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Abstract—In this paper, we propose the hybrid register stream
cipher, a hardware-oriented AEAD-capable stream cipher based
on nonlinear feedback shift registers (NLFSRs) and Compos-
ite Mersenne Product Registers (CMPRs) designed to balance
security and hardware efficiency. Our proposed stream cipher
integrates a 128-bit NLFSR with a 128-bit CMPR, achieving
highly nonlinear internal state evolution while enabling scalable
and lightweight hardware implementations. The hybrid register
structure supports a 128-bit key, 96-bit initialization vector,
and variable-length messages with associated data, offering 128-
bit security with a 64-bit authentication tag. Statistical testing
via the NIST Statistical Test Suite and bit contribution tests
confirms the pseudorandomness of the output of our design. ASIC
hardware implementation results demonstrate that the hybrid
register stream cipher outperforms prominent lightweight stream
ciphers such as TRIVIUM, Espresso, and Grain-128AEADv2
both in terms of area and energy consumption, with the hybrid
register stream cipher achieving up to 25.8% lower hardware
area and 67.5% lower energy consumption than the comparison
candidates. Finally, we demonstrate that our hybrid register
construction can be easily scaled to support different key and
IV sizes.

Index Terms—encryption, AEAD, stream cipher, feedback
register, authentication

I. INTRODUCTION

The growing demand for cryptographic solutions tailored to
hardware-constrained environments has led to a proliferation
of lightweight stream ciphers optimized for area, power, and
performance. While many existing designs successfully min-
imize resource utilization, they often do so at the expense of
either cryptographic flexibility, such as support for authenti-
cated encryption, or support for different key sizes.

In this work, we present a new scalable hardware-efficient
stream cipher capable of authenticated encryption with asso-
ciated data (AEAD), termed the hybrid register stream cipher,
that leverages a hybrid feedback register structure combin-
ing the nonlinear feedback shift register used in the Grain-
128 AEADV2 stream cipher [4] with a Composite Mersenne
Product Register (CMPR) [1]. Our design balances hardware
implementation simplicity, security, and support for AEAD,
making the hybrid register stream cipher suitable for embed-
ded and IoT applications. The hybrid register stream cipher
proposed in this paper integrates lightweight keystream gen-
eration and authentication mechanisms with highly nonlinear
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evolution of its internal state, thereby offering resistance to
classical and structural cryptanalytic attacks. We show that the
hybrid register stream cipher outperforms several well-known
lightweight stream ciphers in terms of application-specific
integrated circuit (ASIC) area and power while delivering
comparable (or superior) security. We also demonstrate that
our CMPR design principles allow for flexible and scalable
stream cipher design by varying the size of the CMPR,
allowing for the design of stream ciphers with different key
and initialization vector (IV) sizes (and, in turn, different
security margins).

II. BACKGROUND AND PRIOR WORK

A. Feedback Registers and Product Registers

Feedback registers are finite-state systems whose state
evolves at discrete time steps according to a fixed update func-
tion. That is, the state of the register at time ¢, A[t], is updated
according to some fixed function f : {0,1}" — {0,1}™:

Alt +1] = f(A[]) (D

In practice, feedback registers are often implemented as
linear feedback shift registers (LFSRs), where f is a linear
Boolean function, or nonlinear feedback shift registers (NLF-
SRs), where f is a nonlinear Boolean function.

One way to implement a feedback register is as a Product
Register [1]. An n—bit Product Register is parametrized by
its update polynomial U(z) (abbreviated as U), where the
degree of U is less than or equal to n — 1, and its feedback
polynomial P(z) (abbreviated as P), where the degree of P
is equal to n. U and P are elements of Fa», meaning the
only possible coefficients for each term in these polynomials
are 0 and 1. Similar to an LFSR, it is possible to ensure that
an n—bit Product Register has full period, or cycles through
2™ — 1 n—bit states before returning to its initial state [1]. For
a Product Register to exhibit full period, the polynomial P
must be a primitive polynomial. The state A[¢] of a Product
Register updates according to the equation:

Alt +1] = (U x A[t]) mod P. 2)

From Equation 2, it is clear that the special case where U = 0
instantiates a Product Register that only updates to the all-
zero state, and the special case of U = 1 instantiates a Product



Register that never changes state. Therefore, U = 0and U =1
are generally disallowed when instantiating a Product Register.

B. Mersenne Product Registers

A Mersenne Product Register (MPR) is a special case
of a Product Register where the size of the register is a
Mersenne exponent, i.e., a prime number n such that the
quantity 2™ —1 is also a prime number. In the case of an MPR,
the polynomial P is of degree n (n a Mersenne exponent),
meaning that irreducibility, or the infeasibility of factoring
P into the product of two non-constant polynomials, is a
sufficient condition for primitivity [1]. For an n—bit MPR
initialized to a nonzero n—bit state, an irreducible P and any
U # 0, 1 ensure that the MPR will cycle through 2" —1 states
before returning to its initial state [1].

