
ECE 3170 Cryptographic Hardware for Embedded Systems

Fall 2025
Assoc. Prof. Vincent John Mooney III

Georgia Institute of Technology
Lab 1, 50 pts.

Due Tuesday, September 10th prior to 11:55pm
(please turn in homework electronically on Canvas)

This lab sets up Quartus and ModelSim on your computer, and then goes through DES in C
and VHDL. While this document is long, the vast majority is simply installing Quartus and
troubleshooting problems that may pop up in the installation. The bulk of your time will be
spent in the final pages working on the DES C code and VHDL.

VHDL Help

There is plenty of documentation available on how to write good VHDL. Some good simple
examples can be found here. Some good YouTube videos introducing VHDL basics can be
found here.

Installation and Use of the Quartus Prime software

This first section prepares you to begin actual labs using the DE-10 Standard board but
it still requires a little bit of time. It is a tutorial to familiarize you with the installation and
basic functionality of the Quartus software. The installation will be done in the Prelab 1 steps,
and this will require a computer running Windows or Linux. Then a tutorial of creating a VHDL
file and implementing it on the development board will be done in the Lab 1 steps.

This tutorial has been written using Quartus Prime version 19.1, but it is largely
applicable to earlier versions, as far back as version 15. This document is largely derived from
ECE 2031 Lab 0, so you may be able to skip some of the install steps if your computer is already
set-up for use with a version of the DE-10 board from ECE 2031.

NOTE: some previous ECE 2031 classes from a few years ago may have used a different
FPGA device – specifically, the DE-10 Lite board – so it is possible that you may need to
install Cyclone V device support (i.e., your previous environment may not work).

Documentation and resources for the DE-10 Standard board can be found at:

https://rocketboards.org/foswiki/Documentation/DE10Standard

https://www.cs.columbia.edu/~sedwards/classes/2012/4840/vhdl-tut.pdf
https://www.youtube.com/playlist?list=PLinyJoOpZA5jnorJmhPfBfov-rG9gxqUe
https://rocketboards.org/foswiki/Documentation/DE10Standard

Lab 1 Prelab Steps

This course will make extensive use of a computer-aided design (CAD) application
called Quartus Prime, originally developed by the Altera Corporation, which is now a division of
Intel. Quartus Prime will allow you to "capture" your designs with schematics and by other
means, as well as fit the designs to be implemented on the FPGA board that is used as the
primary development platform. Even when we build circuits with discrete integrated circuits,
Quartus is a convenient way to draw schematics.

Requirements to begin

You must have a computer meeting one of the following general descriptions:

• A Windows 10* PC

• Windows 10* in a Boot Camp hard disk partition

• Windows 10* in a Parallels VM

• Windows 10* in some other VM (e.g. VMware)
• A PC running one of the following Linux distributions (although it is likely others will

work)

o Red Hat Enterprise Linux 6

o Red Hat Enterprise Linux 7

o SUSE SLE 12

o Ubuntu LTS (at least 14.04)

• One of the Linux variants above, in some VM

* Windows 7 and Windows 8 still seem to work fine, but are not recommended.

Although all of these configurations SHOULD be supported, the only ones being actively
tested by the instructors are specifically:

• A Windows 10 PC

• A PC running Ubuntu 18.xx

You will know by the end of Lab 1 if you have any issues with your computer.
If your computer has unresolvable issues, you may also use any of the computers in Klaus 1446
and skip to the start of the actual lab.

In all configurations, the following also apply:

You need a functional USB port, with a full-size USB Type A receptacle, or some adapter,
such as the USB-C to USB-A adapter needed for recent MacBooks (one example, but
there are others)

https://en.wikipedia.org/wiki/USB
https://www.apple.com/shop/product/MJ1M2AM/A/usb-c-to-usb-adapter
https://www.apple.com/shop/product/MJ1M2AM/A/usb-c-to-usb-adapter

For the limited number of users who may still be running a 32-bit version of their
operating system, you may have to upgrade to the 64-bit version of the operating
system.

You will need at least 15 GB of disk space for the Quartus installation.

You must have administrative rights, allowing you to install software on the system.
To check in Windows, open Settings (Gear icon), select Accounts, and next to your
account name, it should show Administrator

Once you have a computer at hand meeting these requirements, begin following the
installation steps below. Most of them should be similar for all computer configurations, as
long as you are doing them within the Windows or Linux operating system on your
computer. This first step is the main exception, since it is not required for Linux users.

Step 1.

Linux users should skip this step.

On any Windows system (including Windows running on a Mac VM or Bootcamp), the
Quartus installation will require the Visual C++ Runtime system, officially the Microsoft Visual
C++ Redistributable. Your system probably has it already, but it will be worthwhile to check
now. There are two ways to check:

Option A) Open your Windows Settings (Gear icon), go to Apps & Features, and look for any
entries beginning with Microsoft Visual C++ Redistributable.... If you have one or two ending

with a date that is 2015 or later, you should be fine, and you can skip Step 2 and go to
Step 3 below.

Step 2.

