ECE 3170 Cryptographic Hardware for Embedded Systems
Fall 2025
Assoc. Prof. Vincent John Mooney |l
Georgia Institute of Technology
Lab 4, 100 pts.
Due Tuesday, Oct. 28 prior to 11:55pm
(please turn in homework electronically on Canvas)

Working with the ChipWhisperer-NANO
and JupyterLab

In this lab, you will work through the ChipWhisperer Setup Test and connect the ChipWhisperer-
NANO board to your computer. Then, you will recover an Advanced Encryption Standard (AES)
key from the internal state of an AES implementation.

If you already have Python and pip installed, you may skip the installation steps and proceed to step 8,
where you will perform and test your Jupyter installation and install the ChipWhisperer library.

Installation

1. Installing Python and Pip

Note: If you already have Python and Pip installed, you may skip to the next section.

A. Windows Machines

1. Download the latest version of Python from https://www.python.org/downloads/.

& python’ . I

About Downloads Documentation Community Success Stories News Events

Looking fo a different 0S? Python for Windows,

Linux oid, other

e
Download the latest version for macOS m - V‘/‘
y/ ‘\ ‘ y
\| ////%

2. When running the installer, make sure you check the box to Add Python to PATH. This will allow
you to use the python command in your command window.

https://www.python.org/downloads/
https://www.python.org/downloads/

 Python 3.7.3 (32-bit) Setup — X

Install Python 3.7.3 (32-bit)

Select Install Now to install Python with default settings, or choose
Customize to enable or disable features.

® Install Now
C:\Users\madhu\AppData\Local\Programs'\Python\Python37-32

Includes IDLE, pip and documentation
Creates shortcuts and file associations

—> Customize installation
Choose location and features

python
for Install launcher for all users (recommended)

windows @ Add Python 3.7 to PATH Cancel |

3. Select “Customize installation” and ensure Documentation, pip, py launcher, and Python test
suite are checked. The tcl/tk and IDLE box along with the for all users box need not be checked:

3 Python 3.7.3 (32-bit) Setup - X

Optional Features

Documentation
Installs the Python documentation file.
pip
Installs pip, which can download and install other Python packages.

tcl/tk and IDLE
Installs tkinter and the IDLE development environment,

Python test suite
Installs the standard library test suite,

[py launcher [for all users (requires elevation)
Installs the global 'py’ launcher to make it easier to start Python.

python

for

windows | Back | | Next || Cancel

4. Click Next to proceed to the Advanced Options page. Make sure you check Add Python to
environment variables, Associate Files with Python, and Create shortcuts for installed
applications. It’s very important you add Python to your environment variables; otherwise, you
will not be able to use the python command in the command line.

& Python 3.7.3 (32-bit) Setup — X

Advanced Options

[Install for all users

Associate files with Python (requires the py launcher)
Create shorteuts for installed applications

!?Add Python to environment variables

[] Precompile standard library

] Download debugging symbaols

[] Download debug binaries (requires VS 2015 or later)

Customize install location
| C:\Users\madhu\AppData\Local\Programs\Pythun\PythonS]‘ Browse

python

for

Wlnd OWS Back @ install Cancel

5. Click Install. You should see the following page:

% Python 3.7.3 (32-bit) Setup - b 4
Setup was successful

Special thanks to Mark Hammond, without whose years of
freely shared Windows expertise, Python for Windows would
still be Python for DOS.

New to Python? Start with the online tutorial and
documentation.

See what's new in this release.

@ Disable path length limit

Changes your machine configuration te allow pregrams, including Python, to
bypass the 260 character "MAX_PATH" limitation.

python

for

windows Close

6. Test your Python installation by opening the command prompt (Windows+R -> type cmd -> click
“OK”). Once your command prompt is open, type “python.” The result should be like the one
below:

Command Prompt - python = [m] X

Microsoft Windows [Version 10.0.17134.765]
(c) 2018 Microsoft Corporation. All rights reserved.