C. Chaining and Composite Mersenne Product Registers

Chaining is a method for composing several Mersenne Prod-
uct Registers into a larger interconnected structure referred to
as a Composite Mersenne Product Register (CMPR), where the
MPRs are interconnected using chaining functions. Chaining
functions are sets of Boolean equations that determine how
the state of one MPR affects the state of another MPR. Let
M, and Ms be two distinct MPRs. Furthermore, let Us and
P, denote the update polynomial and primitive polynomial
of My, respectively. To chain from M; to M, define a set
of chaining functions C in terms of the variables from M,
where the number of chaining functions in C is equal to the
size of M. Then, the state of M, will update according to
the following:

C can be nonlinear, making CMPRs an appealing building
block for cryptographic schemes [1]. Generally, using more
MPRs to construct a CMPR results in a CMPR construction
that is capable of generating sequences with higher linear com-
plexity. Rules to abide by when constructing a CMPR include
(1) using unique Mersenne exponents, (ii) only chaining from
larger MPRs to smaller MPRs, and (iii) ensuring that chaining
functions connect from one MPR to the next smallest MPR
in the construction (that is, in a CMPR construction with
three or more MPRs, chaining functions should not “skip”
over any MPRs). Rules (i) and (ii) ensure that the CMPR has
exponential period, with an n—bit CMPR having a period of at
least 0.45 % 2™, and rule (iii) ensures that sequences generated
by the CMPR can resist cryptanalytic techniques such as cube
attacks and cube testers [1]. Note that the largest MPR in
a CMPR does not receive any chaining input and therefore
operates according to Equation 2, not Equation 3; in other
words, the largest MPR in a CMPR exhibits a linear state
sequence.

D. TRIVIUM

TRIVIUM is a synchronous stream cipher designed to bal-
ance speed and hardware area [2]. The internal state of TRIV-
IUM comprises 288 bits, with the internal state distributed

across three nonlinear feedback shift registers (NLFSRs) of
lengths 93, 84, and 111 bits. TRIVIUM supports an 80-
bit secret key and an 80-bit initialization vector (IV). The
initialization process of TRIVIUM consists of clocking the
288-bit internal state 1152 times to ensure sufficient state
randomization before key stream generation begins.

E. Espresso

Espresso is a synchronous stream cipher geared toward 5G
wireless communication systems, offering a trade-off between
hardware area and security [3]. The cipher employs a 256-
bit internal state implemented as an NLFSR. The keystream
output of Espresso is derived through a balanced nonlinear
Boolean function of 20 variables from the 256-bit NLFSR. The
key and IV sizes for Espresso are 128 and 96 bits, respectively,
with an initialization phase consisting of clocking the NLFSR
256 times to ensure the internal state is sufficiently randomized
before keystream generation.

F. Grain-128AEADv2

Grain-128AEADV2 is an AEAD-compliant lightweight en-
cryption algorithm designed for use in resource-constrained
environments such as IoT and embedded systems [4]. Grain-
128AEADvV2 employs a 256-bit internal state formed by a 128-
bit LFSR and a 128-bit NLFSR. The scheme uses a 128-bit key
and a 96-bit IV, providing 128 bits of security, and integrates
encryption and authentication via a pre-output function that
generates keystream bits and authentication bits on alternating
clock cycles. The cipher features an initialization procedure
encompassing a 512-clock-cycle state-mixing phase [4].

III. DESIGN SPECIFICATION

In this section, we propose and specify the hybrid register
stream cipher, a synchronous stream cipher that supports both
encryption and AEAD applications. The hybrid register stream
cipher is designed to support a 128—bit key, 96—bit IV, and
messages of variable length, where the message may have
associated data embedded within it. The output of the hybrid
register stream cipher is a ciphertext with length equal to the
plaintext length and a 64—bit authentication tag. The hybrid
register stream cipher utilizes a 256—bit internal state, with
the internal state consisting of a 128-bit NLFSR connected to
a 128-bit CMPR. Our choices of internal state size, key length,
and IV length were motivated by the designs we compare to in
this paper, in order to ensure we can provide equal (or better)
security while performing better in hardware.

Section III-A provides a detailed specification of the NLFSR
and CMPR used in the hybrid register stream cipher, along
with an overview of the authentication generator. Section III-B
describes the role played by the key and IV in the initialization
of the cipher. Section III-C discusses how the authentication
structure is initialized. Section III-D examines how the hybrid
register stream cipher produces keystream bits to be used for
encryption and authentication bits to be used for authentica-
tion tag generation. Section III-E describes how our design
supports AEAD.