(Optional, only if required based on the result of Step 1.) Go to the URL below, then download
and run vc_redist.x64

https://www.microsoft.com/en-us/download/details.aspx?id=48145

Step 3.

In a browser under Windows or Linux, go to the download site:
https://fpgasoftware.intel.com/19.1/?edition=lite&platform=windows.
The top of the resulting page will resemble the image below.

Click on Quartus Prime Lite, then

select the Lite edition,
select release 19.1, and
select Windows (or Linux, if it applies to you).

If the Downloads list is empty, you can select and install the 18.1 version.

We have found that this website may not work properly with Chrome or Firefox, so if you have

trouble downloading files in the steps that follow, try Edge or other browsers.

You can also use the following links if the previous one doesn’t work:

Windows: https://www.intel.com/content/www/us/en/software-kit/664527/intel-quartus-
prime-lite-edition-design-software-version-19-1-for-windows.html

https://www.microsoft.com/en-us/download/details.aspx?id=48145
https://fpgasoftware.intel.com/19.1/?edition=lite&platform=windows
https://www.intel.com/content/www/us/en/software-kit/664527/intel-quartus-prime-lite-edition-design-software-version-19-1-for-windows.html
https://www.intel.com/content/www/us/en/software-kit/664527/intel-quartus-prime-lite-edition-design-software-version-19-1-for-windows.html
https://www.intel.com/content/www/us/en/software-kit/664527/intel-quartus-prime-lite-edition-design-software-version-19-1-for-windows.html

Linux: https://www.intel.com/content/www/us/en/software-kit/664524/intel-
quartus-prime-lite-edition-design-software-version-19-1-for-linux.html

It does not matter if you are on a Mac — you should not be in MacOS at this point, so
select the Windows version of Quartus.

Step 4.

Further down the web page in your browser are the actual downloads, under the Downloads
section. If the options for Multiple Download and Individual Files do not appear, switch the
version to 18.1.

If you don’t mind a larger installation, you may choose the multiple download option and
install everything, but this will take more disk space. We won’t include instructions for that
here, but if you do so, skip to step 6.

To install only the minimum requirements, we will use the Individual Files option.

We will start by downloading Quartus Prime (includes Nios II EDS), which can be found under
the Intel Quartus Software section (below Devices). In the past, clicking this redirected to a

https://www.intel.com/content/www/us/en/software-kit/664524/intel-quartus-prime-lite-edition-design-software-version-19-1-for-linux.html
https://www.intel.com/content/www/us/en/software-kit/664524/intel-quartus-prime-lite-edition-design-software-version-19-1-for-linux.html

sign-in page. If this happens, follow the rest of this step to create an individual account. If the
file downloads, skip to step 5.
The sign in screen appears below. Take the option to "Register now for an individual account,"
go through the necessary steps, and navigate back to the screen above, but now with signed-in
status.

After signing in, when you get redirected back to the download, you will probably be in the
wrong version of Quartus Prime. It may be easiest to follow the link again, now that you are
signed in: https://fpgasoftware.intel.com/19.1/?edition=lite&platform=windows

In any event, make sure you still have the correct operating system selected, along with the
Lite version 19.1.

https://fpgasoftware.intel.com/19.1/?edition=lite&platform=windows

Step 5.

There are three tabs in the window — choose the Individual Files tab. There may be a
"Download Selected Files" button. That seems to be non-functional, with no way to select files
in browsers I have tested. Instead, simply follow the instructions in the drop-down "Download
and Install Directions, clicking on "More"." Specifically, download these four files to a single
temporary folder:

"Quartus Prime (includes Nios II EDS)"

"ModelSim-Intel FPGA Edition (includes Starter Edition)"
"Cyclone V device support. (1434.3MB)" — (under "Devices")

"Quartus Prime Help" (in the "Additional Software" tab) — you can omit this, if you
prefer to save a little space.

Step 6.

Double-check after your files have completely downloaded. Go to the folder where you
downloaded, and you should see four files (three if you omitted the Quartus Prime Help). If
your installation file does not start with "QuartusLiteSetup-19.1...," then you have downloaded
the wrong version.

The most common installation error is that one or more files is missing or wrong, and
it can result in having to start over. Verify that you have the files shown here:

Still in that folder, run the QuartusLiteSetup... executable, not the QuartusHelpSetup or the
ModelSimSetup. Follow all the instructions to complete the installation. It is recommended that you
accept the default installation folder, usually C:\intelFPGA_lite\19.1. One step will be to confirm that you
want to install the other items that you downloaded into the folder. The example below shows the
items that you must install. It also shows that you should NOT install any edition of ModelSim other than
the "Starter Edition," so if another one is there, leave it unchecked.

Step 7

The installation can take a while. When it nears the end, the following window appears. Leave
these three items checked, or uncheck the option for creating shortcuts, if desired. But make
sure that the option to Launch USB Blaster II driver is checked.

You will be presented with the Device Driver Installation Wizard. Make sure you click Next to
continue. It is very possible that this installation will fail, giving the reponse below.

