

A Side-Channel Attack-Resilient Single-Slope ADC for Image Sensor Applications

Ceyda Körpe*, Kareem Ahmad†, Ece Öztürk*, Kanishk Tihaiya†, Ryanh Tran†, Hyunsoo Yang‡, Junbin Yang‡, Günhan Dündar*, Vincent John Mooney III†‡, and Kemal Ozanoglu*

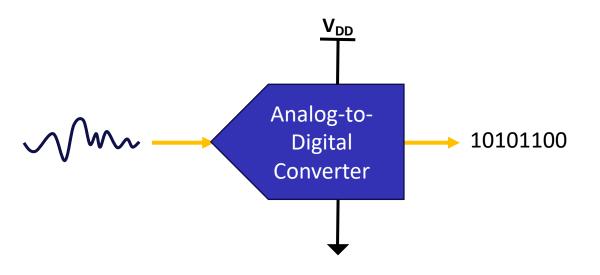
*Department of Electrical and Electronics Engineering, Boğaziçi University, Istanbul, Turkiye †School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, USA ‡School of Computer Science, Georgia Institute of Technology, Atlanta, USA

ceyda.korpe@std.bogazici.edu.tr

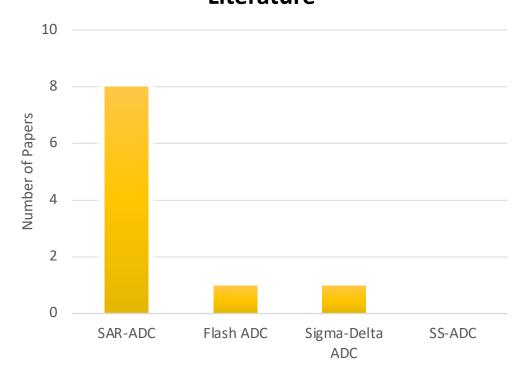
8 July, 2025

Outline

- Introduction & Motivation
- Background
- Threat Model
- SAR vs SS-ADC in Power Side-Channel Attacks
- Design & Simulation Setup
- Analog Leakage Sources
- Power Trace Behavior
- CNN-Based Attack Methodology
- Proposed Countermeasure
- Experimental Results
- Conclusion
- Future Work



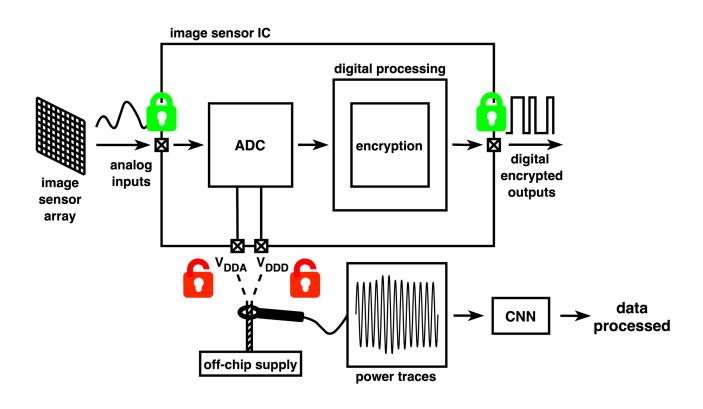
Introduction & Motivation



ADC Operation

Power Side-Channel Attack Focus in Literature

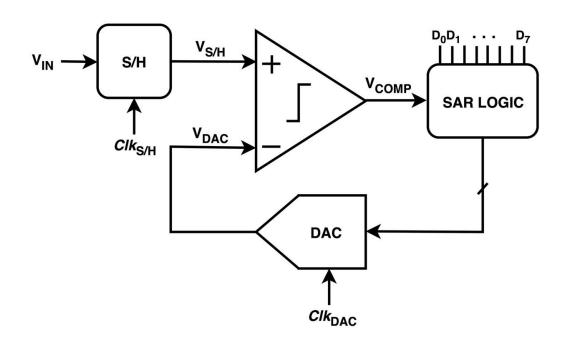
^{*}Data based on IEEE Xplore literature review.