:\Users\madhu>python
python 3.7.3 (v3.7.3:efdec6ed12, Mar 25 2019, 22:22:05) [MSC v.1916 64 bit (AMD64)] on win32
"help”, "copyright”, "credits” or "license" for more information.

Type “quit()” and press enter to return to the command line from here.

7. Test your pip installation by typing “pip help” in the command line. The result
should be like the one below:

oft Windows [Version 10.8.19044.2006]
rosoft Corporation. All ts reserved.

:\Users\15855>pip help

ommand> [options]

ommands :
install Install pa
download Download
uninstall I_Ir\i-‘\stall
freeze D in d packages in requirements format.
inspect python rironment.
list i _nstalled packages.
show information ab installed packages.
< installed packages have compatible dependencies.
e local and global configuration
PyPI for pa éages.
Inspect and manage pip’s wheel cache.
Inspect information available from package indexes.
wheel Build uheelr from your requirements.
hash Compute hashes of package archives.
completion A helper nmmand used for command completion.
debug Show information useful for debugging
help Show help for commands.

8. You now need to install Jupyter and chipwhisperer. To do so, type “pip install jupyterlab” in the
command line. Once the Jupyter installation is complete, type “pip install chipwhisperer” in the
command line.

NOTE: Windows users with Python 3.14+ should run “pip install ipykernel==7.0.1" after these
steps

B. Mac Machines

Note: The installation steps for chipwhisperer dependencies use brew. Since it is already required, these
steps shall make use of brew. Start installation from the “Packages” header down.

1. Refer to the brew webpage https://brew.sh/ for installation steps, or use the following
command.

/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"

2. Follow the installation instructions for the dependencies linked here, beginning from “Packages”
NOTE: Python may be installed like this or using the Windows steps above

3. If not done in the previous step, set up a python virtual environment with “python -m venv my-
env”, and then source it with “source my-env/bin/activate”

NOTE: you will need to source the venv every time you open a new terminal to run Jupyter

4. Install Jupyter and chipwhisperer with “brew install jupyterlab” and
“brew install chipwhisperer” with the venv sourced (You will see (my-env) on the left side of the
terminal)

C. Linux Machines

Detailed instructions can be found here

https://chipwhisperer.readthedocs.io/en/latest/mac-install.html
https://brew.sh/
https://brew.sh/
https://chipwhisperer.readthedocs.io/en/latest/mac-install.html
https://chipwhisperer.readthedocs.io/en/latest/linux-install.html

9. Once Jupyter and chipwhisperer have been installed, launch JupyterLab with the command
“jupyter-lab”. This will open a tab like the one below in your default web browser:

i
Ll
=
A"
0

10. Create a new notebook by clicking the Python 3 button under the Notebook category in the
screenshot above. Your notebook should look like below:

11. Paste the following Python code into the box with the vertical blue line to the left of it:
import chipwhisperer
help (chipwhisperer)
And press the Run button:

™ Untitled2.ipynb @

a+xmoal c

[]: dimport chipwhisperer
help(chipwhisperer)

12. The code should compile and run successfully, with output like below:

® untitied2.ipynb .
-

e
B + X000 » Cc w» Code v & Python 3 (ipykemel)

[1]: import chipwhisperer BArVvEsF i
help(chipwhisperer)

Help on package chipwhisperer:

NAME
chipwhisperer

DESCRIPTION
. module:: chipwhisperer
:platform: Unix, Windows
:synopsis: Test

. moduleauthor:: NewAE Technology Inc.
Main module for Chiplihisperer

PACKAGE CONTENTS
analyzer (package)
capture (package)
common (package)
hardware (package)
logging

