

ECE 3170 Cryptographic Hardware for Embedded Systems

Fall 2025

Assoc. Prof. Vincent John Mooney III

Georgia Institute of Technology

Lab 4, 100 pts.

Due Tuesday, Oct. 28 prior to 11:55pm

(please turn in homework electronically on Canvas)

Working with the ChipWhisperer-NANO

and JupyterLab

In this lab, you will work through the ChipWhisperer Setup Test and connect the ChipWhisperer-
NANO board to your computer. Then, you will recover an Advanced Encryption Standard (AES)
key from the internal state of an AES implementation.

If you already have Python and pip installed, you may skip the installation steps and proceed to step 8,

where you will perform and test your Jupyter installation and install the ChipWhisperer library.

Installation

1. Installing Python and Pip
Note: If you already have Python and Pip installed, you may skip to the next section.

A. Windows Machines

1. Download the latest version of Python from https://www.python.org/downloads/.

2. When running the installer, make sure you check the box to Add Python to PATH. This will allow

you to use the python command in your command window.

https://www.python.org/downloads/
https://www.python.org/downloads/

3. Select “Customize installation” and ensure Documentation, pip, py launcher, and Python test
suite are checked. The tcl/tk and IDLE box along with the for all users box need not be checked:

4. Click Next to proceed to the Advanced Options page. Make sure you check Add Python to

environment variables, Associate Files with Python, and Create shortcuts for installed
applications. It’s very important you add Python to your environment variables; otherwise, you

will not be able to use the python command in the command line.

5. Click Install. You should see the following page:

6. Test your Python installation by opening the command prompt (Windows+R -> type cmd -> click
“OK”). Once your command prompt is open, type “python.” The result should be like the one

below:

Type “quit()” and press enter to return to the command line from here.

7. Test your pip installation by typing “pip help” in the command line. The result

should be like the one below:

8. You now need to install Jupyter and chipwhisperer. To do so, type “pip install jupyterlab” in the

command line. Once the Jupyter installation is complete, type “pip install chipwhisperer” in the
command line.

NOTE: Windows users with Python 3.14+ should run “pip install ipykernel==7.0.1” after these

steps

B. Mac Machines

Note: The installation steps for chipwhisperer dependencies use brew. Since it is already required, these

steps shall make use of brew. Start installation from the “Packages” header down.

1. Refer to the brew webpage https://brew.sh/ for installation steps, or use the following

command.

/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"

2. Follow the installation instructions for the dependencies linked here, beginning from “Packages”

NOTE: Python may be installed like this or using the Windows steps above

3. If not done in the previous step, set up a python virtual environment with “python -m venv my-

env”, and then source it with “source my-env/bin/activate”

NOTE: you will need to source the venv every time you open a new terminal to run Jupyter

4. Install Jupyter and chipwhisperer with “brew install jupyterlab” and

“brew install chipwhisperer” with the venv sourced (You will see (my-env) on the left side of the
terminal)

C. Linux Machines
Detailed instructions can be found here

https://chipwhisperer.readthedocs.io/en/latest/mac-install.html
https://brew.sh/
https://brew.sh/
https://chipwhisperer.readthedocs.io/en/latest/mac-install.html
https://chipwhisperer.readthedocs.io/en/latest/linux-install.html

9. Once Jupyter and chipwhisperer have been installed, launch JupyterLab with the command
“jupyter-lab”. This will open a tab like the one below in your default web browser:

10. Create a new notebook by clicking the Python 3 button under the Notebook category in the

screenshot above. Your notebook should look like below:

11. Paste the following Python code into the box with the vertical blue line to the left of it:
import chipwhisperer

help(chipwhisperer)

 And press the Run button:

12. The code should compile and run successfully, with output like below:

13. You can save your notebook file using the Save and create checkpoint button. You
can rename your file by right-clicking on it in the files menu to the left and selecting

rename.

How Jupyter Works

Jupyter works with cells. The code you just ran was a cell. Once you successfully execute the contents of
a cell, you move on to a new cell:

A cell is prefixed with []:, to the left of which is a box where you can enter the code for the cell. Once
you move on to a new cell, you can use the imports introduced and variables initialized in previous
cells. Bear this in mind as you complete the rest of this lab.