A. Design Overview and Building Blocks

The hybrid register consists of two main building blocks:
(i) a keystream generator, which generates pseudorandom
bits to be used for encryption or authentication, and (ii) an
authentication generator, which generates tags for authenti-
cating messages. While the two main building blocks are
interconnected, they utilize different hardware structures.

The keystream generator consists of a 128-bit NLFSR
connected to a 128-bit CMPR, meaning the hybrid register
stream cipher uses a 256-bit internal state. We use the same
128-bit NLFSR utilized in Grain-128AEADV2 [4], which has
a 4th-degree nonlinear feedback polynomial g(z) over Fo
defined as follows:
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The nonlinear feedback polynomial g(x) is applied to the most
significant bit of the NLFSR, meaning the remaining bits of
the NLFSR shift to the right when the state of the NLFSR is
updated. The 128-bit CMPR is specified in Table I, including
the irreducible feedback polynomials and update polynomials
used for each MPR.
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TABLE I
SPECIFICATION FOR THE 128-BIT CMPR

MPR Size Update Polynomial Primitive Polynomial
61 bits Usi(z) =2 +1 | Per(z) =% +2* + 20 4215 +1
31 bits Ugl(z):z2+1 Pgl(z):at31+m3+fc2+z+l
19 bits Ulg(a:):x4+w2 Pig(x) =29 4+t 22+x+1
7 bits Us(z) =2* + = Prz)=a"+z+1
5 bits Us(z) = 2* Ps(z) =a® + 22 +1
3 bits Us(z) = 22 Py(z)=a®+z+1
2 bits Us(z) =2 +1 Py(z) =2+ +1

Let the 256-bit state of the keystream generator be denoted
by Sos5,...,80. The output of the keystream generator is
derived by taking the XOR of state bits 0, 3, and 7. In other
words, the keystream generator produces one bit per clock
cycle according to the equation s7 & s3 @ So.

The 128-bit NLFSR and 128-bit CMPR are connected using
nonlinear chaining functions in terms of the state variables
from the NLESR. Specifically, the chaining functions connect
from the 128-bit NLFSR to the largest MPR of the 128-bit
CMPR, which is a 61-bit MPR (as seen in Table I and Fig. 1).
The chaining functions are designed to satisfy the following
criteria: (i) each chaining function uses AND and XOR gates
of at most 4 inputs, meaning the chaining is of degree 4;
(ii) each chaining function must be balanced, meaning that
its truth table should have an equal number of zeros and
ones; and (iii) the chaining density must be 40%, meaning
that approximately 40% of the bits of the 61-bit MPR receive
a chaining function from the NLFSR (the choice of chaining

density is empirical and will be justified in Section IV-Al).
Requirements (i)-(iii) apply to all other chaining functions in
the design, or the chaining functions between the remaining
MPRs. The keystream generator is illustrated in Fig. 1, with
the chaining functions, each of which consists of a set of
Boolean functions satisfying (i)-(iii) denoted by C4,...,C7,
and the update and primitive polynomial of each n—bit MPR
denoted by U, P,.
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®
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Fig. 1. Hybrid Register Keystream Generator Structure
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The authentication generator consists of a 64-bit shift regis-
ter and a 64-bit accumulator, producing a 64-bit authentication
tag. The shift register, which receives pseudorandom bits
from the keystream generator, feeds its current state to the
accumulator, where the accumulator also receives the message
bits to be authenticated. Our design integrates the authentica-
tion generator used in Grain-128AEADv2. The authentication
generator is illustrated in Fig. 2.

64-Bit Shift Register
m; —’éb

64-Bit Accumulator

“{

Authentication Tag

Fig. 2. Hybrid Register Authentication Generator Structure

B. Key and IV Initialization

Before the output of the keystream generator can be used for
encryption and authentication, the keystream generator must
undergo an initialization phase involving the 128-bit key k
and 96-bit IV IV. Let the key bits be denoted by k;, where
0 < j < 127, and the IV bits be denoted by IV}, where
0 < 7 < 95. Then, we initialize the keystream generator as
follows, again denoting the state of the keystream generator
by 5955, ..., 80"
o Initialize the 128 bits of the NLFSR with the 128 bits of
the key, such that s; = k; for 128 < j < 255.

« Initialize the 96 most significant bits of the CMPR with
the 96 bits of the IV, such that s; = IV} for 32 < 5 <
127.



« Initialize the remaining 32 bits of the CMPR with ones,
such that s; =1 for 0 < j < 31.