If you get this error, it will affect what you do in a later step. Consider yourself in the group of
users who need to follow the steps to manually install the USB-Blaster, in a step coming up
very soon.

Step 8.

As it finishes the installation, you will be presented with the option below. At this time, and
at any future time where it may ask, select "Run the Quartus Prime software." No purchase is
necessary for this class.

Step 9.

When Quartus opens, it will appear similar to the image below. If it takes a long time, you may
need to relaunch it, the previous popup should not appear again.

You can delete the installation files from the temporary folder where you launched them.
https://www.microsoft.com/en-us/download/details.aspx?id=48145

https://www.microsoft.com/en-us/download/details.aspx?id=48145

Step 10.

If, only a couple steps back, you received an error when installing the USB-Blaster driver, then
do not proceed with any further steps until you first complete the steps in a separate section
below, titled Manual USB-Blaster Installation.

Return to the next step, when finished.

Step 11.

There is one additional thing to check at this time if you have already received your DE10-
Standard FPGA development board. If not, this will happen near the end of the Lab 1 steps.

Connect your DE10-Standard board to your computer with the supplied white/gray USB cable.
If you have Windows running in a VM on a Mac, you may get a prompt asking you if the
newly-detected device should be connected to the Mac or to Windows 10. Choose Windows,
if you have this prompt.

The DE10-Standard should power up and immediately begin running the default
programming file that is stored in non-volatile memory. We are going to verify that you can
reprogram it through your cable.

If it does not turn on immediately, check the following:

Power
Button

Ensure the MSEL switches are in the positions shown above and the red power
button is pushed to the “down” position.

Step 12.

In Quartus, find the Programmer by either method below. Either look for the icon at
the top (the one on the left of the three shown below) or the menu item under Tools,
also shown below. Click on it to open

The Programmer will come up and appear similar to the image below. In particular, it will say "No
Hardware" near the top, just to the right of "Hardware Setup," because it has never been configured to
use the USB connection, called the USB-Blaster. Go ahead and click on "Hardware Setup."

Step 13.

The “Hardware Setup” window is shown below. In the in “Available hardware items,” if “USB-
Blaster” or “DE-SoC” appears, then you are done. But usually, you need to click on "Add
Hardware," and in the window that comes up, select USB-Blaster (or EthernetBlaster if only that
shows up).

If you can do that successfully, (unless you are on linux) then you will also be done. If not:

A) First make sure that the USB cable is plugged in completely to your computer and to the
board. It is possible for it to supply power, yet not be connected properly. Then try again.

B) Should that fail, continue with the next step.

Linux users will need to take some additional steps, even if USB-Blaster is present,
because of USB access permissions.

The best description I've found is here: https://blog.atomminer.com/fighting-altera-usb-
blaster-on-ubuntu/

Some students in summer reported that the script provided there didn't work, and someone
updated it to work for their setup, so you might have better luck with this script:
usbblaster.sh.

https://blog.atomminer.com/fighting-altera-usb-blaster-on-ubuntu/
https://blog.atomminer.com/fighting-altera-usb-blaster-on-ubuntu/
https://blog.atomminer.com/fighting-altera-usb-blaster-on-ubuntu/
https://powersof2.gatech.edu/cas/labmanual/labcontent/lab0/files/usbblaster.sh

Step 14.

If the previous step was unsuccessful, and you still are unable to make the USB-Blaster appear,
contact the instructors for assistance. There may be a discussion thread in Canvas on this topic,
if needed.

Step 15.

Continue with the Lab Steps for Lab 1.

Manual USB-Blaster Installation

If you were able to use your USB-Blaster the first time you needed it to program your FPGA
board, you should not need to follow any of the steps below. But if you saw errors near
the end of the installation of Quartus Prime, indicating that NO device drivers were
installed successfully, continue here. The problem was probably that Windows would not
install the unsigned device driver provided by Intel.

Requirements to begin

You must have successfully installed Quartus (except possibly the USB-Blaster device driver) on
a Windows machine, either a PC, or Windows running on a Mac.

Step 1.

None of this is relevant to Linux users. If you have trouble programming the board on Linux,
we will try to help, but we have very limited experience using Quartus on Linux.

First, check to see if the driver possibly DID install correctly. In the text entry area of the
Windows Start Menu, type sigverif and press return. It will take a while to find all device drivers
that are unsigned, but when it is done, see if your computer is missing the file name intelta.sys.
The image below shows the result in a system that DOES have the driver installed correctly,
along with three other unrelated drivers.

Step 2.

Assuming your system does not have the driver, open Windows File Explorer and navigate to
the folder 19.1/quartus/drivers, within the folder that you used to install Quartus (which
defaults to /intelFPGA_lite on the system drive). Below, the file DPinst (the application, not the
XML document) is highlighted.

Double-click on that application and continue with the installation. Ignore warnings like the
one below, and select "Install this driver software anyway".

When it is finished, it may show that some items were not installed. But if the Altera USB-Blaster Device
Driver was installed, as shown below, then this part was successful.

Step 3.

If the previous step was unsuccessful, you probably saw a message simlar to the one below,
or one that showed multiple devices, with none installed successfully.

