
e during the exe
ution of the
omputation. In this family, we usuallydistinguish between SPA atta
ks (\Simple Power Analysis") and DPA atta
ks.In SPA atta
ks, the aim is essentially to guess { from the values of the
onsumption { whi
h parti
ular instru
tion is being
omputed at a
ertain timeand with whi
h input or output, and then to use this information to dedu
e somepart of the se
ret. Figure 1 shows the ele
tri

onsumption of a
hip, measuredduring a DES
omputation on a real smart
ard. The fa
t that the 16 rounds ofthe DES algorithm are
learly visible is a good sign that power analysis atta
ksmay indeed provide information about what the
hip is doing.? Patents Pending

140

150

160

170

180

190

200

210

220

230

240

0 5000 10000 15000 20000 25000 30000 35000 40000Fig. 1. Ele
tri

onsumption measured on the 16 rounds of a DES
omputationIn DPA atta
ks, some di�erentials on two sets of average
onsumption are
omputed, and the atta
ks su

eed if an unusual phenomenon appears { onthese di�erentials of
onsumption { for a good
hoi
e of some of the key bits(we give details below), so that we are able to �nd out those key bits. Whatmakes DPA atta
ks so impressive, when they work, is the fa
t that they
an�nd out the se
ret key of a publi
 algorithm (for example DES, but also manyother algorithms) without knowing anything (nor trying to �nd anything) aboutthe parti
ular implementation of that algorithm. Implementations exist that areDPA-resistant (di�erentials do not show anything spe
ial) but not SPA-resistant(some
riti
al information
an be dedu
ed from the
onsumption
urves). Onthe
ontrary, other implementations exist that are SPA-resistant but not DPA-resistant (some
riti
al information
an be found by studying di�erentials of twomean
urves of
onsumption). Finally, some implementations
an be found thatresist both types of atta
k (at least at the present), or none of them.Throughout this paper, we study more parti
ularly DPA and we will not dealany longer with SPA. Indeed, as we see below, DPA
an easily be analyzed in amathemati
al way (and not only in an empiri
al way). There exist many atta
ksbased on the ele
tri

onsumption. We do not
laim to give here solutions to allthe problems that may result from these atta
ks.The
ryptographi
 algorithms we
onsider here make use of a se
ret key inorder to
ompute an output information from an input information. It may be a
iphering, a de
iphering or a signature operation. In parti
ular, all the material

des
ribed in this paper applies to \se
ret key algorithms" and also to the so-
alled \publi
 key algorithms".2 The \Di�erential Power Analysis" atta
ksThe \Di�erential Power Analysis" atta
ks, developped by Paul Ko
her and Cryp-tographi
 Resear
h (see [1℄), start from the fa
t that the atta
ker
an get manymore information (than the knowledge of the inputs and the outputs) duringthe exe
ution of the
omputation, su
h as for instan
e the ele
tri

onsumptionof the mi
ro
ontroller or the ele
tromagneti
 radiations of the
ir
uit. The \Dif-ferential Power Analysis" (DPA to be brief) is an atta
k that allows to obtaininformation about the se
ret key (
ontained in a smart
ard for example), by per-forming a statisti
al analysis of the ele
tri

onsumption re
ords measured fora large number of
omputations with the same key. Let us
onsider for instan
ethe
ase of the DES algorithm (Data En
ryption Standard). It exe
utes in 16steps,
alled \rounds". In ea
h of these steps, a transformation F is performedon 32 bits. This F fun
tion uses eight non-linear transformations from 6 bits to4 bits, ea
h of whi
h is
oded by a table
alled \S-box". The DPA atta
k onthe DES
an be performed as follows (the number 1000 used below is just anexample):Step 1: We measure the
onsumption on the �rst round, for 1000 DES
omputa-tions. We denote by E1, ..., E1000 the input values of those 1000
omputations.We denote by C1, ..., C1000 the 1000 ele
tri

