Number Theory |
Cryptographic Hardware for
Embedded Systems
ECE 3170 A

Fall 2025
Assoc. Prof. Vincent John Mooney Il

Georgia Institute of Technology

©Georgia Institute of Technology, 2018-2025

Reading Assignment

* Please read Chapter 11 of the course textbook by Schneier

Entropy or Randomness

* Consider an example encoding of the days of the week
* 000 = Sunday
* 001 = Monday

010 = Tuesday

011 = Wednesday

100 = Thursday

101 = Friday

110 = Saturday

111 is unused

* In this example, one bit pattern (i.e., 111) will never appear

Shannon’s Definition of Entropy

here M is the message and n is the number of
inct possible meanings of the message

\v In our example of days of the week, H(day of the week) = log,(7) = 2.8
e Shannon assumes a binary representation of a message

—M’,———

* If we use ASCII to encode only the days of the week, then the entropy
is still 2.8073554922 even though each day consists of multiple ASCI|
characters each of which is 8 bits in length

* In a storage system, there are practical issues such as a unique way of
indicating the end of a file

Natural Languages

* With this definition of entropy, we can define the rate of the
language as follows:

 r=H(M)/N where N is the length of the message
* English’'messages tend to have values ranging between 1.0 bits//etter and
1.5 bits/?etter

* The absolute rate of the language is the maximum number of bits
that can be coded in each character, assuming each character
sequence is equally likely 2

* R=log,(L) where R =is the absolute rate and L is the number of letters
* For English with 26 letters, the absolute rate is log,(26) = 4.7 bits per letter

e

Security of a Cryptiyvstem P

» Adversary goal: discover key K; plaintext P, or both
* In practice, the adversary has some knowledge abo@g., there
may appear to be commands exchanged between Undefwater

Unmanned Autonomous Vehicles (UUAVs)
* To have bits reveal nothing to an adversary, Shannon theorized that

—

the keysize has to be a large as the message size ~ — ‘
* Only a one-time pad appears to satisfy this requirement /j

* Cryptography goal: keep knowledge about P small — so small that no g\
useful or actionable information is provided to the adversary \L > (? (J\g

* The entropy of a cryptosystem depends on it keyspace
* H(K) = log,(K) where K is the number if distinct possible key values I)

- —

©Georgia Institute of Technology, 2018-2025 \ 6_\ S\C \2

—

Complexity Theory \/\ %m
* Two variables \7/ .
* T for time complexity 5

» S for space complexity

* Both Tand S are commonly expressed as functions of n where n is the
size of the input —

* So-called “big-O” notation: order of magnitude of computational \(\/(\

complexity \
+ .8, 407k 7n +12is 0(6@ QA

e If T= Q(n»then doubllkng the input size doubles the time to compute

e If T= (ﬁé)/, then doubling the input size quadrupﬁthe time to 2
compute i ; AR _ _T 2\

©Georgia Institute of Techno 018-2025 7

Table 11.2 from page 239 of Schneier

Table 11.2 | U\j\
Running Times of Different Classes of Algorithms ?“

of 10 Time at
Class Complexity foy n = 10° 10° O/S

e

Constant O(1) 1 1 usec.

Linear By D@i@:_] 10°
Quadratic = (Oln?] J 10" 11.

Cubic O(n?®) . 10* 2 ,
Exponential ___> 0O(27) (s 10°99% times the age
~ of the universe

©Georgia Institute of Technology, 2018-2025 8 /

/

* Constant
* For example, ¢

Complexity Classes
* Linear

* For example, n where n/= number of inputs C/
* Polynomial (includes quadratic, cubic, etc.) ‘/\

* For example, n¢ wherg if c = 3 then the complexity is cubic y\
ﬁ Superpolynomial m

* For example nf(" where f(n) is morg than a constant but less than linear

* Exponential
L * For example, 2"

©Georgia Institute of Technology, 2018-2025 9

Complexity of Problems

* Problems that have tion techniques in polynomial time
or less are considered intractable

* Class NP
* Further subdivisions: NP-Complete, NP-Hard, etc.

* Conjecture: P # NP

Modular Arithmetic

* No computer has infinite numbers
. \———_—ﬁ . .
* Typically the number representation is a power of two

* Often the smallest number of bits that can be read or written by an
instruction set processor is eight, i.e., a byte

 What ens to max value (e.g., 11111111) plus one?
255+ 1 (mod 256) ﬁg(mod 256)=0
* For cryptographicrea&often want a particular value, e.g., n = pq, then

make calculations’'mod n
 What about the inverse of a number?

° . . -1 — l -1 —
With raUmeers, n ~,e.8., 5+=0.2
* What about inverses of integers?