The only known cause for this is that your Windows system is set to not allow unsigned device
drivers (those not tested by Microsoft) to be installed. It can be complicated to override this
setting, but first we will try the easy way.

Step 4.

First, launch an Administrator Command Prompt by

clicking the Start button, then
typing at least the first few letters of "Command Prompt," and

clicking on "Run as administrator" in the Command Prompt window that comes up,
as shown below.

Step 5.

In the Command Prompt, type the following command:

BCDEDIT /set nointegritychecks ON

If you get an error related to the Secure Boot Policy, as shown below, continue with the next
step. If you do not get this error, then you can go back to Step 2 above and see if it succeeds.
But if it does not, continue to the next step.

Step 6.

If you have not succeeded yet, then we have the more complicated situation where we
have to reboot the system in a mode that will allow installation of unsigned drivers. Begin
by printing the instructions that follow, or making some notes, or opening them on a
different device, because you will need to reboot your computer.

If your computer has Bitlocker enabled, you will need to know your Bitlocker recovery key. If
you do not have it saved somewhere, do a search on "recover bitlocker" for tips (and consider
saving it in whatever you use for password management in the future).

You need to get the advanced boot options menu, and the first step is to hold down the
Shift key while you click the “Restart” option in Windows. Your computer will restart into
the menu below. Choose "Troubleshoot."

In the Troubleshoot menu, as shown below, select "Advanced Options."

In the Advanced Options menu, as shown below, select "Startup Settings."

Clicking "Restart" on the following screen (shown below) will result in a reboot. But
before clicking it, note two things:

If your computer has Bitlocker enabled, this is where you will need to know your
Bitlocker recovery key.

You will need to do the driver installation on this next reboot. If you boot the system again,
you will lose the ability to install unsigned drivers, and you will have to go back to
restarting while holding the shift key, then going through the remaining menus.

Once the computer restarts, you will be presented with the following menu. Select option
7, "Disable driver signature enforcement".

Once back in Windows, return to step 2 above and run DPInst.exe, which should now
succeed. If not, contact the instructors, because this is the last process we have found
necessary for anyone so far.

Lab 1 Main Lab Steps (After Prelab)

The concepts and procedures outlined here should enable you to begin working on
laboratory projects. Additional features will also be explained throughout the laboratory
exercises. However, you should refer back to this tutorial if at any time you forget any of
these basic functions.

Step 1.

Upon starting Quartus Prime (and perhaps dismissing a window that appears with the Lite edition),
the main interface window will be presented as seen above. From the menu at the top, select File =>
New Project Wizard… to create a new project. (NOT File ==> New, because there is a fundamental
difference between creating a project and creating a single file.) At this point, Quartus will display an
introduction screen for the project wizard.

Get in the habit of reading information windows before moving on. On this screen, select Next
to advance to the next window. You may also want to check the box in the lower left corner to
avoid displaying this particular introduction screen again.

Step 2.

Enter a location to store your project files, as in the example above. NOTE: You cannot store
the project files in the default location as that folder is read-only. Choose a location outside
of the C:/IntelFPGA_lite folder. Include a dedicated directory (i.e., folder) for the particular
project, which is D:/ECE3170/Lab1 in the example here. Next, give the project a name. The
example uses IntroCircuit for the name of the project. The last entry is the top-level design
entity, which is an important concept. A project can consist of as little as a single design file,
such as a single schematic. Or, it can contain one file which describes how other design files are
interrelated. We will create this project with only one file, which by definition must be the top-
level design entity. Quartus will default to using the project name for the top-level design file,
which works well here.

Then, select Next to advance to a window which asks you to choose between an "Empty
project” and “Project template”. Select “Empty Project”

Step 3.

Press Next to advance to the window above. Allow Quartus to create the project directory, if it does not
yet exist. The user has the opportunity to add any files to the project that define logic, such as
schematics created beforehand. Since there are no design files to add to this project, click Next to
advance to the device selection window of the figure below.

Step 4.

You will need to select the correct device for the board you are using, first by selecting a
device family, and then by selecting a specific target device. If you followed the
recommendation to only install device support for the Cyclone 5 family, then your "Family"
choice will default to Cyclone V (E/GX/GT/SX/ST), but if you chose to install support for
other devices if already had support for other families installed, you may have to select this
family yourself from the dropdown.

Now, you need to find the exact device by reading the corresponding code near the middle
of the FPGA IC (Integrated Circuit), on your DE10-Standard board. Look closely at the board
and

make a note of the complete device name for the Cyclone V chip. It is the long
string directly below “Cyclone V SoC."

Continuing with the Family, Device & Board Settings dialog, we now need to specify the exact
device, using the device name you just found. To select the specific device, you could

a. scroll through the list at the bottom of the window to find it

b. or start typing the name in the Name filter box, or

c. if you knew the Package, Pin Count, or Core speed grade,
use those dropdowns.

Select the correct device in the bottom list. Press Next to continue to the window below.