onsumption
urves measured dur-ing the
omputations. We also
ompute the \mean
urve" MC of those 1000
onsumption
urves.Step 2: We fo
us for instan
e on the �rst output bit of the �rst S-box during the�rst round. Let b be the value of that bit. It is easy to see that b depends on only6 bits of the se
ret key. The atta
ker makes an hypothesis on the involved 6 bits.He
omputes { from those 6 bits and from the Ei { the expe
ted (theoreti
al)values for b. This enables to separate the 1000 inputs E1, ..., E1000 into two
ategories: those giving b = 0 and those giving b = 1.Step 3: We now
ompute the mean MC 0 of the
urves
orresponding to inputsof the �rst
ategory (i.e. the one for whi
h b = 0). If MC and MC 0 show anappre
iable di�eren
e (in a statisti
al meaning, i.e. a di�eren
e mu
h greaterthan the standard deviation of the measured noise), we
onsider that the
hosenvalues for the 6 key bits were
orre
t. If MC and MC 0 do not show any sensibledi�eren
e, we repeat step 2 with another
hoi
e for the 6 bits.Note: In pra
ti
e, for ea
h
hoi
e of the 6 key bits, we draw the
urve repre-senting the di�eren
e between MC and MC 0. As a result, we obtain 64
urves,among whi
h one is supposed to be very spe
ial, i.e. to show an appre
iabledi�eren
e,
ompared to all the others.

Step 4: We repeat steps 2 and 3 with a \target" bit b in the se
ond S-box, thenin the third S-box, ..., until the eighth S-box. As a result, we �nally obtain 48bits of the se
ret key.Step 5: The remaining 8 bits
an be found by exhaustive sear
h.Note: It is also possible to fo
us (in steps 2, 3 and 4) on the set of the fouroutput bits for the
onsidered S-boxes, instead of only one output bit. This iswhat we a
tually did for real smart
ards. In that
ase, the inputs are separatedinto 16
ategories: those giving 0000 as output, those giving 0001, ..., thosegiving 1111. In step 3, we may
ompute for example the meanMC 0 of the
urves
orresponding to the last
ategory (i.e. the one whi
h gives 1111 as output). Asa result, the mean MC 0 is
omputed on approximately 116 of the
urves (insteadof approximately half of the
urves with step 3 above): this may
ompel us touse a number of DES
omputations greater than 1000, but it generally leads toa more appre
iable di�eren
e between MC and MC 0.We presented in �gures 2 and 3 two mean
urves, resulting from steps 2 and 3,for a
lassi
al implementation of DES on a real smart
ard (with `1111' as targetoutput of the �rst S-box and with 2048 di�erent inputs, even if we noted that512 inputs are suÆ
ient). A detailed analysis of the 64 obtained
urves (that we
annot all print here, due to the la
k of pla
e) shows that the one
orrespondingto the
orre
t
hoi
e of the 6 key-bits
an easily be dete
ted (it
ontains mu
hgreater peaks than all the others).
Moyenne gé nérale - Moyenne selec t ion Rou nd 1

-30

-20

-10

0

10

20

30

112 312 512 712 912 1112 1312 1512 1712 1912 2112 2312

Fig. 2. An example of di�eren
e of the
urves MC and MC0 when the 6 bits are false

Moyenne gé nérale - Moyenne selec t ion Rou nd 1

-30

-20

-10

0

10

20

30

112 312 512 712 912 1112 1312 1512 1712 1912 2112 2312

Fig. 3. Di�eren
e of the
urves MC and MC0 when the 6 bits are
orre
tThis atta
k does not require any knowledge about the individual ele
tri

onsumption of ea
h instru
tion, nor about the position in time of ea
h of theseinstru
tions. It applies exa
tly the same way as soon as the atta
ker knows theoutputs of the algorithm and the
orresponding
onsumption
urves. It onlyrelies on the following fundamental hypothesis:Fundamental hypothesis: There exists an intermediate variable, that ap-pears during the
omputation of the algorithm, su
h that knowing a few key bits(in pra
ti
e less than 32 bits) allows us to de
ide whether two inputs (respe
tivelytwo outputs) give or not the same value for this variable.All the algorithms that use S-boxes, su
h as DES, are potentially vulnerableto the DPA atta
k, be
ause the \natural" implementations generally remainwithin the hypothesis mentioned above.3 Se
uring the algorithmSeveral
ountermeasures against DPA atta
ks
an be
on
eived. For instan
e:1. Introdu
ing random timing shifts, so that the
omputed means do not
or-respond any longer to the
onsumption of the same instru
tion. The
ru
ialpoint
onsists here in performing those shifts so that they
annot be easilyeliminated by a statisti
al treatment of the
onsumption
urves.