SUBMODULES
key_text_patterns
ktp
programmers
project
scopes
targets
util

FUNCTIONS
capture_trace(scope: Union[chipwhisperer.capture.scopes.OpenADC.OpenADC, chipwhisperer.capture.scopes.cwnano.ChNano], target: Union[chipwhisperer.capture.targets.Cu3
©5.C1305, chipwhisperer.capture.targets.CW305_ECC.CW305_ECC, chipwhisperer.capture.targets.Ch310.Ck31@, chipwhisperer.capture.targets.SimpleSerial.SimpleSerial, chipwhis
perer.capture.targets.SimpleSerial2.SimpleSerial2, chipwhisperer.capture.targets.SimpleSerial2.SimpleSerial2 CDC], plaintext: chipwhisperer.common.utils.util.bytearray,
key: Optional[chipwhisperer.common.utils.util.bytearray] = None, ack: bool = True, poll_done: bool = False, as_int: bool = False) -> Optional[chipwhisperer.common.trace
s.Trace]
Capture a trace, sending plaintext and key

Does all individual steps needed to capture a trace (arming the scope
sending the key/plaintext, getting the trace data back, etc.). Uses
target.output_len as the length of the expected target reponse for
simpleserial.

13. You can save your notebook file using the Save and create checkpoint button. You
can rename your file by right-clicking on it in the files menu to the left and selecting
rename.

™ chipwhisperer.ipynb X |+
+3(|_[j[:|blc.:r00dev

How Jupyter Works

Jupyter works with cells. The code you just ran was a cell. Once you successfully execute the contents of
a cell, you move on to a new cell:

A chipwhisperer.ipynb X |+
B+ X0 ® » = ¢ » Code v & Python 3 (ipykemel
Unions of a single argument vanish, e.g.::
nion[int] == int # The constructor actually returns int

- Redundant argumentc are skipped, e.g.::
Union[int, str, int] == Union[int, str]

- when comparing unions, the argument order is ignored, e.g.::

Union[int, str] == Union[str

- You cannot subclass

or instantiate a union.
- You can use Optional[x] as a cthorthand for Union[X, Mone].

perer NAEUSB (WARNING)>, <Log...

1\Progra...whisper...

(WARNING) >

t (WARNING)>
r TracehWhisperer (WARNING)...

c:\users\15855\appdata\local \programs\pythan\python316\lib\site-p

A cell is prefixed with []:, to the left of which is a box where you can enter the code for the cell. Once
you move on to a new cell, you can use the imports introduced and variables initialized in previous
cells. Bear this in mind as you complete the rest of this lab.

Connecting to the ChipWhisperer

Next, you will connect to the ChipWhisperer with Jupyter.

1. Connect the board to your device using the provided USB cable:

2. Start Jupyter. Create a new Python 3 notebook.

3. Insert the following Python code into a new cell:
import chipwhisperer as cw
scope = cw.scope ()

4. Run the code in the cell:

A chipwhisperer.ipynb ® [2 Launcher X

B+§<[_D[:IQIC»COdev

[2]: import chipwhisperer as cw
scope = cw.scope()

5. Connect to the target device:
target = cw.target (scope, cw.targets.SimpleSerial)
#cw.targets.SimpleSerial can be omitted

6. And set the board’s default settings: scope.default setup ()

7. The cells above should run with no errors. Now, you will upload and build some firmware to the
ChipWhisperer. First, you will need to download the ChipWhisperer compiler setup.
(Note: that is a direct link to the windows exe installer). For other platforms/versions you can look
at their release page: https://qithub.com/newaetech/chipwhisperer/releases/).

This installation will take a while to complete (unless you’re in the Klaus lab, in which case, you
can skip this step).

https://github.com/newaetech/chipwhisperer/releases/download/5.6.1/Chipwhisperer.v5.6.1.Setup.64-bit.exe
https://github.com/newaetech/chipwhisperer/releases/download/5.6.1/Chipwhisperer.v5.6.1.Setup.64-bit.exe
https://github.com/newaetech/chipwhisperer/releases/

8. You are now going to test building firmware from Jupyter. To do so, you need a make command.
If you are on a Windows computer, you will likely not have a make command; however, you can
install a package manager like Chocolatey. Follow this 2-step installation process, and you can
now use the make command in Jupyter. (Windows)

9. Now run the following code in your notebook. Be sure to replace YOURUSER with
the correct username for your system.

$%cmd -- this line is only needed on windows

C:/users/YOURUSER/ChipWhisperer5 64/cw/home/portable/chipwhisperer/hard
ware/victims/firmware/simpleserial-base/ make PLATFORM=
CRYPTO_ TARGET=NONE

If code errors and indicates that the directory is not found, you may need to manually locate the
simpleserial-base/ onyour machine.