It is common for commercial entities to use third-party tools to develop hardware and software
configurations for FPGAs. This window allows Quartus to communicate with and use such tools
within the development environment. We will mostly be using the default tools included within
Quartus, but we will use a version of a widely-supported simulator called ModelSim. To the
right of Simulation,

select ModelSim-Altera (NOT generic ModelSim), and
select VHDL in the second dropdown (under Format(s))

Then click Next to proceed to the summary window below.

With the summary window in view, press Finish to close the wizard and create the new project files. You
will be returned to the main window of Quartus.

Optionally, this is a good time to take a break. Note that you can choose the menu option File => Save
Project and then File => Close Project to return to a place where you can close Quartus entirely. You
would, of course, have to get back to the same point with File => Open Project, selecting the
IntroCircuit project just saved. Note that this is different from File => Open File, which would open an
isolated file, without context to the project settings, including the device assignments.

Step 5.

Design projects are composed of one or more design files, and this project will be defined by
a single VHDL file. Earlier, the concept of a top-level design entity was mentioned, to define
the one file that contains the overall design definition in some entity (device). To reiterate,
we're only going to have one file, containing the one top-level design entity. From the menu,
select File => New… to bring up the dialog below, and select VHDL File as was done here.

Quartus will only let you save it after you type something in it, so go ahead and add the library
and use statements that will be used for this file:

This will be your top-level design file for this project, so save it using the same name as your project
so that Quartus automatically uses it as the top-level design.

Step 6. Device ports

Add this entity and port statement to your VHDL. The entity name should match your file name,
because Quartus will be looking for a device with that name.

Step 7. Device architecture

We will implement a few simple logic expressions to ensure proper operation of the DE-10
Standard board. Because this program is quite simple, you probably do not need to declare any
internal signals. You can assign each output with a single line of VHDL. The architecture name is
up to you (here it's been named "behavior"), but it does need to be declared as an architecture
of your device, so use your device name from the entity statement for that part of the
architecture declaration.

Step 8.

Save the file and compile the project. With the file saved, compile the design by selecting Processing
=> Start Compilation, or by clicking on the corresponding icon (the triangle to the right of STOP) in
the menu bar shown below.

Fix any compilation errors before moving on.

When Quartus reports a compilation error in a VHDL file, double-clicking the error should
take you to where it found the error. Note though that it takes you to where Quartus noticed
the error, not necessarily where the error occurred.

Step 9.

The final step in the design process is to add pin assignments to the design file. We chose input
names that correspond to elements of the development board -- the buttons, switches, and
LEDs. But Quartus isn't designed to work with just our board, and it does not know where those
devices connect to pins on the FPGA. That information is in the manual for the board, and the
relevant information will be provided below.

Open the pin planner by selecting Assignments => Pin Planner (or find the icon in the toolbar),
which brings up the window below. Notice that the I/O pins are listed in the table at the
bottom of the Pin Planner.

Since the pins in your design must be assigned to pins on the FPGA, the Fitter stage of compilation
made arbitrary choices, displayed in the Fitter Location column of the Pin Planner (not shown below).
These are not correct, since Quartus has no knowledge of the development board and the usage of
FPGA pins relative to switches, LEDs, and pushbuttons that we wish to use.

http://terasic.com/

For each I/O pin in the list, double-click on the Location cell (not the Fitter Location cell) and enter the
pin numbers shown below. Note than you can omit “PIN_” as you are typing, if you like, since Quartus
will fill in the leading characters. Or you can select from a drop-down list, instead of typing. Again, you
would have to search the documentation for the board to know that, for example, the LED called
LEDR0 is actually connected to pin AA24 on the FPGA chip.

With all of the pin assignments made, close the Pin Planner window. It is very important to note that
even though the correct pin numbers have been assigned, the project must be compiled again before
these pins will actually be used in any files that can be programmed onto the DE10-Standard board. In
this case, we will compile at least one more time after making a change in the next step.

Step 10.

The following changes to default project settings are critical to the correct and safe operation
of designs programmed to the DE10-Standard. We will remind you to change them in the first
couple labs, but you need to remember to change them whenever you create a new Quartus
project.

We have just told Quartus what to do with eight of the many pins that are connected to the
Cyclone V FPGA chip. But there are many other pins, and if we are not specific, Quartus may use
them for intermediate signals, or drive them deliberately high or deliberately low. This could
result in strange patterns on the LEDs or other outputs. It could even damage something on the
board that isn't meant to be driven.

Fortunately, there is an option to define what to do with all of the pins that are not needed in
our design. From the main Quartus menu, select >Assignments => Device… to bring up the
Device settings window. It is the same dialog that we used earlier to define the target FPGA
device. Look for the Device and Pin Options... button and click it to bring up the window
shown below. Select the Unused Pins category on the left, and then As input tri-stated on the
right. (Not As input tri-stated with weak pull-ups, as shown below.)