2. Repla
ing some of the
riti
al instru
tions (in parti
ular the basi
 assemblerinstru
tions involving writings in the
arry, readings of data from an array,et
) by assembler instru
tions whose \
onsumption signature" is diÆ
ult toanalyze.3. For a given algorithm, giving an expli
it way of
omputing it, so that DPAis provably uneÆ
ient on the obtained implementation. For instan
e, for aDES-like algorithm, we detail in se
tion 4 how to
ompute the non-lineartransformations of the S-boxes in order to avoid some DPA atta
ks.In the present paper, we essentially study the third idea be
ause it leads toa quite pre
ise mathemati
al analysis. We give in this se
tion a general methodto implement an algorithm with a se
ret key so as to avoid the DPA atta
ksdes
ribed above. The basi
 prin
iple
onsists in programming the algorithm sothat the fundamental hypothesis above is not true any longer (i.e. an interme-diate variable never depends on the knowledge of an easily a

essible subset ofthe se
ret key).The main ideaIn this paper, we mainly study how this
an be done by using the following mainidea: repla
ing ea
h intermediate variable V , o

uring during the
omputationand depending on the inputs (or the outputs), by k variables V1, ..., Vk , su
hthat V1, V2, ..., Vk allows us { if we want { to retrieve V . More pre
isely, toguarantee the se
urity of the algorithm in its new form, it is suÆ
ient to
hoosea fun
tion f satisfying the identity V = f(V1; :::; Vk), together with the twofollowing
onditions:Condition 1: From the knowledge of a value v and for any �xed value i, 1 �i � k, it is not feasible to dedu
e information about the set of the values vi su
hthat there exist a (k � 1)-uple (v1; :::; vi�1; vi+1; :::; vk) satisfying the equationf(v1; :::; vk) = v.Condition 2: The fun
tion f is su
h that the transformations to be performedon V1, V2, ..., or Vk during the
omputation (instead of the transformationsusually performed on V)
an be implemented without
al
ulating V .First example for
ondition 1: If we
hoose f(v1; :::; vk) = v1�v2� :::�vk,where � denotes the bit-by-bit \ex
lusive-or" fun
tion,
ondition 1 is obviouslysatis�ed, be
ause { for any �xed index i between 1 and k { the
onsidered set ofthe values vi
ontains all the possible values and thus does not depend on v.Se
ond example for
ondition 1: If we
onsider some variable V whosevalues lie in the multipli
ative group of Z=nZ, we
an
hoose the fun
tionf(v1; :::; vk) = v1 � v2 � ::: � vk mod n, where the new variables v1, v2, ..., vk alsohave values in the multipli
ative group of Z=nZ. Condition 1 is also obviouslytrue be
ause { for any �xed index i between 1 and k { the
onsidered set of thevalues vi
ontains all the possible values and thus does not depend on v.

We then \translate" the algorithm by repla
ing ea
h intermediate variableV depending on the inputs (or the outputs) by the k variables V1, ..., Vk. In thefollowing se
tions, we study how
onditions 1 and 2
an be a
hieved in the
aseof the DES or RSA algorithms.4 The DES algorithm: �rst example of implementationfor DPA resistan
eIn this se
tion, we
onsider the parti
ular
ase of the DES algorithm. We
hoosehere to separate ea
h intermediate variable V , o