Subsequently, the 256-bit hybrid register structure is clocked
a total of 128 times. Afterwards, we consider key and IV
initialization to be complete and proceed to initialize the
authentication generator.

C. Authenticator Initialization

Let the state of the shift register at clock cycle ¢ be denoted
by r§s,...,r and the state of the accumulator be denoted
by aks, ..., al. Moreover, let the output bit of the keystream
generator at clock cycle ¢ be denoted by z'. For example, since
the keystream generator was previously clocked 128 times
as part of the keystream generator initialization process, the
next keystream generator bit that will be produced is z'28.
Once the keystream generator has been initialized, we clock
the keystream generator an additional 128 times to initialize
the authentication generator with keystream generator bits as
follows:

. a}gs = 212847 for 0 < j < 63.
. 7"]1-28 = 219247 for 0 < j < 63
Once the accumulator and shift register have been initialized

with keystream bits, the cipher is ready to produce ciphertexts
and authentication tags.

D. Keystream and Tag Generation

For our design to support encryption and authentication,
we assign a dual purpose to the keystream generator. The
keystream generator is tasked with producing bits to use for
encryption and bits to use for authentication (tag generation).
We do not concurrently use the same keystream bits for both
encryption and authentication, however.

Since the keystream generator has thus far undergone 256
clock cycles due to the initialization processes from the prior
sections, the bit that will be generated at clock cycle 7 is
denoted by 225617, Let y; denote the i-th keystream bit. Every
even keystream generator bit (counting from y) is used as an
encryption bit. Then, y; is given by:

Y = 2256+2’i (5)

Similarly, let y; denote the i-th authentication bit. We use
every odd keystream generator bit (counting from y) for
authentication. Then, y, is given by:

yl = 2264241 (6)

Let m denote a message of length L bits. Our design allows
for authenticating the message one bit at a time; thus, we
denote the message bit currently being authenticated as m;,
where 0 < ¢ < L — 1. Then, at the i-th clock cycle (after
initialization), the shift register in Fig. 2 is updated as follows:

ey =i
T;+1 = T;-_H,O <j<62 @)

Similarly, the accumulator shown in Fig. 2 is updated as
follows:
" . .
a?' =aj & mr; (8)
Once all message bits have been authenticated, the 64-bit
state of the accumulator is taken as the authentication tag.

E. Authenticated Encryption with Associated Data

To support AEAD, we adopt the approach used in Grain-
128 AEADV2 [4]. That is, we define an AEAD mask d, which
is of the same length as the plaintext message m. For each bit
d; in d, we set d; = 1 if m; should be encrypted. Otherwise,
if m; is an associated data bit and should not be encrypted, we
set d; = 0. Then, m; is encrypted to produce the ciphertext
bit ¢; according to the following:

IV. DESIGN RATIONALE

In this section, we discuss and justify the design choices
presented in Section III. In Section IV-A, we rationalize our
choice of register construction and describe why we believe
our chosen construction is conducive to desirable crypto-
graphic properties. In Section IV-B, we discuss our choice
of 128 initialization rounds for the keystream generator. In
Section IV-C, we elaborate on the factors that motivated our
choices for where to initially place the key and I'V in the hybrid
register construction.

A. Hybrid Register Construction

Our 256-bit hybrid register construction consists of a 128-
bit NLFSR connected to a 128-bit CMPR, where the 128-bit
CMPR is constructed using the 7 MPRs in Table I. Thus, in
total, the 256-bit hybrid register consists of 8 subregisters; we
define a subregister to be a self-contained feedback register.
In other words, a subregister can be dissected from the overall
hybrid register with a known feedback function and therefore
well-defined properties as a standalone unit. The subregisters
in our 256-bit hybrid register are connected in order of
descending size as shown in Fig. 1. This configuration follows
the results of [1], which requires that the subregisters in a
CMPR construction be chained together in order of descending
subregister size to maximize the period of the construction,
and allows for the largest subregister in a CMPR construction
to be any other form of register (e.g., an LFSR or NLFSR)
provided the size of the largest subregister is still coprime
with the sizes of the other subregisters in the construction (see
Theorem 1, also called the Chaining Period Theorem, in [1]).
In our case, the NLFSR size is not coprime with the 2-bit
MPR, meaning we do not consider the 2-bit MPR as part of
our linear complexity and periodicity analysis.

By using a 128-bit NLFSR as the largest subregister in our
construction, we ensure that the entire state of the 256-bit
hybrid register evolves in a nonlinear fashion. The nonlinear
state sequence of the 128-bit NLFSR also affects the state
sequences of the 7 MPRs, as the 128-bit NLFSR is connected
to the 128-bit CMPR using nonlinear chaining functions with
AND gates of at most 4 inputs.