Mac users may need to do the following: run “brew upgrade make”, or “brew install
make” if the make command errors. Then, paste the following into your cell:

echo 'export PATH="/opt/homebrew/bin:$PATH"' >> ~/.zshrc
source ~/.zshrc

cd
/Users/YOURUSER/chipwhisperer/firmware/mcu/simpleserial-
base/

make PLATFORM= CRYPTO TARGET=NONE

The output should be a list of supported platforms:

Microsoft Windows [Version 10.0.19244.2130]
(c) Microsoft Corporation. All rights reserved.

C:\Users\15055>cd C:/Users/15055/ChipWhispererS_64/cw/home/portable/chipwhisperer/hardware/victims/firmware/simpleserial-base

C:\Users\15055\ChiplhispererS_64\cw\home\portable\chipwhisperer\hardware\victim
SS_VER set to SS_VER 1 1

irmware\simpleserial-base>make PLATFORM= CRYPTO_TARGET=NONE

.././hal/Makefile.hal:241: *** Invalid or empty PLATFORM: . Known platforms:
|
|

| cw3es XMEGA Target (CWLite), Also works |
| | for CL3@8T-XMEGA |
R +
| cuzes ATMega328P (NOTDUINO), Also works |

| for CW3@8T-AVR |

+ ARM Cortex-M Targets (Support CRYPTO_TARGET=HWAES)

https://chocolatey.org/install
https://chocolatey.org/install
https://chocolatey.org/install
https://chocolatey.org/install
https://chocolatey.org/install
https://chocolatey.org/install

This concludes the section on the ChipWhisperer hardware setup.

Recovering an AES Key from Internal State

As the final task for this lab, you will recover an AES key from a single leaked bit of the internal state. This
part of the lab does not work with the board, but serves to make you comfortable working with Jupyter
notebooks as the next lab will use both Jupyter and the ChipWhisperer board.

Recall that AES data flow resembles the following:

AES Key
S-Box
Lookup
Input Data i:__..--" Chiptivhi sperer.io

The input data is XOR’d with a key byte and then passed through the S-box. Proceed to the next page to
begin this part of the lab.

1. Start Jupyter (“jupyter-lab” in command line) and create a new Python 3 notebook.
Define the following S-box in your notebook:

