Cryptography Part II: Birthday Attack Cryptographic Hardware for Embedded Systems ECE 3170 A

Fall 2024
Assoc. Prof. Vincent John Mooney III
Georgia Institute of Technology

How Many People Have Your Birthday?

- Assume that birthdays are randomly distributed throughout the year
- E.g., 9 months after Aug. 29 is an equally likely birthday as any other day
- Further assume Feb. 29 is excluded
- You walk into a room; how many people need to be in the room for there to be a 50% chance that one person has the same birthday as you?
- The chance that one person has the same birthday as you is $1 / 365$
- The second person may have the same birthday as you or the first person \Rightarrow the increase in probability including the second person is not $1 / 365$
- To get to approximately 50%, need to have 253 people in the room

What Are The Chances That Any Two People in a Room Have the Same Birthday?

- Two people: 1/365
- Three people A, B and $C: A \& B=1 / 365, A \& C=1 / 365, B \& C=1 / 365$ \Rightarrow a total chance of $3 / 365$
- Four people A, B, C and D: A\&B, A\&C, A\&D, B\&C, B\&D, C\&D \Rightarrow a total chance of 6/365
- Clearly, growth of chances is more than linear (the growth is polynomial)
- Final result: with 23 people in the room, the chance that two people share the same birthday is approximately 50%

What Does the Birthday Attack Illustrate?

- The difference between the chances of randomly finding one particular secret, e.g., a match to a specific person's birthday or the access code for a specific device
- Versus the chances of finding a collision, e.g., in a collection of devices two that have the same access code (key) or in a group of people any two who have the same birthday