uring during the
omputationand depending on the inputs (or the outputs), into two variables V1 and V2 (i.e.we take k = 2). Let us
hoose the fun
tion f(v1; v2) = v = v1 � v2 (see the�rst example of se
tion 3), whi
h satis�es
ondition 1. From the
onstru
tion ofthe algorithm, it is easy to see that the transformations performed on v alwaysbelong to one of the �ve following
ategories:1. permutation of the bits of v;2. expansion of the bits of v;3. \ex
lusive-or" between v and another variable v0 of the same type;4. \ex
lusive-or" between v and a variable depending only on the key;5. transformation of v using a S-box.The �rst two
ases
orrespond to linear transformations on the bits of thevariable v. For these ones,
ondition 2 is thus very easy to satisfy: we just have{ instead of the transformation usually performed on v { to perform the permu-tation or the expansion on v1, then on v2, and the identity f(v1; v2) = v, whi
hwas true before the transformation, is also true afterwards.In the same way, in the third
ase, we just have to repla
e the
omputation ofv00 = v� v0 by the
omputation of v001 = v1� v01 and v002 = v2 � v02. The identitiesf(v1; v2) = v and f(v01; v02) = v0 give indeed f(v001 ; v002) = v00, so that
ondition 2is true again.As
on
erns the ex
lusive-or between v and a variable
 depending only onthe key,
ondition 2 is also very easy to satisfy: we just have to repla
e the
omputation of v �
 by v1 �
 (or v2 �
) and that gives
ondition 2.Finally, instead of the non-linear transformation v0 = S(v), given underthe form of a S-box (whi
h in that example has 6-bits inputs and 4-bits out-puts), we implement the transformation (v01; v02) = S0(v1; v2) by using two newS-boxes (ea
h of whi
h sending 12 bits onto 4 bits). In order to keep the identityf(v01; v02) = v0, we may
hoose:(v01; v02) = S0(v1; v2) = (A(v1; v2); S(v1 � v2)�A(v1; v2)):where A denotes a randomly
hosen se
ret transformation from 12 bits to 4bits (see �gure 4). The �rst of the new S-boxes
orresponds to the table of thetransformation (v1; v2) 7! A(v1; v2), and the se
ond one
orresponds to the tableof the transformation (v1; v2) 7! S(v1� v2)�A(v1; v2). Thanks to the randomly

?????? ?????? ?????? ??????
? ? ? ? ? ? ? ?

���������� ���������� ���������� ���������� ���������� ���������� HH���������� ���������� ���������� ���������� ���������� ���������� HH

? ? ? ? ? ?
? ? ? ?| {z }v0 = S(v)

z }| {v

Initial implementation: the predi
table valuesv and v0 appear in RAM at some time
S

| {z } | {z }v01 = A(v1; v2) v02 = S(v1 � v2)�A(v1; v2)
S01 S02

z }| { z }| {v1 v2

Modi�ed implementation: the values v = v1 � v2 andv0 = v01 � v02 never expli
itely appear in RAMFig. 4. Standard transformation of a S-box

hosen fun
tion A,
ondition 1 is satis�ed. Moreover, the use of tables allows usto avoid the
omputation of v1 � v2, so that
ondition 2 is also true.The solution presented in this se
tion is quite realisti
 for
hips that
omputeDES in hardware (and are not embedded in a
ard), or for PCs, be
ause { inthose
ases { enough memory is available. More pre
isely, the size of the memoryrequired to store the S-boxes is 32 Kbytes for the method des
ribed in thisse
tion. It is too mu
h for smart
ards, for whi
h spe
i�
 variations using lessmemories are des
ribed in se
tion 5 below.5 Smart
ard implementations of DESFirst variationIn order to redu
e the ROM used by the algorithm, it is quite possible to usethe same random fun
tion A for the eight S-boxes (of the initial des
ription ofthe DES), so that we have only nine (new) S-boxes (i.e. 18 Kbytes) to store inROM, instead of sixteen S-boxes.Se
ond variationIn order to redu
e the size of the ROM needed to store the S-boxes, we
an alsouse the following method: instead of ea
h non-linear transformation v0 = S(v) ofthe initial implementation, given under the form of a S-box (with 6-bits inputsand 4-bits outputs in the
ase of the DES), we implement the transformation(v01; v02) = S0(v1; v2) by using two S-boxes, ea
h of whi
h sending 6 bits onto 4bits. The initial implementation of the
omputation v0 = S(v) is repla
ed by thetwo following su