1) Chaining Function Selection: Our construction uses
chaining functions with XOR gates and AND gates with
at most 4 inputs. The chaining functions are chosen to be
balanced, meaning their truth tables contain an equal number
of zeros and ones, in order to ensure that the state of the
hybrid register is not biased with an excessive number of
zeros or ones. A biased internal state is conducive to statistical
vulnerabilities in the ciphertext, which could be exploited by
an attacker.

We employ a chaining function density of 40%, meaning
that all MPRs in the 128-bit CMPR receive chaining functions
to approximately 40% of their bits (a nearly 40% chaining
density is not possible in the case of the 2- or 3-bit MPRs; in
these instances, the MPRs receive as many chaining functions
as needed to exceed 40%). We can use a lower chaining
density due to the fact that the largest subregister in the hybrid
register construction, the 128-bit NLFSR, has a nonlinear
state sequence, meaning we need not rely solely on chaining
functions as the source of nonlinearity in our design. The exact
percentage for chaining density was chosen empirically, based
on applying statistical tests (Section V-C) to the output of
the keystream generator to hybrid register instantiations with
different chaining densities. The reduced chaining density used
in our proposed design is also conducive to a more lightweight
hardware implementation, since fewer logic gates are required
to implement fewer chaining functions.

2) MPR Selection: Our 128-bit CMPR construction con-
sists of the seven MPRs shown in Table I. While there are
several distinct combinations of Mersenne exponents that sum
to 128, we chose our CMPR configuration based on two main
considerations: (i) linear complexity and (ii) ensuring there are
several MPRs that are initialized to fixed values between the
portion of the state containing IV bits and the MPR from
which the keystream is extracted (we colloquially refer to
such MPRs as “fixed MPRs”). In the case of consideration (i),
using more MPRs in a CMPR construction results in a CMPR
that can produce sequences with higher linear complexity [1].
Regarding consideration (ii), the presence of fixed MPRs
is necessary for the design to resist black box polynomial-
based cryptanalytic techniques such as cube attacks and cube
testers [1] [5].

B. Initialization Rounds

We clock the 256-bit hybrid register 128 times for the
keystream generator initialization phase and 128 times for
the authentication generator initialization phase, for a total
of 256 initialization rounds. This design choice is motivated
by the NLFSR, as use of 128 initialization rounds in each
initialization phase ensures that the state of the NLFSR is
rotated over a full 128-bit cycle. The 128-bit CMPR does not
benefit from a large number of initialization rounds: in [1], it
was demonstrated that the degree and number of monomials
required to represent the least-significant bit of a CMPR in
terms of the initial state variables saturate rapidly with respect
to initialization rounds due to the aggregated effect of the

chaining functions, which directly affect many state bits each
time the CMPR is clocked.

C. Key and IV Provisioning

In our proposed scheme, we initialize the 128 most-
significant bits of the hybrid register with the secret key and
the 96 following bits with the initialization vector. This design
choice is motivated by the “feed-forward” structure of the
hybrid register, as illustrated in Fig. 1. Since the chaining
functions connect from one subregister to the next, the initial
state variables in the most significant bits of the hybrid register
propagate through more nonlinear chaining functions, elimi-
nating the possibility of a linear or low-degree relationship
between these initial state variables and the ciphertext.

D. Keystream Generation

For keystream generation, our design takes the XOR of state
bits 7, 3, and 0. This is a simple output function similar to the
keystream generation of TRIVIUM, which takes the XOR of
six internal state bits, whereas designs like Grain-128 AEADv?2
and Espresso use more complex and nonlinear output functions
for keystream generation. Since CMPRs possess embedded
nonlinear logic in the form of chaining functions, we find
it unnecessary to use a nonlinear output function depending
on many state variables. Using a 3-input XOR as our output
function also allows for a smaller hardware implementation
while ensuring that the ciphertext depends on different parts
of the internal state. Moreover, we extract the keystream from
the smallest MPR in the construction (the 2-bit MPR) because
the smallest MPR in the construction evolves unpredictably
under the influence of all prior nonlinear chaining functions
in the design.

Similar to Grain-128AEADv2, we restrict the number of
keystream bits that can be generated from a single (key,
IV) pair to 28'. While the 128-bit CMPR on its own has
an expected period of 0.45 * 2128 (which can be computed
using the Chaining Period Theorem from [1]), a value much
larger than 28!, we impose the same keystream limitation as
Grain-128AEADV2 due to using a building block from Grain-
128AEADV2 in our design.

