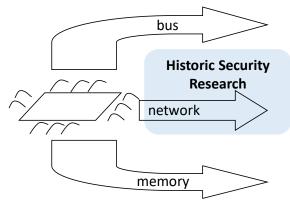
Cryptography Part I Cryptographic Hardware for Embedded Systems ECE 3170 A


> Fall 2024 Assoc. Prof. Vincent John Mooney III Georgia Institute of Technology

### Reading

• Please read chapters 1 and 7 of the course textbook by Schneier

## Cryptography

- Cryptography is the science of keeping communication private
  - More formally, cryptography is traditionally defined as secure communication over an insecure channel



### Security

- Notice that the definition of cryptography utilizes the definition of security
- A typical dictionary definition of security would say that it is freedom from danger or freedom from fear of being hurt

## Secure from What Threat?

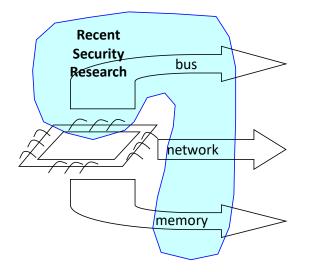
- Traditionally, in security research the perceived threats are clearly defined
- The threats of concern form an "attack surface"

## Kerckhoffs' Principle

- Auguste Kerckhoffs (1835-1906) was a Professor of Languages who carried out research in linguistics and cryptography
- He was a fan of constructed (i.e., non-societal) languages
- In 1883 he published two articles in which he claimed that it is very important that a cryptographic method still work even if the technique falls into enemy hands
  - The method will rely on a *key* (e.g., a sequence of characters including numbers, etc.) which should not be provided to the enemy
  - The method should be portable, e.g., should not require very large equipment difficult to transport quickly and reliably
  - The method itself should not be required to be a secret: "The cipher method must not be required to be secret, and it must be able to fall into the hands of the enemy without inconvenience."

# Terminology

- Plaintext or cleartext: the message in a language understood by both the sender (Alpha) and the receiver (Buzz)
- Encryption: the process of disguising a message such that it cannot be recognized by an adversary
- Ciphertext (also cyphertext): the encrypted message
- Decryption: the process of transforming ciphertext back into the original plaintext
- Key: information, usually a number, known to the communicating parties but not to any adversaries – a key is a *secret*


# Traditional Cryptanalytic Attacks

- 1) Ciphertext only attack
  - Cryptanalyst has the ciphertext  $\{C_i\}$  of a number of messages
    - $C_1 = E_k(P_1), C_2 = E_k(P_2), ...$
- 2) Known plaintext attack
  - Cryptanalyst has a number of plaintext, ciphertext pairs
    - $(P_i, C_i) \mid C_i = E_k(P_i)$
  - May also have additional ciphertext without associated plaintext
- 3) Chosen plaintext attack (CPA)
  - Cryptanalyst can obtain ciphertext for chosen plaintext
  - Given  $P_i$ ,  $C_i = E_k(P_i)$  can be found
- Goals include decryption of specific messages and deduction of the key

# Traditional Cryptanalytic Attacks (continued)

- 4) Chosen ciphertext attack (CCA)
  - Cryptanalyst can obtain plaintext for (some) chosen ciphertext
  - Given  $C_i$ ,  $P_i \mid C_i = E_k(P_i)$  can be found for some (or all) cases
- The primary goal is the deduction of the key; in the case that only some plaintext can be decrypted, another goal may be decryption of specific messages not able to be decrypted via chosen ciphertext
- Note that these four traditional attacks are listed by increasing capability of the cryptanalyst, i.e., case (1) is the weakest whereas case (4) is the most capable

## Modern Cryptography



#### Example

1. Design Team (DT) and Fab meet in person and agree on a secret key *(SK)* 

С

2. DT encrypts a message  $m = \{m_i\}$  using the secret key *SK*, i.e.,  $c \leftarrow Enc_{SK}(m)$ , and sends the result to the Fab

3. Fab decrypts the encrypted message c and obtains m, i.e.,  $m \leftarrow Dec_{SK}(c)$ ,

# Data Encryption Standard (DES)

- In 1973, NIST (the National Institute of Standards and Technology technically, however, in 1973 NIST was named the National Bureau of Standards) issued a public request for a standard cryptographic algorithm
  - High level of security dependent only on the key
  - Completely specified and easy to understand
  - Publically available
  - Usable in diverse application scenarios
  - Efficient & economical to implement in hardware
  - Validated & tested

### Some Interesting Historical Facts

• The capture of a version of the Enigma machine helped crack the German cryptographic codes in WWII

## Some Large Numbers

- Odds of being killed by lightning (per day): 1 in 9 billion (2<sup>33</sup>)
- Odds of being killed in a car accident
  - In a particular year (e.g., in the U.S. in 1993): 1 in 6100 (2<sup>12</sup>)
  - In an entire lifetime: 1 in 88 (2<sup>7</sup>)
- Time until the sun goes nova: 10<sup>9</sup> (2<sup>30</sup>) years
- Age of the universe:
- Number of atoms in the sun:
- Number of atoms in the universe (excl. dark matter): 10<sup>77</sup> (2<sup>265</sup>)
- Volume of the universe:  $10^{84} (2^{280}) \text{ cm}^3$
- NOTE: the above numbers are "ballpark," e.g.,  $2^{12} = 4096$  (not 6100)

10<sup>10</sup> (2<sup>34</sup>) years

 $10^{57} (2^{190})$