Connecting to the ChipWhisperer

Next, you will connect to the ChipWhisperer with Jupyter.

1. Connect the board to your device using the provided USB cable:

2. Start Jupyter. Create a new Python 3 notebook.

3. Insert the following Python code into a new cell:
import chipwhisperer as cw

scope = cw.scope()

4. Run the code in the cell:

5. Connect to the target device:
target = cw.target(scope, cw.targets.SimpleSerial)
#cw.targets.SimpleSerial can be omitted

6. And set the board’s default settings: scope.default_setup()

7. The cells above should run with no errors. Now, you will upload and build some firmware to the
ChipWhisperer. First, you will need to download the ChipWhisperer compiler setup.

(Note: that is a direct link to the windows exe installer). For other platforms/versions you can look

at their release page: https://github.com/newaetech/chipwhisperer/releases/).

This installation will take a while to complete (unless you’re in the Klaus lab, in which case, you

can skip this step).

https://github.com/newaetech/chipwhisperer/releases/download/5.6.1/Chipwhisperer.v5.6.1.Setup.64-bit.exe
https://github.com/newaetech/chipwhisperer/releases/download/5.6.1/Chipwhisperer.v5.6.1.Setup.64-bit.exe
https://github.com/newaetech/chipwhisperer/releases/

8. You are now going to test building firmware from Jupyter. To do so, you need a make command.

If you are on a Windows computer, you will likely not have a make command; however, you can
install a package manager like Chocolatey. Follow this 2-step installation process, and you can

now use the make command in Jupyter. (Windows)

9. Now run the following code in your notebook. Be sure to replace YOURUSER with
the correct username for your system.

%%cmd -- this line is only needed on windows

cd
C:/users/YOURUSER/ChipWhisperer5_64/cw/home/portable/chipwhisperer/hard

ware/victims/firmware/simpleserial-base/ make PLATFORM=

CRYPTO_TARGET=NONE

If code errors and indicates that the directory is not found, you may need to manually locate the

simpleserial-base/ on your machine.

Mac users may need to do the following: run “brew upgrade make”, or “brew install

make” if the make command errors. Then, paste the following into your cell:

echo 'export PATH="/opt/homebrew/bin:$PATH"' >> ~/.zshrc

source ~/.zshrc

cd

/Users/YOURUSER/chipwhisperer/firmware/mcu/simpleserial-

base/

make PLATFORM= CRYPTO_TARGET=NONE

 The output should be a list of supported platforms:

https://chocolatey.org/install
https://chocolatey.org/install
https://chocolatey.org/install
https://chocolatey.org/install
https://chocolatey.org/install
https://chocolatey.org/install

This concludes the section on the ChipWhisperer hardware setup.

Recovering an AES Key from Internal State

As the final task for this lab, you will recover an AES key from a single leaked bit of the internal state. This

part of the lab does not work with the board, but serves to make you comfortable working with Jupyter

notebooks as the next lab will use both Jupyter and the ChipWhisperer board.

Recall that AES data flow resembles the following:

The input data is XOR’d with a key byte and then passed through the S-box. Proceed to the next page to
begin this part of the lab.

1. Start Jupyter (“jupyter-lab” in command line) and create a new Python 3 notebook.

Define the following S-box in your notebook:

sbox = [
 # 0 1 2 3 4 5 6 7 8 9 a b c d e f
0x63,0x7c,0x77,0x7b,0xf2,0x6b,0x6f,0xc5,0x30,0x01,0x67,0x2b,0xfe,0xd7,0xab,0x76, # 0
0xca,0x82,0xc9,0x7d,0xfa,0x59,0x47,0xf0,0xad,0xd4,0xa2,0xaf,0x9c,0xa4,0x72,0xc0, # 1
0xb7,0xfd,0x93,0x26,0x36,0x3f,0xf7,0xcc,0x34,0xa5,0xe5,0xf1,0x71,0xd8,0x31,0x15, # 2
0x04,0xc7,0x23,0xc3,0x18,0x96,0x05,0x9a,0x07,0x12,0x80,0xe2,0xeb,0x27,0xb2,0x75, # 3
0x09,0x83,0x2c,0x1a,0x1b,0x6e,0x5a,0xa0,0x52,0x3b,0xd6,0xb3,0x29,0xe3,0x2f,0x84, # 4
0x53,0xd1,0x00,0xed,0x20,0xfc,0xb1,0x5b,0x6a,0xcb,0xbe,0x39,0x4a,0x4c,0x58,0xcf, # 5
0xd0,0xef,0xaa,0xfb,0x43,0x4d,0x33,0x85,0x45,0xf9,0x02,0x7f,0x50,0x3c,0x9f,0xa8, # 6
0x51,0xa3,0x40,0x8f,0x92,0x9d,0x38,0xf5,0xbc,0xb6,0xda,0x21,0x10,0xff,0xf3,0xd2, # 7
0xcd,0x0c,0x13,0xec,0x5f,0x97,0x44,0x17,0xc4,0xa7,0x7e,0x3d,0x64,0x5d,0x19,0x73, # 8
0x60,0x81,0x4f,0xdc,0x22,0x2a,0x90,0x88,0x46,0xee,0xb8,0x14,0xde,0x5e,0x0b,0xdb, # 9
0xe0,0x32,0x3a,0x0a,0x49,0x06,0x24,0x5c,0xc2,0xd3,0xac,0x62,0x91,0x95,0xe4,0x79, # a
0xe7,0xc8,0x37,0x6d,0x8d,0xd5,0x4e,0xa9,0x6c,0x56,0xf4,0xea,0x65,0x7a,0xae,0x08, # b

0xba,0x78,0x25,0x2e,0x1c,0xa6,0xb4,0xc6,0xe8,0xdd,0x74,0x1f,0x4b,0xbd,0x8b,0x8a, # c

0x70,0x3e,0xb5,0x66,0x48,0x03,0xf6,0x0e,0x61,0x35,0x57,0xb9,0x86,0xc1,0x1d,0x9e, # d

0xe1,0xf8,0x98,0x11,0x69,0xd9,0x8e,0x94,0x9b,0x1e,0x87,0xe9,0xce,0x55,0x28,0xdf, # e

0x8c,0xa1,0x89,0x0d,0xbf,0xe6,0x42,0x68,0x41,0x99,0x2d,0x0f,0xb0,0x54,0xbb,0x16 # f

]

2. Now, moving on to a new cell, modify the following Python code block to

implement the correct function for AES. Remember, you want the function to XOR

input data and key and then look up the result in the S-box from the previous step.

 def aes_internal(inputdata, key):

 return ???

3. Run the following test cases in a new cell. If the values are not as expected, check

your implementation. Otherwise, continue to the next steps.

#Simple test vectors - if you get the check-mark printed all OK.
assert(aes_internal(0xAB, 0xEF) == 0x1B)

assert(aes_internal(0x22, 0x01) == 0x26)

print("✔️ OK to continue!")

4. In your next cell, you will define a function which uses a secret key to not expose

the AES key.

def aes_secret(inputdata):
 secret_key = 0xEF
 return aes_internal(secret_key, inputdata)

5. At this point, you can get a value of some internal part of AES. For the attack

demonstrated in this lab, you will observe a single bit of the value.

Your objective is to build a list of data. This should be a 1000-item list of random
numbers in the interval [0, 255]. The following Python import may help you:

 import random

 Also, list comprehension can be used to populate a list:

 input_data = [somefunction(args) for _ in range(lower, upper)]

 Or you can populate your list using a loop. Either works.

Now run the following test cases in a new cell and make sure the check-mark prints:

#Simple test vectors - if you get the check-mark printed all OK.

assert(len(input_data) == 1000)

#Next two can fail for random variables (re-run if you get an error)

assert(max(input_data) == 0xFF)
assert(min(input_data) == 0x00)

print("✔️ OK to continue!")

6. The definition of leaked data is as follows:
leaked_data = [(aes_secret(a) & 0x01) for a in input_data]

You will now attack AES using this definition of leaked data!

7. Build a function to count the number of elements in a list that match between two lists

(same value at the same index). One option is to iterate through the number of
elements in the list and count the number that are the same. Fill in the following:

def num_same(a, b):

 if len(a) != len(b):
 raise ValueError("Arrays must be same length!")

 if max(a) != max(b):
 raise ValueError("Arrays max() should be the same!")