sbox = [

0 1 2 3 4 5 6 7 8 9 a b c d e f
0x63,0x7c,0x77,0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30,0x01,0x67,0x2b,0xfe, 0xd7,0xab, 0x76,
Oxca, 0x82,0xc9,0x7d, 0xfa, 0x59,0x47,0xf0, Oxad, 0xd4,0xa2, 0xaf,0x9c,0xa4d,0x72, 0xcO,
0xb7,0xfd, 0x93, 0x26, 0x36,0x3f, 0xf7, 0xcc, 0x34, 0xa5,0xe5,0xf1,0x71,0xd8,0x31, 0x15,
0x04,0xc7,0x23,0xc3,0x18,0x96,0x05,0x9%9a, 0x07,0x12,0x80,0xe2,0xeb, 0x27,0xb2,0x75,
0x09,0x83,0x2c,0xla, 0x1lb,0x6e, 0x5a, 0xal, 0x52, 0x3b, 0xd6, 0xb3,0x29, 0xe3,0x2f, 0x84,
0x53,0xdl, 0x00, Oxed, 0x20, 0xfc, Oxbl, 0x5b, Ox6a, O0xcb, Oxbe, 0x39,0x4a, 0x4c,0x58, Oxcf,
0xd0, Oxef, Oxaa, Oxfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02,0x7f,0x50,0x3c,0x9f, 0xa8,
0x51,0xa3,0x40,0x8f,0x92,0x9d, 0x38, 0xf5, Oxbc, 0xb6,0xda, 0x21,0x10,0xff,0x£f3, 0xd2,
Oxcd, 0x0c, 0x13, Oxec, 0x5f, 0x97, 0x44,0x17, 0xc4,0xa7,0x7e,0x3d,0x64,0x5d,0x19, 0x73,
0x60,0x81,0x4f, 0xdc, 0x22,0x2a,0x90,0x88,0x46, 0xee, 0xb8,0x14, 0xde, 0x5e, 0x0b, Oxdb,
Oxe0,0x32,0x3a,0x0a,0x49,0x06, 0x24, 0x5c, Oxc2, 0xd3,0xac, 0x62,0x91,0x95,0xed, 0x79,
Oxe7,0xc8,0x37,0x6d, 0x8d, 0xd5, Ox4e, 0xa9, Ox6c, 0x56,0xf4, O0xea, 0x65,0x7a, 0xae, 0x08,
Oxba, 0x78,0x25, 0x2e,0x1c, 0xa6, 0xb4, 0xc6, O0xe8, 0xdd, 0x74,0x1f,0x4b, Oxbd, 0x8b, 0x8a,
0x70, 0x3e, 0xb5, 0x66, 0x48,0x03, 0xf6, 0x0e, Ox61, 0x35,0x57,0xb9,0x86,0xcl,0x1d, 0x9%e,
Oxel, 0xf8,0x98,0x11,0x69,0xd9, 0x8e,0x94, 0x9b, O0xle,0x87,0xe9,0xce, 0x55,0x28, O0xdf,
0x8c, 0xal,0x89,0x0d, Oxbf, Oxe6,0x42,0x68,0x41,0x99,0x2d,0x0f, 0xb0,0x54, 0xbb, 0x16
1

2. Now, moving on to a new cell, modify the following Python code block to
implement the correct function for AES. Remember, you want the function to XOR
input data and key and then look up the result in the S-box from the previous step.

def aes internal (inputdata, key):
return 2?7

MO QOO ©oado ah Wk ko

Run the following test cases in a new cell. If the values are not as expected, check
your implementation. Otherwise, continue to the next steps.

#Simple test vectors - 1if you get the check-mark printed all OK.

assert(aes internal (0xAB, OxEF) == 0x1B)
assert(aes internal (0x22, 0x01) == 0x26)

print("\/ OK to continue!")

In your next cell, you will define a function which uses a secret key to not expose
the AES key.

def aes secret (inputdata) :
secret key = OxEF
return aes_internal (secret key, inputdata)

At this point, you can get a value of some internal part of AES. For the attack
demonstrated in this lab, you will observe a single bit of the value.

Your objective is to build a list of data. This should be a 1000-item list of random
numbers in the interval [0, 255]. The following Python import may help you:

import random
Also, list comprehension can be used to populate a list:

input data = [somefunction(args) for in range(lower, upper)]
Or you can populate your list using a loop. Either works.

Now run the following test cases in a new cell and make sure the check-mark prints:

#Simple test vectors - 1if you get the check-mark printed all OK.

assert (len(input data) == 1000)
#Next two can fail for random variables (re-run i1f you get an error)
assert (max (input data) == 0xFF)
assert (min (input data) == 0x00)

print("\/ OK to continue!™)

The definition of leaked data is as follows:
leaked data = [(aes_secret(a) & 0x01) for a in input datal

You will now attack AES using this definition of leaked data!

7. Build a function to count the number of elements in a list that match between two lists
(same value at the same index). One option is to iterate through the number of
elements in the list and count the number that are the same. Fill in the following:

def num same(a, b):

if len(a) !'= len(b):
raise ValueError ("Arrays must be same length!")

if max(a) '= max(b):
raise ValueError ("Arrays max () should be the same!")

