
Number Theory I
Cryptographic Hardware for

Embedded Systems
ECE 3170 A

Fall 2025
Assoc. Prof. Vincent John Mooney III

Georgia Institute of Technology

©Georgia Institute of Technology, 2018-2025 1

©Georgia Institute of Technology, 2018-2025

Reading Assignment

• Please read Chapter 11 of the course textbook by Schneier

2

Entropy or Randomness

• Consider an example encoding of the days of the week
• 000 = Sunday
• 001 = Monday
• 010 = Tuesday
• 011 = Wednesday
• 100 = Thursday
• 101 = Friday
• 110 = Saturday
• 111 is unused

• In this example, one bit pattern (i.e., 111) will never appear

©Georgia Institute of Technology, 2018-2025 3

Shannon’s Definition of Entropy

• H(M) = log2(n) where M is the message and n is the number of
distinct possible meanings of the message

• In our example of days of the week, H(day of the week) = log2(7) = 2.8
• Shannon assumes a binary representation of a message
• If we use ASCII to encode only the days of the week, then the entropy

is still 2.8073554922 even though each day consists of multiple ASCII
characters each of which is 8 bits in length

• In a storage system, there are practical issues such as a unique way of
indicating the end of a file

©Georgia Institute of Technology, 2018-2025 4

Natural Languages

• With this definition of entropy, we can define the rate of the
language as follows:

• r = H(M)/N where N is the length of the message
• English messages tend to have values ranging between 1.0 bits/letter and

1.5 bits/letter

• The absolute rate of the language is the maximum number of bits
that can be coded in each character, assuming each character
sequence is equally likely

• R = log2(L) where R =is the absolute rate and L is the number of letters
• For English with 26 letters, the absolute rate is log2(26) = 4.7 bits per letter

©Georgia Institute of Technology, 2018-2025 5

Security of a Cryptosystem
• Adversary goal: discover key K, plaintext P, or both
• In practice, the adversary has some knowledge about P, e.g., there

may appear to be commands exchanged between Underwater
Unmanned Autonomous Vehicles (UUAVs)

• To have bits reveal nothing to an adversary, Shannon theorized that
the keysize has to be a large as the message size

• Only a one-time pad appears to satisfy this requirement

• Cryptography goal: keep knowledge about P small – so small that no
useful or actionable information is provided to the adversary

• The entropy of a cryptosystem depends on it keyspace
• H(K) = log2(K) where K is the number if distinct possible key values

©Georgia Institute of Technology, 2018-2025 6

Complexity Theory
• Two variables

• T for time complexity
• S for space complexity

• Both T and S are commonly expressed as functions of n where n is the
size of the input

• So-called “big-O” notation: order of magnitude of computational
complexity

• E.g., 4n2 + 7n + 12 is O(n2)

• If T = O(n), then doubling the input size doubles the time to compute
• If T = O(n2), then doubling the input size quadruples the time to

compute
©Georgia Institute of Technology, 2018-2025 7

©Georgia Institute of Technology, 2018-2025

Table 11.2 from page 239 of Schneier

8

Complexity Classes
• Constant

• For example, c

• Linear
• For example, n where n = number of inputs

• Polynomial (includes quadratic, cubic, etc.)
• For example, nc where if c = 3 then the complexity is cubic

• Superpolynomial
• For example nf(n) where f(n) is more than a constant but less than linear

• Exponential
• For example, 2n

©Georgia Institute of Technology, 2018-2025 9

Complexity of Problems

• Problems that can be solved in polynomial time or less are considered
tractable

• Class P

• Problems that have no known solution techniques in polynomial time
or less are considered intractable

• Class NP
• Further subdivisions: NP-Complete, NP-Hard, etc.

• Conjecture: P  NP

©Georgia Institute of Technology, 2018-2025 10

Modular Arithmetic

• No computer has infinite numbers
• Typically the number representation is a power of two
• Often the smallest number of bits that can be read or written by an

instruction set processor is eight, i.e., a byte
• What happens to max value (e.g., 11111111) plus one?

• 255 + 1 (mod 256) = 256 (mod 256) = 0
• For cryptographic reasons, often want a particular value, e.g., , then

make calculations mod
• What about the inverse of a number?

• With rational numbers, ିଵ ଵ

௡
, e.g., 5-1 = 0.2

• What about inverses of integers?