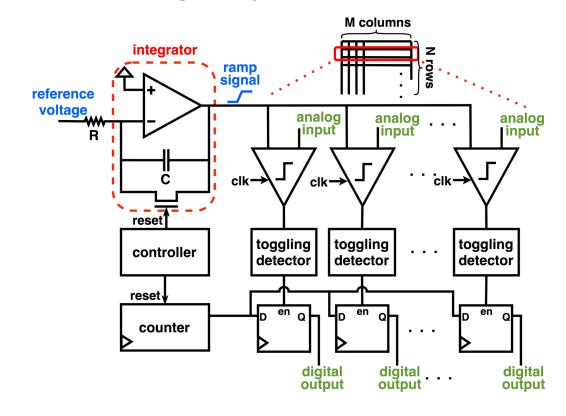
Threat Model

- Even with encrypted I/Os, power lines remain vulnerable.
- External probing of supply current can reveal internal activity.
- Our countermeasure targets leakage from the comparator and preamplifier.

Power side-channel attack for a typical image-sensing application

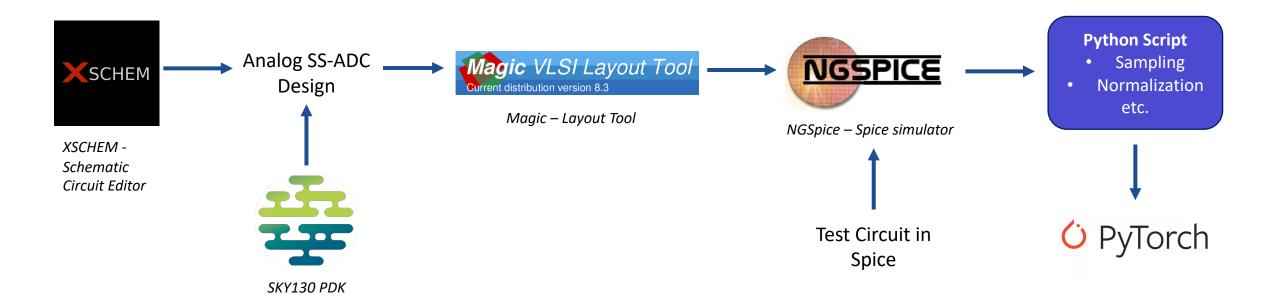


SAR vs SS-ADC in Power Side-Channel Attacks

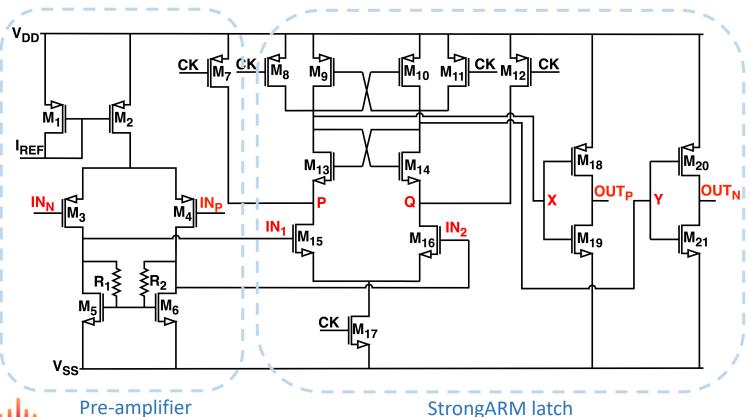


SAR ADC Architecture

Single-Slope ADC Architecture

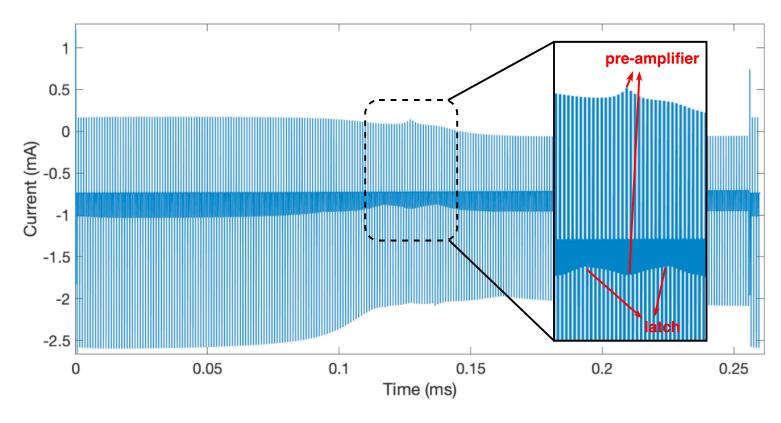


Design & Simulation Setup



Analog Leakage Sources

Comparator Schematic


- Preamplifier: responds to ramp input & kickback noise
- StrongARM latch: exhibits input-dependent decision delay
- Output buffer: minimal leakage impact

Power Trace Behavior

Analog Block Power Trace – The comparator toggles around 120µs

CNN-Based Attack Methodology

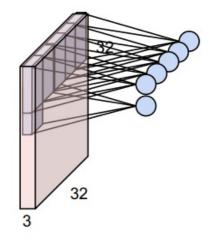
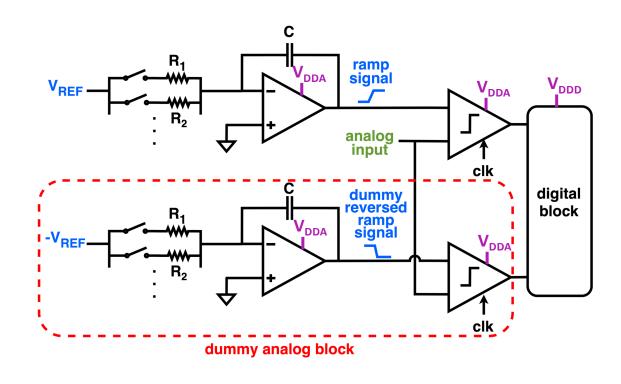


TABLE I - CNN Architecture

	Conv1	Pool1	Conv2	Pool2	FC1	FC2	FC3	Out