V. SECURITY ANALYSIS AND KEYSTREAM TESTING
A. Cryptanalysis

In [1], various security analyses were applied to CMPRs,
assuming that the attacker possesses full knowledge of the
CMPR construction, including the chaining functions, update
polynomials, and primitive polynomials used. Thus, in this
paper, we focus our cryptanalytic arguments on the hybrid
register construction. CMPRs have been demonstrated to resist
techniques such as algebraic attacks, fast algebraic attacks,
correlation attacks, and linear cryptanalysis [1]. The resistance
of CMPRs to the aforementioned cryptanalytic techniques can
be largely attributed to the fact that the degree and quantity
of monomials needed to model the input-output relation of a
CMPR grow rapidly as the CMPR is clocked, due to the non-
linear chaining functions introducing high-degree terms from



larger MPRs to smaller MPRs. This phenomenon indicates that
it is computationally infeasible to solve or closely approximate
the system of high-degree nonlinear equations describing the
state-to-state relationship of a CMPR.

Regarding black-box polynomial-based cryptanalytic tech-
niques such as cube attacks and cube testers [5], CMPRs
have also demonstrated resistance, given that for a given
CMPR construction, the chaining functions only connect from
one MPR to the next smallest MPR in the construction and
that there are several MPRs whose states are initialized to
fixed values between the MPR containing IV bits and the
MPR from which the keystream is extracted [1]. The hybrid
register construction proposed in this paper abides by the
aforementioned chaining convention and initializes the states
of M-, Ms, M3, and M5 to all ones.

B. Keystream Testing using the NIST Statistical Test Suite

To analyze the statistical properties of keystreams generated
by the hybrid register stream cipher, a keystream dataset for
use with the NIST Statistical Test Suite [6] was generated
from a pseudorandom (key, IV) pair. The dataset consisted of
10,000,000 keystream bits to satisfy the minimum dataset size
required to apply all tests in the NIST Statistical Test Suite.
The datasets passed all 15 of the tests in the NIST Statistical
Test Suite. This result implies that the keystreams generated
by our hash functions exhibit pseudorandom behavior, at
least from the perspective of the tests applied in the NIST
Statistical Test Suite. However, it is crucial to note that the
NIST Statistical Test Suite does not verify the security of
the underlying design used to generate the test set, but rather
whether the tested data can satisfy the rigorous statistical tests
in the suite.

C. Key and 1V Testing using Bit Contribution Tests

To evaluate the sensitivity of the hybrid register stream
cipher to bit flips in the key and IV, we applied the bit
contribution (B.C.) for key and IV tests [7]. These tests consist
of a number of trials, where each trial entails generating two
pseudorandom inputs (key and IV), holding one input fixed,
flipping each bit of the other generated input, and computing
the keystream for each bit-flipped variant of the non-fixed
input. For an i-bit input and j-bit output, each trial contributes
to the construction of an ¢ X j dependence matrix, a matrix
where the entry at index (i,j) represents how many times
bit j of the output flips when bit ¢ of the input is flipped,
where the maximum value of any matrix entry is equivalent
to the number of trials. In the case of the B.C. for key
test, the IV is held fixed and the key bits are flipped, and
in the case of the B.C. for IV test, the key is held fixed
and the IV bits are flipped one at a time. The purpose of
these tests is to ascertain whether a cryptosystem exhibits the
properties of confusion and diffusion, meaning that outputs
should (i) depend on several parts of the key and (ii) a single
bit flip in the input should cause roughly 50% of the bits in
the output to flip. For a cryptosystem that exhibits confusion
and diffusion, we expect the dependence matrix values to be

normally distributed. In our tests, we apply 10,000 trials of
the B.C. key and B.C. IV tests to the hybrid register stream
cipher. The results indicate that all dependence matrix entries
pass, with Figures 3 and 4 demonstrating that the dependence
matrix values are approximately normally distributed for both
tests. These results validate our choice of initialization rounds,
at least from the perspective of the statistical properties of the
stream cipher output.
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VI. HARDWARE IMPLEMENTATION ANALYSIS

To determine how the hardware for the hybrid register
stream cipher compares to TRIVIUM, Espresso, and Grain-
128AEADv2, we synthesize RTL implementations of the
hybrid register stream cipher and the comparison candidates
onto an ASIC target and compare results for hardware area
and energy consumption. Synthesis was performed using the
Synopsys DesignCompiler synthesis tool [8]. Following syn-
thesis, we perform place and route using the Cadence Innovus
Implementation System [9] and layout using the Cadence
Virtuoso Layout Suite [10]. The tools were configured to use
the FreePDK45 45nm standard cell library [11]. The fastest
clock frequency we could reliably obtain was 300MHz for all
designs, and any attempts to use a higher frequency resulted
in library hold time violations during synthesis.