©Georgia Institute of Technology, 2018-2025 11

Multiplicative Inverses in Modular Arithmetic

• The mathematical definition of the multiplicative inverse of is ିଵ

such that ିଵ

• However, with integers and infinite range, multiplicative inverses may
exist

• What about a finite set of numbers, e.g., on a computer?
• It turns out that in modular arithmetic, integers have inverses
• The modular inverse of mod is ିଵ such that ିଵ mod
• For example, for 4 in a space mod 7, 4-1 = 2 since 4*2 mod 7 = 8 mod 7 = 1
• Note that sometimes there is no solution, e.g., for 4 in a space mod 8, 4-1 does

not exist because there is no integer {0,1,2,3,4,5,6,7} such that 4 = 1 mod 8;
in particular, for any , the result of 4 is always an even number

©Georgia Institute of Technology, 2018-2025 12

Computing in a Galois Field
• Given n which is prime or is the power of a large prime, we have a finite field

• Instead of n, we will now use p

• This type of finite field is known as a Galois Field (GF)
• Évariste Galois was a mathematician in France in the 1800s who died at age 20 in a duel
• He was able to prove that there is no general formula to solve a quintic polynomial

• In a GF, addition, multiplication and inverses for nonzero elements are well
defined

• Every nonzero element has a unique multiplicative inverse (this would not be true if p
were not prime)

• Advantages of GF arithmetic include all mathematical operations work, all
numbers are limited to a finite size, and multiplication by an inverse (which
can be considered as a form of division) has no rounding errors

©Georgia Institute of Technology, 2018-2025 13

©Georgia Institute of Technology, 2018-2025

Computation in GF(2n)
• Can be quickly implemented in hardware with feedback shift registers

• f(x)[t] = a1[t]x + a0[t] , P(x) = c2x2 + c1x + c0 , f(x)[t+1] = xf(x)[t] mod P(x)

14

D Q

QClk

a0[t]

c1

D Q

QClk

a1[t]

c0 c2

Polynomial Representation
• Galois tried to find the roots of the quintic equation a5x5 + a4x4 + a3x3 +

a2x2 + a1x + a0 = 0 using the coefficients for a general formula, similar to
ax2 + bx + c where the quadratic formula is expressed in terms of a, b and c

• Can view the bits in a feedback shift register as coefficients in a polynomial
equation where x5, x4, x3, x2, x1, x0, etc., are placeholders (i.e., not
evaluated or substituted for with numbers)

• Multiplication by x, modulus the characteristic polynomial, calculates the
next state

• f(x)[t] = ௜
௜௡ିଵ

௜ୀ଴

• P(x) = ௜
௜௡

௜ୀ଴

• f(x)[t+1] = xf(x)[t] mod P(x)
©Georgia Institute of Technology, 2018-2025 15

©Georgia Institute of Technology, 2018-2025

• f(x)[t] = a1[t]x + a0[t] , P(x) = c2x2 + c1x + c0 , f(x)[t+1] = xf(x)[t] mod P(x)

16

D Q

QClk

a0[t]

c1

D Q

QClk

a1[t]

c0 c2

©Georgia Institute of Technology, 2018-2025

Math describes the state sequence
• Can be quickly implemented in hardware with feedback shift registers

17

Factoring

• Finding prime factors
• 10 = 2 * 5
• 60 = 2 * 2 * 3 * 5
• 252601 = 41 * 61 * 101
• 2113-1 = 3391 * 23279 * 65993 * 1868569 * 1066818132868207

• All known algorithms have superpolynomial/exponential run-time,
but the constants in the exponent can be quite small

©Georgia Institute of Technology, 2018-2025 18

Prime Numbers

• In 512 bits, there exist approximately 10151 primes
• For your chosen prime, if selected randomly, the chance of an

adversary correctly guessing your prime number is exceedingly small
• It turns out that generating a prime number is dramatically easier

than factoring
• Approach to prime number generation

• Generate a candidate prime number randomly
• Test it

• There exist fast tests which err less than one in 250 tries

©Georgia Institute of Technology, 2018-2025 19

Practical Prime Number Generation

1) Generate a random n-bit number p
2) Set the high-order bit to 1; set the low-order bit to 1
3) Check p’s divisibility by the small primes: 3, 5, 7, 11, etc. (e.g., check

all primes less than 2000)
4) Run your favorite test sequence such as Rabin-Miller

©Georgia Institute of Technology, 2018-2025 20

Discrete Logarithm in a Finite Field

• Modular exponentiation: ax mod n
• Inverse of modular exponentiation:

• Find x where ax  b (mod n)
• Example: if 3x  15 (mod 17), then x = 6
• Note that some discrete logarithms have no valid solution, i.e., no integer

solution, e.g., consider 3x  7 (mod 13)

• As with factoring, all known approaches to calculating the inverse of
modular exponentiation have superpolynomial/exponential run-time,
but the constants in the exponent can be quite small

©Georgia Institute of Technology, 2018-2025 21