Multiplicative Inverses in Modular Arithmetic

* The mathenCwatiJ:al definition of the multiplicative inverse of a is a™*

such thataa™1/=1

* However, with integers and infinite range, multiplicative inverses may
exist

* What about a finite set of numbers, e.g., on a computer?
* It turns out that in modular arithmetic, integers have inverses
* The modular inverse of @ mod n|is @uch that a‘l’B: 1 mod
* For example, for 4 in a space mod 7, 4* =2 since 4*2 mod 7 =/8 mod 7 D

« Note that sometimes there is no solution, e.g., for 4 in a space mod 8, 4! does

not exist because there is no integer x € {0,1,2,3,4,5,6,7} such that 4x =1 mod 8;
in particular, for any x, the result of 4x is always an even number

g § =
Com%utmg N a Ga)kns Field /\/D 1Ly A=

* Given n which is prime or is the power of a large prime, we have a finite field

* This type of finite field is known as a Galois Field (GF) X -

« Evariste Galois was a mathematician in France in the 1800s who died at age 20 mkl }
* He was able to prove that there is no general formula to solve a quintic polynomi é‘

* Instead of n, we will now use p

* In a GF, addition, multiplication and invel inverses for nonzero elements are well
defined —_—

* Every nonzero element has a unique multiplicative inverse (this would not be true if p
were not prime)

* Advantages of GF arithmetic include all mathematical operations work, all
numbers are limited to a finite size, and multiplication by an inverse (which

can be considered as a form of division) has no rounding errors
e e

©Georgia Institute of Technology, 2018-2025 13

Computation in GF(2") GYBZDJ \ @\(\)%

* Can be quickly implemented in hardware with feedback shift registers

Co

Gﬁ =)

D

Ik

Q

Q

b

aolt]

* fx)[t] = a,[t]x +a,lt], |P(x)

D

Clk

()

J
24 ¢ 5 k Flx)[t+1] =

©Georgia Institute of Technology, 2018 —ZOg /

1o
Qs
4]
Xf0x)t] mod P(x)

i

4@7[\)—_% @ el XA Ay
e Can be quickly?mple e t/e¥d ;1 hardawarggitll feldbé/ck s?@@

Co 0 é%c ‘T/ \ @7

P\}Q aolt] / D —/)Q/%t]
- o - -
k Q s(=D a gl I

| -

T e = afex+ aol] W fo)le+1] = xffe] mod Pl
DD () 15

T ©Georgia Institute of Technology, 2018 -2025

Polynomial Representation

* Galois tried to find the roots of the quintic equation a.x° + a,x* + a,x3 +
a,x? + a,x + a, =0 using the coefficients for a general formula, similar to
ax? + bx + ¢ where the quadratic formula is expressed in terms of a, b and ¢

* Can view the bits_in a feedback shift register as coefficients in a polynomial
equation where/(5, X4, x3, X%, x1, x9, etc., are placeholders (i.e., not
evaluated or substituted for with numbers)

* Multiplication by x, modulus the characteristic polynomial, calculates the

WW

f)It] = Xi=y a;[t]x!

* P(x) =X Vizo Cix! ———— xt
L f(x)[t+1] = x)[t?nod P(x) J

* f(x)[t] = a,[t]x +ay[t], P(x)=c,x?+c,x+c,, f(x)[t+1] = xf(x)[t] mod P(x)

3

Clk

DU LN

\

Co \\ 1| Cz]
\/|>D\§)~ ao[t]z \>D\‘;/O~

a [t
G 0)3 :\I / _%ﬁ -
G- o) e

©Georgia Institute of Technology, 2018-2025

OO =X =9k

\ B)\méc/ D A
LX) ST NSO

0[3) b+ o Yans

— V\AV W Xb\x\%/

llllllllllllllllllllllllllllllll

©Georgia Institute of Technology, 2018-2025

Math describes the state sequence

* Can be quickly implemented in hardware with feedback shift registers

X)% ><ﬁJ
A X

Nz

x> K A

©Georgia Institute of Technology, 2018-2025 20

Factoring

G
* Finding prime factoré

¢ 10=2*
«60=2%2%3*5
4*7555ﬁ:ﬁ*61*H£\7

@ 3391 * 23279 * 65993 * 1868569 * 1066818132868207

* All known algorithms Have superpolynomial/exponential run-time,
but the constants in the exponent can be quite small

2 =l

©Georgia Institute of Technology, 2018-2025 21

Prime Numbers

* In 512 bits, there exist approximatelZlO151 primes

* For your chosen prime, if selected randomly, the chance of an
adversary correctly guessing your prime number is exceedingly small

* It turns out that generating a prime number is dramatically easier
than factoring

* Approach to prime number generation
* Generate a candidate prime number randomly

* Test it
* There exist fast tests which err less than one in 2°0 tries

Practical Prime Number zeneration
| DA LYI \- _ZF

1) Generate a random n-bit number p

2) Set the high-order bit to 1; set the low-order bit to 1

3) Check p’s divisibility by the small primes: 3, 5, 7, 11, etc. (e.g., check
all primes less than 2000 -

4) Run your favorite test sequence such as Rabin-Miller <———
N X
/w\[’z/‘g\

IDI SN O

©Georgia Institute of Technology, 2018-2025 23

Discrete Logarithm in a Finjite gield JD O] \
'Modularexponentiation' @ N \m/\/\)

* Inverse of modular exponentiation:
* Find x where a¥=b (mod n)

e Example: if 3*=15 (mod 17), th@
* Note that some discrete logarithms have no valid solution, i.e., no integer

solution, e.g., consider3*=7 (mod 13)

* As with factoring, all known approaches to calculating the inverse of
modular exponentiation have superpolynomial/exponential run-time,

Q but the constants in the exponent can be quite small

X S

©Georgia Institute of Technology, 2018-2025

24