BW	5,5,1 ^a	5,5 ^b	5,3,1 ^a	$2,2^{\mathrm{b}}$	100	100	100	2,SX ^c
SE	5,5,1 ^a	5,5 ^b	5,3,1 ^a	2,2 ^b	100	100	100	1

^aConvolution Parameters are Size, Channels, Stride


^bPooling Layers are MaxPooling with parameters Size, Stride

^cSX refers to Softmax

Proposed Countermeasure

Block Diagram of Proposed Protected SS ADC

- Dummy analog block adds signalindependent activity
- Ramp slope changes 4× per conversion
- 32 random slope combinations via PRNG

Experimental Results

TABLE II: CNN PSA Performance on Unprotected Analog ADC

Bit		Accurac	Average	
	Train	Test	Test (PL)	Training Time
7	100.%	99.8%	96.7%	15 seconds
6	99.4%	99.2%	77.8%	10 seconds
5	96.8%	96.3%	79.9%	18 seconds
4	99.1%	99.1%	72.3%	17 seconds
3	97.8%	98.1%	64.3%	21 seconds
2	93.1%	93.6%	57.1%	27 seconds
1	93.4%	94.0%	50.5%	28 seconds
0	90.3%	90.1%	54.7%	29 seconds
BW	73.1%	73.5%	4.4%	164 seconds
SE	94.2%	71.2%	1.2%	99 seconds

TABLE III: CNN PSA Performance on Protected Analog ADC

Second values shows accuracy of the CNN trained on unprotected traces.