Without getting too technical, this option forces all of the unused pins on the FPGA to be
passive inputs. In normal new design situations, this would not matter, since the board
design would typically be done after the FPGA is designed. However, the projects in these
laboratory exercises will target your DE10-Standard FPGA board, which has several other ICs
and connectors on it in addition to the FPGA. Many of these ICs connect directly to the FPGA
I/O pins. To avoid causing erroneous board operation or potential damage to the FPGA or
other ICs, it is important to change this setting every time a new project is created. Once
complete, press the OK button to close this window. Press the OK button on the settings
window to complete the options change.

In the same Device and Pin Options dialog, go to the Voltage tab, and change the Default I/O
Standard to "3.3-V LVTTL", as shown here:

The FPGA on the DE10-Standard can configure its pins to use different voltages, and the majority of
devices on the board require 3.3 V. Changing this default settings will save you from needing to
individually configure each pin (and from the design not working if you forget to change one).

Compile your project one more time (because you just changed some settings that need to be
incorporated into the programming file), either from the toolbar button (the triangle) or the
Processing menu. If you have any errors that you cannot figure out, use online resources to
ask instructors or TAs.

Step 11.

Normally in this course, we will simulate our design and possibly fix some errors. But
for this simple project, we will go straight to a hardware test.

For programming of the FPGA using JTAG, the above shown switch positions are required
(MSEL[4:0] set to “10010”). NOTE: These positions will change in later labs when we program
the HPS (Arm Processor). They will need to be set appropriately depending on if we are
programming the FPGA or HPS.

Connect your computer to your target development board. This should require only a USB cable
between the computer and the DE10-Standard board, using one of the cables supplied with the
board as shown below.

The term "Programming" is used by Quartus, and we will use it as well to minimize confusion.
But you should always think of this as "configuring" the FPGA to connect its logic, flip-flops, and
other hardware internally. There is no program "running" on the board -- it will be
implementing hardware.

Before configuring/programming the board with your design file, open the device setting
window by selecting Assignments => Device… from the menu. Verify that the correct
FPGA device is still selected. If the wrong device is shown, select the correct FPGA and
press the OK button. This could require you to go back and reassign pin numbers, but
should not be necessary if you completed earlier steps with the correct device assignment.

Open the programmer tool, by selecting Tools => Programmer from the menu or selecting the
icon from the toolbar.

NOTE: This next section is NOT the same as in ECE 2031.

You should see a window similar to the one below. When you open the Programmer while working
within a project that has been compiled, it should correctly select the file holding the logic (top window
pane, left column) and the correct device (second column). It also shows a diagram of the expected
connection to the device, which for our case is not the correct connection.

We will program the board using the JTAG chain. This is in volatile memory and will not be stored after a
power off of the device.

The Hardware Setup refers to the programming hardware between your computer and the chip,
including the USB port, the cable, and some interface hardware on the board. If the Hardware Setup is
listed as No Hardware, which is normally the case for first-time use, click on the Hardware Setup…
button to display the window below.

Under the Currently selected hardware option, choose DE-SoC [USB-X] and close the window. If no
programming hardware is listed, make sure that the USB cable is in place, and possibly try the Add
Hardware button. If it still does not work, go back to the steps taken when Quartus was installed,
because those steps included an initial test of the USB Blaster setup. Close the Hardware Setup window
after it correctly shows the USB-Blaster as the currently selected hardware.

Select “Auto Detect” shown in the image above.

Select the detected device associated with the board as shown above.

Press “Yes” when you receive the above pop-up.

You should now see what is shown below:

Right click on the FPGA (the chip on the right) device and open the .sof file to be programmed by
navigating to Edit…Change File

You should see a file IntroCircuit.sof located in the “output_files” folder. Select this file.

Select the checkbox for Program/Configure on the FPGA as shown below, and then press
Start to program the FPGA. Take a screenshot for your lab report showing the programmer
has successfully programmed the FPGA. (Essentially the below screenshot but with a
success instead of “Failed” which is shown now)

Verify that the LEDs operate as expected with usage of the push buttons and switches.
Note that the push-buttons generate a low logic level when pressed (active low).

Examining the compilation report

Step 1.

After compiling, the compilation report should automatically open in Quartus

If it does not, you can open it by Processing -> Compilation Report

Step 2.

With the Compilation Report open, navigate to the table of contents on the left, and open Analysis
& Synthesis -> Resource Usage Summary. Take a screenshot of the statistics that appear. This will
be required for the lab report.

Verifying DES in C/C++ and VHDL

In this portion of the lab, you will simulate and verify a VHDL implementation of the Data Encryption
Standard (DES). You will be given VHDL code which implements both encryption and decryption,
which you will then simulate. A sample testbench is also provided to help you set up the simulation.
After simulating the sample testbench, you will be asked to modify it to check all your test cases. To be
able to do an accurate comparison, you are given a correctly functioning DES C code. Please type your
answers to the questions in this lab into a lab report.

When programming in any language, it is useful to debug, test, or simulate your code to verify its
functionality. When programming in VHDL, the convention is to have functional VHDL code and
a testbench which tests the code. In this section, you will simulate the provided testbench
(des_cipher_top_tb.vhd) with the given VHDL code in ModelSim.