Count how many list items match up
???

return same

Run the following test case and proceed if you get the check-mark:

#Simple test vectors - 1f you get the check-mark printed all OK.

assert (num_ same([(0,1,0,1,1,1,1,0], [0,1,0,1,1,1,1,0]) == 8)
assert (num same([1,1,1,0,0,0,0,0], [0,1,0,1,1,1,1,0]) == 2)
assert (num_same ([1, 0], [0, 1]) == 0)

print ("« OK to continue!")

8. The next block is the most important. You’ll apply the leakage function. For each known byte,
pass it through aes_internal(). The value of key_guess is integers in [0x00, 0x01,...,0xFF]

You'll compare the number of matching bits in the leaked data bit and the hypothetical data bit.

for guess in range (0, 256):
#Get a hypothetical leakage list - use aes internal (guess, input byte) and

mask off to only get value of lowest bit.
#You'll need to make this into a list as well.

hypothetical leakage = [aes_ internal (guess, input byte) & 0x01 for
input byte in input datal]

#Use our function
same_count = num same (hypothetical leakage, leaked data)

#Print for debug
print ("Guess {:02X}: {:4d} bits same".format (guess, same count))

9. A good thing to do will be to sort by number of correct bits. This can be done efficiently with
numpy.argsort, which returns the indices that would sort the list:

import numpy as np
guess list = [0] * 256
for guess in range (0, 256):
#Get a hypothetical leakage list - use aes internal (guess, input byte) and
mask off to only get value of lowest bit
hypothetical leakage = [aes_internal (guess, input byte) & 0x01 for

input byte in input datal

#Use our function
same_count = num_ same (hypothetical leakage, leaked data)

#Track the number of correct bits

guess list[guess] = same count
#Use np.argsort to generate a list of indices from low to high, then [::-1] to
reverse the list to get high to low.
sorted list = np.argsort(guess list) [::-1]

#Print top 5 only
for guess in sorted 1list[0:5]:
print ("Key Guess {:02X} = {:04d} matches".format (guess,guess list[guess]))

10. In this case, you know bit 0 was the leaked bit, but what if you did not know that?
First, define a function that returns the value of a bit being 1 or O:

def get bit(data, bit):
if data & (1 << bit):
return 1
else:
return 0

Now make a slightly more advanced leakage function using get_bit():

def aes leakage guess(keyguess, inputdata, bit):
return get bit(aes internal (keyguess, inputdata), bit)

11. Lastly, you will write a loop using the leakage function. The result of this loop will be 5 AES key
guesses deduced from bit guesses in the range 0-8.

for bit guess in range (0, 8):
guess_list = [0] * 256
print ("Checking bit {:d}".format (bit guess))

for guess in range (0, 256):

#Get a hypothetical leakage for guessed bit (ensure returns 1/0 only)
#Use bit guess as the bit number, guess as the key guess, and data
from input data
hypothetical leakage = [aes_leakage guess(guess, input byte,
bit guess) for input byte in input data]

#Use our function
same_count = num_ same (hypothetical leakage, leaked data)

#Track the number of correct bits
guess_list[guess] = same_ count

sorted list = np.argsort(guess list) [::-1]

#Print top 5 only
for guess in sorted 1ist[0:5]:
print ("Key Guess {:02X} = {:04d} matches".format (guess,
guess_list[guess]))

Required Documents to turn in

* Entire Jupyter notebook for the AES attack.

» List of supported platforms for ChipWhisperer, obtained in step 9 of the chipwhisperer hardware
connection section of this lab.

» Top 5 AES key guesses, obtained in step 11 of the AES attack section of this lab.

	Working with the ChipWhisperer-NANO
	Installation
	1. Installing Python and Pip
	A. Windows Machines
	B. Mac Machines
	C. Linux Machines

	How Jupyter Works
	Connecting to the ChipWhisperer
	Recovering an AES Key from Internal State
	Required Documents to turn in