 # Count how many list items match up
 ???

 return same

Run the following test case and proceed if you get the check-mark:

#Simple test vectors - if you get the check-mark printed all OK.

assert(num_same([0,1,0,1,1,1,1,0], [0,1,0,1,1,1,1,0]) == 8)
assert(num_same([1,1,1,0,0,0,0,0], [0,1,0,1,1,1,1,0]) == 2)

assert(num_same([1, 0], [0, 1]) == 0)

print("✔️ OK to continue!")

8. The next block is the most important. You’ll apply the leakage function. For each known byte,

pass it through aes_internal(). The value of key_guess is integers in [0x00, 0x01,...,0xFF]

You’ll compare the number of matching bits in the leaked data bit and the hypothetical data bit.

for guess in range(0, 256):
 #Get a hypothetical leakage list - use aes_internal(guess, input_byte) and

mask off to only get value of lowest bit.

 #You'll need to make this into a list as well.

 hypothetical_leakage = [aes_internal(guess, input_byte) & 0x01 for

input_byte in input_data]

 #Use our function

 same_count = num_same(hypothetical_leakage, leaked_data)

 #Print for debug
 print("Guess {:02X}: {:4d} bits same".format(guess, same_count))

9. A good thing to do will be to sort by number of correct bits. This can be done efficiently with

numpy.argsort, which returns the indices that would sort the list:

import numpy as np

guess_list = [0] * 256

for guess in range(0, 256):

 #Get a hypothetical leakage list - use aes_internal(guess, input_byte) and

mask off to only get value of lowest bit

 hypothetical_leakage = [aes_internal(guess, input_byte) & 0x01 for

input_byte in input_data]

 #Use our function

 same_count = num_same(hypothetical_leakage, leaked_data)

 #Track the number of correct bits

 guess_list[guess] = same_count

#Use np.argsort to generate a list of indices from low to high, then [::-1] to

reverse the list to get high to low.

sorted_list = np.argsort(guess_list)[::-1]

#Print top 5 only

for guess in sorted_list[0:5]:
 print("Key Guess {:02X} = {:04d} matches".format(guess,guess_list[guess]))

10. In this case, you know bit 0 was the leaked bit, but what if you did not know that?

First, define a function that returns the value of a bit being 1 or 0:

def get_bit(data, bit):

 if data & (1 << bit):

 return 1

 else:
 return 0

Now make a slightly more advanced leakage function using get_bit():

 def aes_leakage_guess(keyguess, inputdata, bit):

 return get_bit(aes_internal(keyguess, inputdata), bit)

11. Lastly, you will write a loop using the leakage function. The result of this loop will be 5 AES key

guesses deduced from bit guesses in the range 0-8.

for bit_guess in range(0, 8):

 guess_list = [0] * 256

 print("Checking bit {:d}".format(bit_guess))

 for guess in range(0, 256):

 #Get a hypothetical leakage for guessed bit (ensure returns 1/0 only)

 #Use bit_guess as the bit number, guess as the key guess, and data

from input_data

 hypothetical_leakage = [aes_leakage_guess(guess, input_byte,

bit_guess) for input_byte in input_data]

 #Use our function

 same_count = num_same(hypothetical_leakage, leaked_data)

 #Track the number of correct bits

 guess_list[guess] = same_count

 sorted_list = np.argsort(guess_list)[::-1]

 #Print top 5 only

 for guess in sorted_list[0:5]:
 print("Key Guess {:02X} = {:04d} matches".format(guess,

guess_list[guess]))

Required Documents to turn in
• Entire Jupyter notebook for the AES attack.

• List of supported platforms for ChipWhisperer, obtained in step 9 of the chipwhisperer hardware

connection section of this lab.

• Top 5 AES key guesses, obtained in step 11 of the AES attack section of this lab.

	Working with the ChipWhisperer-NANO
	Installation
	1. Installing Python and Pip
	A. Windows Machines
	B. Mac Machines
	C. Linux Machines

	How Jupyter Works
	Connecting to the ChipWhisperer
	Recovering an AES Key from Internal State
	Required Documents to turn in