To better understand the structure of the VHDL code, you are given the hierarchy of the provided

VHDL files below:

des_cipher_top_tb.vhd -- testbench

o des_cipher_top.vhd -- top level
▪ des_top.vhd

▪

block_top.vhd
▪

add_key.vhd
▪

add_left.vhd
▪

e_expansion_function.vhd
▪

p_box.vhd
▪

s_box.vhd
▪

s1_box.vhd
▪

s2_box.vhd
▪

s3_box.vhd
▪

s4_box.vhd
▪

s5_box.vhd
▪

s6_box.vhd
▪

s7_box.vhd
▪

s8_box.vhd
▪

key_schedule.vhd

Simulating DES in ModelSim

1. Open Model-Sim

2. Create a new project by selecting File -> New -> Project…

3. Name the new project “DES” and create the project.

4. Select “Add Existing File”

5. Browse to the location you saved the provided VHDL files and add all the VHDL files.

6. Compile the project by selecting Compile -> Compile All. Compile All works in a predefined order on
the files. Because some of the VHDL files have dependencies on other VHDL files, depending on the
default compilation some of the files may fail to compile the first time. Simply Compile All again until all
files successfully compile.

You can also change the compile order with Compile Order… if you want, but it is probably quicker to
just compile twice.

7. Start a simulation by selecting Simulate -> Start Simulation…

8. In the Start Simulation window, make sure you are on the design tab, expand the

work library, choose the testbench for this code named:
"des_cipher_top_tb", and click OK

9. ModelSim will change view into simulation mode and a couple of other windows show up. You should
see the below screen. If you do not see the black box to the right, select View -> Wave.

10. Our next step is to add some signals of interest to a wave window to monitor their
changes as simulation proceeds

11. Now let us add our signals of interest to the wave window to monitor their changes as simulation
proceeds. Select all the signals in the dark blue “Objects” box. Drag these into the gray area of the
“Wave” window.

12. Our final step is to run the simulation for a specific time. For this testbench, running the simulation
for 550 ns should be enough. To do so, type “run 550 ns” in the command line of the "Transcript"
window.

13. Navigating back to the "Wave" window will now show you the result of the simulation for all the
signals that we added. To better read the values, select all the signals and right-click, then change the
Radix to Hexadecimal. Also, towards, the bottom left of the signals pane (to the left of where it says
"Now"), there is a blue button that has a description of "Toggle leaf names <-> full names" if you hover
the mouse over it. Click on that button to show the signal names only without the hierarchy.

Look through the wave window and try to understand how the signals values are changing with respect
to the simulation time. Specifically, look for the output signal that show the encrypted/decrypted value.

14. Now that we have run the simulation, make sure that you set the zoom of the wave window to a full
view. To do so, right-click anywhere in the wave window and click on Zoom Full. Export an image of your
simulated waveform. To do so, click on File --> Export --> Image... and save it as an image. Include this
image in your submission.

15. Before ending the simulation, open the transcript window and verify that no reports are
generated by the testbench indicating a failure of any of the test cases.

Testing more plaintext and ciphertext cases

Now we will use the provided des.c code to test various plaintexts, ciphertexts, and keys, and then
modify our test_bench to confirm identical results. Inside the "lab1" directory, you can find a folder
named "des_c". This folder contains a functioning version of DES in the C programming language. We
will modify and compile the provided code to generate DES output results.

1. Choose 5 independent keys you will use for testing. The keys may not be any of the known
weak cases for DES (Please see this for more information). Write these in a file Key.txt

2. Choose 5 independent plaintext values you will use for testing. Write these in a file
Plaintextin.txt

3. Modify the “main” function in the provided des C code to test your chosen keys and plaintexts.

This can be either hardcoded or use file I/O. For each key, test all five of your plaintext values.
Store these in five separate text files. You can either manually write the files from the C codes
terminal output or have your modified C code automatically create them.

Ciphertextout1.txt (5 ciphertext from using key1 and the plaintextin.txt)
Ciphertextout2.txt (5 ciphertext from using key2 and the plaintextin.txt)
Ciphertextout3.txt (5 ciphertext from using key3 and the plaintextin.txt)
Ciphertextout4.txt (5 ciphertext from using key4 and the plaintextin.txt)
Ciphertextout5.txt (5 ciphertext from using key5 and the plaintextin.txt)

4. Choose one Ciphertext value from each of your ciphertextoutX.txt files. Place these into a
new file Ciphertextin.txt. Again, this can be manual or automatic by your code.

5. Now continue to modify the C code to decrypt the values you placed in Ciphertextin.txt

with each of your chosen keys. Store these in five separate text files. You can either
manually write the files from the C codes terminal output or have your modified C code
automatically create them.

Plaintextout1.txt (5 plaintext from using key1 and the ciphertextin.txt)
Plaintextout2.txt (5 plaintext from using key2 and the ciphertextin.txt)
Plaintextout3.txt (5 plaintext from using key3 and the ciphertextin.txt)
Plaintextout4.txt (5 plaintext from using key4 and the ciphertextin.txt)
Plaintextout5.txt (5 plaintext from using key5 and the ciphertextin.txt)

Additional info on the required C Code:

Your C code is not required to write ciphertextout.txt and plaintextout.txt. If you choose not to write the
results to a file, your program must print the results in the terminal. Please make sure your print
statements to the terminal can be understood by the TA.

