ECE 3170 Cryptographic Hardware for Embedded Systems
Fall 2025
Assoc. Prof. Vincent John Mooney Il
Georgia Institute of Technology
Lab 5, 100 pts.
Due Tuesday, December 2" prior to 11:55pm
(please turn in electronically on Canvas)

Introduction to Power Analysis with the
ChipWhisperer-NANO

In this lab, you will analyze power traces from the ChipWhisperer-NANO board and observe
how plots of power traces can reveal hints about the instructions the board is carrying out.

This lab will use the same software packages from the previous lab (Python, pip JupyterLab, Chocolatey).
Please proceed to the next page for the steps on how to complete this lab.

1. Launch JupyterlLab.

Windows Note: This time, you will not use the command prompt, but rather the
ChipWhisperer bash. The ChipWhisperer bash is installed by default from the ChipWhisperer
Windows installation (https://github.com/newaetech/chipwhisperer/releases).

To launch the ChipWhisperer bash, search for the program “ChipWhisperer Bash” and launch the
program. A command window should open. You can still launch Jupyter by typing “jupyter lab.”

Create a Python 3 notebook for this lab.

ChipWhisperer bash is not necessary for Mac/Linux, as a regular command window will suffice.

Best match

& ChipWhisperer Bash
App

Apps
« ChipWhisperer

cly Chipwhisperer.v5.6.1.5etup.64-
bit.exe

Search school and web

L chipw - Sea school and web results

wl

ChipWhisperer Bash

App

) Open
Il Open file location

<3 pin to Start

With Jupyter Lab open, first enter the following code in a cell to specify your hardware setup:

SCOPETYPE = 'CWNANO'
PLATFORM = 'CWNANO'

In your computer’s file system, navigate to the directory

(Windows)C:/Users/15055/ChipWhisperer5_64/cw/home/portable/chipwhisperer/hardware/vic

tims/firmware.

(Other) /Users/USERNAME/chipwhisperer/firmware/mcu
(or wherever the chipwhisper file was downloaded)

Create a new folder here called simpleserial-base-lab5 and copy the contents of the
simpleserial-base directory into the simpleserial-base-lab5 directory.

2. Run the following in a new cell, replacing YOURUSER with your system username. Change the
path as needed based on the previous step. You will also have to re-run this every time you
make changes to your code, as this block of code builds firmware onto the board:

%%bash -s "SPLATFORM"

cd

C:/Users/YOURUSER/ChipWhisperer5 64/cw/home/portable/chipwhisperer/hardware/victims/fi
rmware/simpl eserial-base-lab5

make PLATFORM=$1 CRYPTO TARGET=NONE

If the firmware builds successfully, you should see an output like the following after running the
cell:

SS_VER set to SS_VER_1_1
C:/Users/15@55/CHIPWH~1/cw/home/portable/avrgec/bin/make clean_objs .dep

make[1]: Entering directory 'C:/Users/15055/ChipWhispererS_64/cw/home/portable/chipwhisperer/hardware/victims/firmware/simpleserial-base-1sb2
SS_VER set to SS_VER_1_1

rm -f rial-base-CWNANO. hex

-CWNANO.ecp

CWNANO. cof

-CWNANO.elf

se-CWNANO.map

rm - simplese se.s simpleserial.s 32f@_hal _nano.s s 2f@_hal lowlevel.s
rm - simplesarial-base.d simplese : fo_hal_nano. 32F6_hal_lowlevel
rm simpleserial-base.i simpleserial.i stm32f@_hal_nano.i stm32f@_hal_lowlevel.i
mkdir .dep

make[1]: Leaving directory 'C:/Users/15055/Chiphhi fvictims/firmware/simpleserisl-base-1ab2
C:/Users/15055/CHIPYWH / ble/avrgec/bi

meke[1]: Ent directory 'C:/Users/15055/ChipWhisperer5_64/cw/h
SS_VER set to SS_VER_1_1

cw/home/port

ome/portable/chipwhisperer/hardware/victims/firmware/simpleserial-base-1lab2

Welcome to another exciting ChipWhisperer target build!!
dded Toolchain 10-2020-g4-major) 10.2.1 20201103 (release)
undation, Inc.
the source for copying conditions. There is NO
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

yarranty; not eve

NOTE: On windows machines, WSL *may* cause conflicts preventing jupyter from using the
chipwhisperer shell (instead of the wsl bash shell). This would show up as strange errors about arm-
none-eabi-gcc not being found despite being installed correctly. This can be corrected by replacing
% %bash with % %sh

3. Now, setup this ChipWhisperer using the following block of Python code in a new cell:

import chipwhisperer as cw
try:
if not scope.connectStatus:
scope.con ()
except NameError:
scope = cw.scope ()

try:

target = cw.target (scope)
except IOError:

print ("INFO: Caught exception on reconnecting to target - attempting to
reconnect to scope first.")

print ("INFO: This is a work-around when USB has died without Python
knowing. Ignore errors above this line.")

scope = cw.scope ()
target = cw.target (scope)

print ("INFO: Found ChipWhisperer C)")

if "STM" in PLATFORM or PLATFORM == "CWLITEARM" or PLATFORM ==
"CWNANO" :
prog = cw.programmers.STM32FProgrammer
elif PLATFORM == "CW303" or PLATFORM == "CWLITEXMEGA":
prog = cw.programmers.XMEGAProgrammer
else:

prog = None

import time

time.sleep (0.05)
scope.default setup ()
def reset target (scope):

if PLATFORM == "CW303" or PLATFORM == "CWLITEXMEGA":
scope.io.pdic = '"low'
time.sleep (0.05)
scope.io.pdic = 'high z' #XMEGA doesn't like pdic driven high
time.sleep (0.05)
else:
scope.io.nrst = 'low'
time.sleep (0.05)
scope.io.nrst = 'high z'

time.sleep (0.05)
If the code runs successfully, you should see the following after running the cell:

INFO: Found ChipWhisperer@

4. The following code will upload the firmware to your board. Make sure to replace YOUR USER
with your system username and update the path as neccessary:

cw.program_target(scope, prog, "C:/Users/YOUR
USER/ChipWhisperer5_64/cw/home/portable/chipwhisperer/hardware/victims/firmware/simpl
eserial-base-lab5/simpleserial-base-{}.hex".format(PLATFORM))

If the code runs successfully, you should see the following after running the cell. Please make
sure to wait for the “Verified flash OK” message before proceeding to step 5:

Detected known STMF32: STM32F@4xxx

Extended erase (@x44), this can take ten seconds or more
Attempting to program 4655 bytes at Ox3220000

STM32F Programming flash...

STM32F Reading flash...

Verified flash OK, 4655 bytes

5. Now, in a new cell, you will define a function to capture a power trace from the board:

def capture trace():
ktp = cw.ktp.Basic ()
key, text = ktp.next()
return cw.capture trace (scope, target, text).wave

6. Insert the following into a new cell:

wave = capture trace()
print ("« OK to continue!")

Make sure you see the “OK to continue!” message after running the cell before proceeding.
Now, open the simpleserial-base.c file located in the simpleserial-base-lab5 directory from step 1).

In this file, remove the simpleserial_put() function call located within the get_pt() function.

7. Rebuild reupload the firmware onto the ChipWhisperer board using the code in steps 2 and 4
and capture a trace with the code above. After you have rebuilt and reuploaded the firmware,
plot your captured trace with the following code:

$matplotlib notebook
import matplotlib.pylab as plt

plt.figure ()
plt.plot (wave, 'r')
plt.show ()

Note that if you get an error like the following:

----> 6 import matplotlib
7 from matplotlib import colors
& from matplotlib.backends import backend agg

ModuleNotFoundError: No module named 'matplotlib’

Then you will have to install the matplotlib module using the command “python -m pip install -U
matplotlib” in your command prompt (not the ChipWhisperer bash, just the normal Windows
command prompt).

If you get an error like the following:

#matplotlib notebook

import matplotlib.pylab as plt
plt.figure()

plt.plot(wave, ‘r')

plt.show()

Javascript Error: IPython is not defined

Then you will have to add the following line of code before the plt.figure() statement:

%matplotlib inline

The resulting plot should look like the one below:

import matplotlib.pylab as plt

plt.figure()
plt.plot(wave, 'r')
plt.show()

0.3 4

0.2

0.1 1

0.0 |

—0.1 A

—0.2 A

—0.3 1

—-0.4

T T T T
0 1000 2000 3000 4000 5000

Understanding Power Traces

In this section we will try to understand how different operations appear in a power trace and do some
simple power analysis.

1. Let’s begin by modifying the ChipWhisperer code to do a few addition operations.
Open the simpleserial-base.c file in the simpleserial-base-lab5 directory from earlier. Add the
following code to the get_pt() function between trigger high() and trigger_low().

Note: The volatile keyword is needed to prevent the compiler from optimizing the code into a
single A = 0x35f instruction

volatile long int A = 0x2FB;
volatile long int B = 0;

B=A/15;
B=A/15;
B=A/15;
B=A/15;
B=A/15;

2. Rerun the cells to recompile the c code (%%bash ...) and reprogram the chip-whisperer
(cw.program_target...).

3. Inanew cell, write code to capture a new trace and plot the first 1200 samples using matplotlib.
Can you tell where the divisions live in the power trace?
You can select the first N entries from a python array with the following snippet:
new_array = original_array[:N]

4. Rerun this experiment from step 1-3 with 3 divisions, then with 10. How does the power trace
change each time?

5. Let’s go back to 5 divisions. Try changing the divisor for one of the divisions from 15 to
something else. How does this change the trace?

Required Documents to turn in

e Entire Jupyter notebook for this lab, including the outputs of running each cell.

e All figures generated with your code.

e Comment briefly your thoughts on the labs that have involved using the ChipWhisperer board
and Jupyter, E.G., did you find these labs engaging? Were you able to follow and understand the
instructions, or were there missing steps and errors you had difficulty troubleshooting?

This lab was written with reference to the SCA101 course from the ChipWhisperer GitHub, located at
https://github.com/newaetech/chipwhisperer-
jupvter/tree/c940073159¢8032877e9f7b9ef852b3662c4ec02/courses/scal 0l

https://github.com/newaetech/chipwhisperer-jupyter/tree/c940073159c8032877e9f7b9ef852b3662c4ec02/courses/sca101
https://github.com/newaetech/chipwhisperer-jupyter/tree/c940073159c8032877e9f7b9ef852b3662c4ec02/courses/sca101
https://github.com/newaetech/chipwhisperer-jupyter/tree/c940073159c8032877e9f7b9ef852b3662c4ec02/courses/sca101
https://github.com/newaetech/chipwhisperer-jupyter/tree/c940073159c8032877e9f7b9ef852b3662c4ec02/courses/sca101

	Required Documents to turn in