essive
omputations:{ v0 = '(v1 � v2){ (v01; v02) = S0(v1; v2) = (A(v0); S('�1(v0))�A(v0))where ' is a bije
tive and se
ret fun
tion from 6 bits to 6 bits and where Adenotes a random and se
ret transformation from 6 bits to 4 bits. The �rstof the two new S-boxes
orresponds to the table of the transformation v0 7!A(v0) and the se
ond one
orresponds to the table of the transformation v0 7!S('�1(v0))�A(v0). From this
onstru
tion, the identity f(v01; v02) = v0 is alwaystrue. Thanks to the random fun
tion A,
ondition 1 is satis�ed. Moreover, theuse of tables allows us to avoid the
omputation of '�1(v0) = v1 � v2, so that
ondition 2 is also true. This solution (shown in �gure 5) requires 512 bytes tostore the S-boxes.In order to satisfy
ondition 2, it remains to
hoose the bije
tive transforma-tion ' su
h that the
omputation of v0 = '(v1�v2) is feasible without
omputingv1 � v2. We give below two examples of possible
hoi
e for the fun
tion '.

z }| { z }| {v1 v2?????? ??????

JJJJJJ ������� ������� ������� ������� ������� �������QQ?????? ??????
? ? ? ?? ? ? ?

Computation ofv0 = '(v1 � v2)

| {z } | {z }v01 = A(v0) v02 = S('�1(v0))�A(v0)S01 S02
Modi�ed implementation: the values v = v1 � v2 andv0 = v01 � v02 never expli
itely appear in RAM

? ? ? ? ? ?
? ? ? ?| {z }v0 = S(v)

z }| {v

Initial implementation: the predi
table valuesv and v0 appear in RAM at some time
S

Fig. 5. Transformation of a S-box (se
ond variation)

Exemple 1: a linear bije
tionWe
hoose ' as a linear se
ret and bije
tive fun
tion from 6 bits to 6 bits (we
onsider the set of the 6-bits values as a ve
torial spa
e of dimension 6 on the�nite �eld F2 with 2 elements). In pra
ti
e,
hoosing ' is equivalent to
hoosinga random and invertible 6 � 6 matrix whose
oeÆ
ients are 0 or 1. With this
hoi
e of ', it is easy to see that
ondition 2 is satis�ed. Indeed, to
ompute'(v1 � v2), we just have to
ompute '(v1), then '(v2) and �nally to
omputethe \ex
lusive-or" of the two obtained results.For instan
e, the matrix 0BBBBBB�1 1 0 1 0 01 1 0 1 0 10 1 1 0 1 01 1 1 0 1 00 1 1 1 1 00 0 1 1 0 1
1CCCCCCA is invertible. It
orresponds to thelinear bije
tion ' from 6 bits to 6 bits de�ned by '(u1; u2; u3; u4; u5; u6) = (u1�u2�u4; u1�u2�u4�u6; u2�u3�u5; u1�u2�u3�u5; u2�u3�u4�u5; u3�u4�u6).Let v1 = (v1;1; v1;2; v1;3; v1;4; v1;5; v1;6) and v2 = (v2;1; v2;2; v2;3; v2;4; v2;5;v2;6). To
ompute '(v1 � v2), we su