Table II displays the security claims and authentication
capabilities of the hybrid register stream cipher alongside the



comparison candidates, and Table III displays the latency of
each cipher in clock cycles, or the number of clock cycles
before the cipher begins to generate keystream bits. Table IV
shows the ASIC hardware implementation results for the com-
parison candidates that do not natively support AEAD (TRIV-
IUM and Espresso), alongside an unauthenticated version of
the hybrid register stream cipher (meaning the authentication
generator of Fig. 2 is excluded from the implementation).
Table V shows the ASIC hardware implementation results for
the comparison candidate that natively supports AEAD (Grain-
128AEADv2) alongside the hybrid register stream cipher.
The area data in the “Area” column was obtained from the
layouts generated by Virtuoso, and the power data in the
“Power” column was extracted from DesignCompiler reports.
The power data represents the average power consumed by
the hardware during continuous operation. Since each clock
cycle of the stream cipher implementation typically outputs
one bit of keystream, this figure corresponds to the average
power consumed during the generation of each keystream bit.
Tables IV, V, and VIII also include the power-delay product
(PDP) for each design in picojoules.

TABLE 11
AUTHENTICATION CAPABILITIES AND SECURITY CLAIMS FOR THE
HYBRID REGISTER STREAM CIPHER AND COMPARABLE
REGISTER-BASED STREAM CIPHERS

Design Authentication | Security
Hybrid Register Yes 2128
Grain-128AEADv2 Yes 2128
Espresso No 2128
TRIVIUM No 280
TABLE III

LATENCY COMPARISON FOR THE HYBRID REGISTER STREAM CIPHER
AND COMPARABLE REGISTER-BASED STREAM CIPHERS

Design Latency (Clock Cycles)
Hybrid Register 128
Grain-128AEADv2 512
Espresso 256
TRIVIUM 1152

TABLE IV
NON-AEAD ASIC HARDWARE IMPLEMENTATION COMPARISON
BETWEEN THE HYBRID REGISTER STREAM CIPHER (EXCLUDING THE
AUTHENTICATION GENERATOR) AND COMPARABLE REGISTER-BASED
STREAM CIPHERS AT 300MHZz

Design Area (um2) Power (mW) | PDP (pJ)
Hybrid Register 4402 0.981 3.27
Espresso 5894 1.949 6.49
TRIVIUM 5627 3.0226 10.08

In both the non-AEAD and AEAD comparisond, the hybrid
register stream cipher outperforms the comparison candidates
in both area and power. The hybrid register stream cipher uses

TABLE V
AEAD ASIC HARDWARE IMPLEMENTATION COMPARISON BETWEEN THE
HYBRID REGISTER STREAM CIPHER AND COMPARABLE
REGISTER-BASED STREAM CIPHERS AT 300MHZzZ

Design Area (um?) | Power (mW) | PDP (pJ)
Hybrid Register 5650 1.313 4.37
Grain-128AEADvV2 6401 2.936 9.78

11.7% less hardware area and 55% less power than Grain-
128 AEADV2, 21.8% less hardware area and 67.5% less power
than TRIVIUM, and 25.3% less hardware area and 49.7% less
power than Espresso. We attribute the lower hardware area of
the hybrid register to the following factors, though factor (i) is
more substantial: (i) the hybrid register stream cipher utilizes
a smaller internal state than TRIVIUM, which uses a 288-bit
internal state, and (ii) the hybrid register stream cipher does not
require a complicated nonlinear output function for keystream
generation, whereas Grain-128AEADv2 and Espresso both
employ nonlinear output functions. Regarding energy con-
sumption, the favorable performance of the hybrid register
stream cipher is owed to the low number of initialization
rounds: the hybrid register stream cipher uses 128 initializa-
tion rounds, whereas TRIVIUM requires 1152 initialization
rounds, Espresso requires 256 initialization rounds, and Grain-
128AEADV2 requires 512 initialization rounds.

VII. SCALABILITY OF THE HYBRID REGISTER

The major advantage of the hybrid register construction is
its scalability, which is mathematically validated by the theory
of Composite Mersenne Product Registers [1]. Apart from the
128-bit NLFSR, there is a great deal of flexibility associated
with the CMPR portion of the hybrid register construction.
Heretofore, our specified design used the 128-bit CMPR of
Table I. However, it is possible and straightforward to use
larger or smaller CMPRs based on security and hardware
efficiency needs. To showcase the flexibility and scalability of
the hybrid register construction, we propose two larger variants
of the hybrid register stream cipher: one variant that supports
a 192—bit key, and one variant that supports a 256—bit key,
where it is assumed that both variants use a 96—bit IV. It is
also possible to increase the IV size rather than the key size, or
to increase both the key and IV sizes; however, our examples