Bit	Accuracy						
	TT	SF	Post-Layout				
7	99.1% (64%)	93.4% (53%)	95.1% (62%)				
6	98.0% (53%)	69.1% (60%)	73.7% (62%)				
5	93.5% (54%)	58.8% (53%)	57.8% (53%)				
4	80.6% (51%)	60.8% (51%)	49.1% (51%)				
3	69.4% (51%)	49.8% (50%)	51.2% (52%)				
2	64.1% (50%)	51.4% (50%)	50.7% (50%)				
1	55.4% (50%)	49.0% (50%)	52.3% (51%)				
0	51.9% (49%)	50.8% (50%)	49.7% (55%)				
BW	9.4% (0.6%)	1.47% (0.5%)	1.36% (0.7%)				
SE	17.1% (0.3%)	0.00% (0.2%)	4.69% (0.0%)				

Conclusion

- We systematically analyzed PSA vulnerabilities in SS ADCs, focusing on comparator, preamplifier, and ramp-related leakages.
- CNN-based attacks achieved >90% accuracy on all bits in unprotected designs.
- We proposed a protection scheme using a dual-ramp generator with randomized slopes and dummy comparators.
- The approach significantly reduces CNN classification accuracy, especially for lower bits.
- Importantly, in the SF corner, the attack accuracy remains close to random, demonstrating robustness under process variations.

Future Work

- Refine protection strategies to improve resilience for MSBs.
- Extend PSA analysis to digital control logic in SS ADCs. (ongoing in a parallel study)
- Develop unified countermeasures combining analog and digital leakage models.
- Explore area, power, and performance trade-offs.

References

- B. Razavi, "The StrongARM Latch," IEEE Solid-State Circuits Magazine, vol. 7, no. 2, pp. 12–17, 2015. doi:10.1109/MSSC.2015.2418155
- Google / SkyWater Technology Foundry, "SkyWater 130nm PDK," 2020. [Online]. Available: https://skywater-pdk.readthedocs.io/
- C. Wolf et al., "Yosys Open Synthesis Suite," 2013. [Online]. Available: https://yosyshq.net/yosys/
- The NGSpice Project, "NGSpice Circuit Simulator," 2025. [Online]. Available: http://ngspice.sourceforge.net/
- J. Ousterhout, "Magic VLSI Layout Tool," 2025. [Online]. Available: http://opencircuitdesign.com/magic/
- PyTorch Developers, "PyTorch: An Open Source Machine Learning Framework," 2025. [Online]. Available: https://pytorch.org/
- T. Jeong et al., "S2ADC: A 12-bit, 1.25MS/s Secure SAR ADC with Power Side-Channel Attack Resistance," in Proc. IEEE CICC, 2020, pp. 1–4. doi:10.1109/CICC48029.2020.9075919
- L. Fang et al., "LSB-Reused Protection Technique in Secure SAR ADC against Power Side-Channel Attack," in Proc. AsianHOST, 2022, pp. 1–6. doi:10.1109/AsianHOST56390.2022.10022192
- R. Chen et al., "RaM-SAR: A Low Energy and Area Overhead, 11.3 fJ/conv.-step 12b 25MS/s Secure Random-Mapping SAR ADC," in Proc. IEEE VLSI Symposium, 2022, pp. 94–95.
- S. N. Karanth et al., "Randomization Approaches for Secure SAR ADC Design Resilient Against Power Side-Channel Attacks," in Proc. IEEE HOST, 2024, pp. 282–292. doi:10.1109/HOST55342.2024.10545378
- T. Miki et al., "A Random Interrupt Dithering SAR Technique for Secure ADC Against Reference-Charge Side-Channel Attack," IEEE TCAS-II: Express Briefs, vol. 67, no. 1, pp. 14–18, 2020. doi:10.1109/TCSII.2019.2901534