essively
ompute:{ '(v1) = (v1;1 � v1;2 � v1;4; v1;1 � v1;2 � v1;4 � v1;6; v1;2 � v1;3 � v1;5; v1;1 �v1;2 � v1;3 � v1;5; v1;2 � v1;3 � v1;4 � v1;5; v1;3 � v1;4 � v1;6){ '(v2) = (v2;1 � v2;2 � v2;4; v2;1 � v2;2 � v2;4 � v2;6; v2;2 � v2;3 � v2;5; v2;1 �v2;2 � v2;3 � v2;5; v2;2 � v2;3 � v2;4 � v2;5; v2;3 � v2;4 � v2;6)Then we
ompute the \ex
lusive-or" of the two obtained results.Exemple 2: a quadrati
 bije
tionWe
hoose ' as a quadrati
 se
ret and bije
tive fun
tion from 6 bits to 6 bits.Here, \quadrati
" means that ea
h bit of the output is given by a polynomialfun
tion of total degree two of the 6 bits of the input (whi
h are identi�ed to 6elements of the �nite �eld F2). In pra
ti
e, we may
hoose the fun
tion ' de�nedby '(x) = t(s(x)5), where s is a se
ret linear bije
tion from (F2)6 to L, t is ase
ret linear bije
tion from L to (F2)6 and L denotes an algebrai
 extension ofdegree 6 over the �nite �eld F2. The bije
tivity of this fun
tion ' follows fromthe fa
t that a 7! a5 is a bije
tion on the extension L (whose inverse is b 7! b38).To be
onvin
ed that
ondition 2 is still satis�ed, just noti
e that we
an write:'(v1 � v2) = (v1; v1)� (v1; v2)� (v2; v1)� (v2; v2);where the fun
tion is de�ned by (x; y) = t(s(x)4 � s(y)).For instan
e, if we identify L to F2[X ℄=(X6+X+1) and if we
hoose s and twhose matri
es are 0BBBBBB�1 1 0 1 0 01 1 0 1 0 10 1 1 0 1 01 1 1 0 1 00 1 1 1 1 00 0 1 1 0 1

1CCCCCCA and 0BBBBBB�0 1 0 0 1 11 1 0 1 0 01 0 1 0 1 10 1 1 1 0 01 0 1 0 1 00 0 1 0 1 1
1CCCCCCA with respe
t to the basis

(1; X;X2; X3; X4; X5) of L over F2 and to the
anoni
al basis of (F2)6 over F2,we obtain the following quadrati
 bije
tion ' from 6 bits to 6 bits:'(u1; u2; u3; u4; u5; u6) = (u2u5�u1u4�u4�u6�u6u2�u4u6�u2�u5�u3�u4u3; u2u5�u5u1�u1u4�u4�u6�u4u5�u2�u3�u3u1; u2u5�u5u1�u6u5�u1u4�u3u5�u1�u4u6�u6u3�u4u3�u3u1; u1u4�u2u3�u6u1�u4u6�u5�u6u3 � u4u3; u5u1 � u1u4 � u6 � u3u5 � u4u5 � u1 � u6u1 � u4u6 � u3 � u6u3 �u4u2; u4 � u6 � u3u5 � u1 � u4u6 � u6u3).To
ompute '(v1 � v2), we use the fun
tion (x; y) = t(s(x)4 � s(y)) from 12bits to 6 bits, whi
h gives the 6 output bits from the 12 input bits as follows: (x1; x2; x3; x4; x5; x6; y1; y2; y3; y4; y5; y6) = (x3y5�x6y2�x6y3�x6y4�x3y1�x6y1 � x1y3 � x1y5 � x5y2 � x5y5 � x5y1 � x6y6 � x1y6 � x1y2 � x1y4 � x2y1 �x2y2�x4y4�x3y3�x3y6�x4y3�x5y3; x4y5�x3y1�x6y1�x2y5�x5y1�x6y6�x1y6�x1y2�x2y1�x2y2�x4y1�x4y4�x3y3; x6y2�x6y3�x6y4�x6y5�x3y1�x6y1 � x2y5 � x5y1 � x1y6 � x1y1 � x1y2 � x1y4 � x2y1 � x2y4 � x4y2 � x2y6 �x3y4�x5y3; x3y1�x6y2�x2y6�x5y3�x5y4�x5y6�x6y3�x2y3�x4y6�x6y5�x1y3�x5y5�x2y4�x4y2�x4y5�x3y5�x4y3�x6y1�x4y1; x3y1�x6y6�x5y3�x5y6 � x5y2 � x1y5 � x1y1 � x1y2 � x2y1 � x2y3 � x3y6 � x6y5 � x1y3 � x2y4 �x3y3�x4y5�x2y5�x6y1�x4y1�x6y4�x3y2; x6y6�x4y4�x5y4�x5y6�x6y3�x1y6 � x1y1 � x1y2 � x2y1 � x6y5 � x2y4 � x4y2 � x4y5 � x3y5 � x6y1 � x6y4).By using these formulas, we su