TABLE VI
SPECIFICATION FOR THE 192-BIT CMPR
MPR Size Update Polynomial Primitive Polynomial
89 bits Usgo(x) = z° Pgo(x) = a3 + 2% +1
61 bits Ugs1(z) = 23 Ps1(x) = 200 2t 4 219 215 41
19 bits Uro(z) = a* + 22 Pio(z) =2 + 25 + 22+ +1
13 bits Uis(z) = z° + 2t Pi3(x) = 2B ettt 1
5 bits Us(z) = 2* Ps(z) =a® + 2?2 +1
3 bits Us(z) = 22 Py(z) =+ +1
2 bits Us(z) =a+1 Py(z)=a*>+z+1




focus on increasing key size since the key length determines
the bits of security. Both of our proposed larger variants utilize
the 128-bit NLFSR from Section III.

To support a 192-bit key, we utilize a 192-bit CMPR. In
total, the state size is 320 bits due to the presence of the 128-
bit NLFSR. The 192-bit CMPR is specified in Table VI.

To support a 256-bit key, we utilize a 256-bit CMPR. In
total, the state size is 384 bits (due to the presence of the 128-
bit NLFSR). The 256-bit CMPR is specified in Table VIIL.

TABLE VII
SPECIFICATION FOR THE 256-BIT CMPR

MPR Size Update Polynomial Primitive Polynomial
107 bits Uior(z) = 27 Pio7(z) = 07 + 259 4 2% 4 23° 41
89 bits Uso(z) = 27 + 26 Pgo(x) = 289 + 238 +1
31 bits Usi(z) =2 +1 Pai(z) =23 + 2% +1
17 bits Uir(z) = 2* Pir(z) =2 + 2% +1
7 bits Ur(z) =2° + = Prz)=a" +az+1
3 bits Us(z) = 2?2 Py(z)=a® +z+1
2 bits Us(z) =2 +1 Py(z)=a%+z+1

We include ASIC hardware implementation results for the
larger hybrid register constructions in Table VIII synthesized
at 300MHz. As expected, these designs utilize more hardware
due to the larger state size, in return for a larger key size,
which provides more bits of security.

TABLE VIII
NON-AEAD ASIC HARDWARE IMPLEMENTATION RESULTS FOR THE
LARGER HYBRID REGISTER STREAM CIPHER VARIANTS

Design Area (qu) Power (mW) | PDP (plJ)
320-bit Hybrid Register 6453 1.435 478
384-bit Hybrid Register 8367 1.511 5.03

VIII. D1sSCUSSION AND CONCLUSION

In this work, we introduced the hybrid register stream
cipher, a lightweight AEAD-capable stream cipher that strikes
a balance between hardware efficiency and security while also
offering scalability for scenarios requiring different security
parameters. Our proposed construction, based on a 128-bit
NLFSR connected to a 128-bit CMPR, demonstrates that the
integration of nonlinear feedback shift registers and Product
Registers is conducive to desirable cryptographic properties
while maintaining a modest hardware footprint. Furthermore,
the theoretical proofs of [1], especially Theorem 1 (Chaining
Period Theorem), apply to our hybrid register stream cipher.

Compared to TRIVIUM, Espresso, and Grain-128AEADV2,
the hybrid register stream cipher reduces ASIC area and
power. In the non-AEAD setting, the hybrid register stream
cipher achieves 21.8% lower hardware area and 67.5% lower
energy consumption relative to TRIVIUM, while in the AEAD
setting, the hybrid register stream cipher achieves 11.7% lower
hardware area and 55% lower energy consumption compared

to Grain-128 AEADV2, validating the hardware-friendly nature
of our design choices. Statistical testing, including the NIST
Statistical Test Suite and bit contribution tests from Section V,
confirms the pseudorandomness and diffusion properties of the
keystream output.

Beyond the baseline 128-bit security configuration, we
demonstrated the scalability of the hybrid register structure by
proposing larger variants supporting 192- and 256-bit keys,
with even larger key sizes being possible by specifying a
larger hybrid register or smaller IV. This flexibility, inher-
ent to Composite Mersenne Product Registers, enables the
construction of stream ciphers with varying security levels
without significantly altering the core architecture or incur-
ring prohibitive and unpredictable increases in hardware cost.
Overall, the hybrid register stream cipher demonstrates that
integrating NLFSRs and CMPRs can yield AEAD-capable
stream ciphers that are both secure and hardware-efficient.
Future work in this realm includes analyzing the vulnerability
of the hybrid register stream cipher to side channel analysis,
exploring the viability of the hybrid register construction for
other cryptosystems such as MACs, hash functions, and block
ciphers.
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