You must provide a rationale for your chosen five plaintext cases. The five cases must be somewhat
unrelated to each other; e.g., you may not choose numeric sequences (e.g., adding one to each prior
case).

https://en.wikipedia.org/wiki/Weak_key?oldformat=true

VHDL Modification

Modify the provided DES VHDL test_bench to test your 5 keys for the 5 plaintexts. Also test the 5
ciphertexts you placed in Ciphertextin.txt with your 5 keys. This is a total of 25 encryptions and 25
decryptions. You may hardcode this into the test_bench or use file I/O. Once you are done modifying
the testbench, save it, recompile it and resimulate the design.

The following link may be helpful if you want to utilize file I/O. VHDL Example Code of File IO
(nandland.com)

DES VHDL Synthesis

1. In Quartus, start a new project. Name the project “DES”, with the top-level entity as
“des_cipher_top” as shown below.

3. Then, select Next to advance to a window which asks you to choose between an "Empty project" or a
"Project template." Choose the "Empty project" and select Next to advance.

https://www.nandland.com/vhdl/examples/example-file-io.html
https://www.nandland.com/vhdl/examples/example-file-io.html

4. On the below screen, press the button circled in blue, and the provided des VHDL files, except don’t
add the test bench des_cipher_top_tb, to the project and select Next to advance.

5. As before, select the appropriate FPGA device and select Next.

6. As before, select ModelSim-Altera and VHDL and then Finish after verifying the project
options are correct.

7. Compile the project. Again take a screenshot of the Resource Utilization Summary.

In this lab we will not be loading the DES VHDL onto the Cyclone V SoC. In a future lab we will
explore implementing the VHDL on the FPGA with an interface through the SoC’s processor. Take
the time to consider how you might need to alter the provided DES VHDL to enable this. Specifically,
how can we lower the number of I/O pins required to implement this solution.

Lab Report

Include in the report your name and GTID. Write a brief explanation of the modifications that
you did to the main function and to the VHDL testbench. Additionally include your reasoning
for choosing the DES keys and plaintexts you tested, and a brief description of how to run your
C code.

The report should include the following:

1. Screenshot showing the successful programming of the “IntroCircuit” onto the FPGA.

2. Screenshot showing the Resource Usage Summary for the “IntroCircuit”.

3. ModelSim screenshot showing the unmodified DES test bench waveform.

4. Screenshot showing the Resource Usage Summary for the DES circuit.

5. Modified C code with annotations of what you changed.

6. Modified DES test bench.

7. ModelSim screenshot showing one successful encryption and decryption from the values you
chose for the test bench modification.

8. Plaintext and ciphertext files you created:

Key.txt (5 keys)
Plaintextin.txt (5 plaintext test cases)

Ciphertextout1.txt (5 ciphertext from using key1 and the plaintextin.txt)
Ciphertextout2.txt (5 ciphertext from using key2 and the plaintextin.txt)
Ciphertextout3.txt (5 ciphertext from using key3 and the plaintextin.txt)
Ciphertextout4.txt (5 ciphertext from using key4 and the plaintextin.txt)
Ciphertextout5.txt (5 ciphertext from using key5 and the plaintextin.txt)

Ciphertextin.txt (5 ciphertext test cases, please pick one ciphertext output from each of
the ciphertextout.txt (ciphertextout1.txt, ciphertextout2.txt...ciphertextout5.txt)
Plaintextout1.txt (5 plaintext from using key1 and the ciphertextin.txt)
Plaintextout2.txt (5 plaintext from using key2 and the ciphertextin.txt)
Plaintextout3.txt (5 plaintext from using key3 and the ciphertextin.txt)
Plaintextout4.txt (5 plaintext from using key4 and the ciphertextin.txt)
Plaintextout5.txt (5 plaintext from using key5 and the ciphertextin.txt)

Please compress all files into a single folder and submit on Canvas.

	VHDL Help
	Installation and Use of the Quartus Prime software

	Lab 1 Prelab Steps
	Requirements to begin
	Step 1.
	Step 2.
	Step 3.
	Step 4.
	Step 5.
	Step 6.
	Step 8.
	Step 10.
	Step 11.
	Step 12.
	Step 13.
	Step 14.
	Step 15.
	Manual USB-Blaster Installation
	Step 1.
	Step 2.
	Step 3.
	Step 4.
	Step 5.
	Step 6.

	Lab 1 Main Lab Steps (After Prelab)
	Step 1.
	Step 2.
	Step 3.
	Step 4.
	Step 5.
	Step 6. Device ports
	Step 7. Device architecture
	Step 8.
	Step 9.
	Step 10.
	Step 11.

	Verifying DES in C/C++ and VHDL
	Simulating DES in ModelSim
	Testing more plaintext and ciphertext cases
	VHDL Modification
	DES VHDL Synthesis
	Lab Report