essively
ompute (v1; v1), (v1; v2), (v2; v1)and (v2; v2). Finally, we
ompute the \ex
lusive-or" of the four obtained results.Third variationTo further redu
e the size of the ROM needed to store the S-boxes, we
an applysimultaneously the ideas of both variations 1 and 2: we use the se
ond variation,with the same se
ret bije
tion ' (from 6 bits to 6 bits) and the same se
retrandom fun
tion A (from 6 bits to 6 bits) in the new implementation of ea
hnon-linear transformation given by a S-box. This variation thus requires only288 bytes to store the S-boxes. We have applied the Di�erential Power Analy-sis on real smart
ard implementations of this third variation. Two examples ofdi�erential mean
urves (with 2048 inputs and with `1111' as target output ofthe �rst S-box) are presented in �gures 6 and 7. A pre
ise analysis of the 64
urves given by the DPA (see note after step 3, in se
tion 2) shows that none ofthem appears to be \very spe
ial",
ompared to the others, so that we
an saythat this implementation resists the DPA atta
k (at least in its basi
 form, seeappendix 2 for a possible generalization that
ould still be dangerous).Fourth variationIn this last variation, instead of implementing the transformation (v01; v02) =S0(v1; v2) (whi
h repla
es the non-linear transformation v0 = S(v) of the initialimplementation, given by a S-box) by using two S-boxes, we perform the
om-putation of v01 (respe
tively v02) by using a simple algebrai
 fun
tion (i.e. the bits

-30

-25

-20

-15

-10

-5

0

5

10

15

20

25

30

421 1421 2421 3421 4421 5421 6421

Moyenne Générale - Moyenne Selection Round 1

Fig. 6. An example of di�eren
e of the
urves MC and MC0 when the 6 bits are false

-30

-25

-20

-15

-10

-5

0

5

10

15

20

25

30

421 1421 2421 3421 4421 5421 6421

Moyenne Générale - Moyenne Selection Round 1

Fig. 7. Di�eren
e of the
urves MC and MC0 when the 6 bits are
orre
t

of v01 (respe
tively v02) are given by a polynomial fun
tion of total degree 1 or 2of the bits of v1 and v2), then we
ompute v02 (respe
tively v01) by using a table.This enables to redu
e again the needed ROM for the implementation. This lastvariation requires only 256 bytes to store the S-boxes.6 The RSA algorithmThe \Power Analysis" atta
ks also threaten the
lassi
al implementations of theRSA algorithm. Indeed, these implementations often use the so-
alled \square-and-multiply" prin
iple to perform the
omputation of xd mod n. It
onsists inwriting the binary de
omposition d = dm�12m�1+dm�22m�2 +:::+d121+d020of the se
ret exponent d, and then in performing the
omputation as follows:1. z 1;For i going ba
kwards from m� 1 to 0 do:2. z z2 mod n;3. if di = 1 then z z � x mod n.In this
omputation, we see that { among the su

essive values taken bythe z variable { the �rst ones depend on only a few bits of the se
ret key d.The fundamental hypothesis that enables the DPA atta
k is thus satis�ed. Asa result, we
an guess for instan
e the 10 most signi�
ant bits of d by studyingthe
onsumption measures on the part of the algorithm
orresponding to i goingfrom m� 1 to m� 10. We
an then
ontinue the atta
k by using
omsumptionmeasures on the part of the algorithm
orresponding to i going from m� 11 tom� 20, whi
h gives the 10 next bits of d, and so on. We �nally �nd all the bitsof the se
ret exponent d.The method des
ribed in se
tion 3 also applies to se
uring the RSA algorithm.We use here a separation of ea
h intermediate variable V (whose values lie in themultipli
ative group of Z=nZ), o

uring during the
omputation and dependingon the inputs (or the outputs), into two variables V1 and V2 (i.e. we take k = 2),and we
hoose the fun
tion f(v1; v2) = v = v1 � v2 mod n. We already saw inse
tion 3 (
f \se
ond example") that this fun
tion f satis�es
ondition 1.We thus repla
e x by (x1; x2) su
h that x = x1 � x2 mod n and z by (z1; z2)su
h that z = z1 � z2 mod n (in pra
ti
e, we
an for instan
e
hoose x1 randomlyand dedu
e x2). Considering again the three steps of the \square-and-multiply"method, we perform the following transformations:1. z 1 is repla
ed by z1 1 and z2 1;2. z z2 mod n is repla
ed by z1 z21 mod n and z2 z22 mod n;3. z z�x mod n is repla
ed by z1 z1�x1 mod n and z2 z2�x2 mod n.It is easy to
he
k that the identity z = f(z1; z2) remains true all along the
omputation, whi
h shows that
ondition 2 is satis�ed.Let us noti
e that the
omputations performed respe
tively on the z1 variableand on the z2 variable are
ompletely independent. We thus
an imagine to

perform the two
omputations either in a sequential way, or in an overlappedway, or simultaneously in the
ase of multiprogrammation, or simultaneously indi�erent pro
essors working
on
urrently.7 Generalized Atta
ksRe
ently, more general atta
ks were introdu
ed, where the atta
ker tries to
or-relate di�erent points of a power
onsumption
urve. We have no pla
e here toanalyze in detail the e�e
t of this idea on the \Dupli
ation Method". However,it is possible to show that if ea
h variable is splitted in, say, k variables, thenthe
omplexity of the implementation in
reases in O(k), while the
omplexity ofthe atta
k in
reases exponentially in k.As
on
erns DES implementations, we also re
ommend, when it is possible,to use di�erent S-Boxes for ea
h smart
ard (stored in EEPROM). In parti
ular,this avoids some atta
ks whi
h use a smart
ard with a known key to help �ndingthe key in another smart
ard whose key is unknown.8 Con
lusionIn this paper, we investigate how the study of the ele
tri

onsumption measuresof an ele
troni
 devi
e
an be used by an atta
ker to get information about these
ret key of the
ryptographi
 algorithm
omputed by the
hip. More pre
isely,we fo
us on the so-
alled Di�erential Power Atta
ks, whi
h were re
ently intro-du
ed by Paul Ko
her, and whi
h use a statisti
al analysis of a set of
onsumption
urves measured for many di�erent inputs of the
ryptographi
 algorithm.We study more pre
isely how DPA atta
ks work, and what pre
ise hypothesesthey rely on. We then present several ways of se
uring
ryptosystems. In par-ti
ular,
on
rete examples of su
h
ountermeasures are des
ribed in the
ases ofDES and RSA, whi
h are the most used
ryptographi
 algorithms at the present.To se
ure those algorithms, we essentially study the main idea that
onsistsin splitting ea
h intermediate variable, o

uring in the
omputation, into two(or more) variables, su
h that the values of these new variables
annot be easilypredi
ted. The obtained implementations
an be proved to resist the \lo
al"version of Di�erential Power Analysis (where the atta
ker only tries to dete
tlo
al deviations in the di�erentials of mean
urves). Nevertheless other atta
ks
an be
on
eived, still using the analysis of ele
tri

onsumption. We do notpretend to solve all se
urity problems linked to these threats. These latter atta
ksare not only theoreti
al, sin
e we found real produ
ts that are defeated by them,but it also shows that theoreti
al investigations have to be
ontinued in thatsensitive subje
t.Referen
es1. Paul Ko
her, Joshua Ja�e, Benjamin Jun, Introdu
tion to Di�erentialPower Analysis and Related Atta
ks, 1998. This paper is available athttp://www.
ryptography.
om/dpa/te
hni
al/index.html

