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Introduction and Motivation: FSRs and Crypto

• Lightweight cryptography is crucial for hardware-constrained 
environments such as IoT and embedded systems

• Hardware-based cryptography gaining traction with the introduction 
of trusted platform modules (TPMs) on consumer workstations

• Common primitives in hardware-based cryptography include two 
classes of feedback registers: linear feedback shift registers (LFSRs) 
and nonlinear feedback shift registers (NLFSRs)

• LFSRs and NLFSRs, both inherently lightweight in hardware, can 
generate pseudorandom sequences with high period 

• NLFSRs are not scalable: the largest full-period NLFSR is 24 bits [1]
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Introduction and Motivation: AEAD

• AEAD stands for Authenticated Encryption with Associated Data
• In most practical situations, plaintext “associated data” ¬ such as 

an IP address ¬ needs to be sent together with encrypted data 
• Authentication then needs to be applied simultaneously to the 

encrypted as well as the plaintext data so that an adversary may 
not have any reasonable chance to alter any of the data 
undetected
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Introduction and Motivation: CMPRs

• This work proposes an authenticated and scalable stream cipher 
design based on Composite Mersenne Product Registers 
(CMPRs) [2]; the new design is named the Hybrid Register 
Stream Cipher

• CMPRs are a form of feedback register with guaranteed 
periodicity, nonlinearity, and scalability

• We also compare our work to other feedback register-based 
schemes, such as TRIVIUM [3], Espresso [4], and Grain-
128AEADv2 [5]

[2] D. Gordon et al., “Scalable Nonlinear Sequence Generation using Composite Mersenne Product Registers,”
     IACR Communications in Cryptology, vol. 1, no. 4, pp. 1-77, Jan. 2025, doi: https://doi.org/10.62056/a3tx11zn4.
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Background: Mersenne Product Registers
• Let A[t] denote the current state of a feedback register. The next state, A[t+1], is 

given by A[t+1] = f (A[t])
• f  can be a linear or nonlinear function of the current state
• This work uses Mersenne Product Registers (MPRs) [2]
• An MPR is a feedback register with the restriction that the register size must be a 

Mersenne exponent, e.g., a number n  such that 2n – 1 is prime
• For an n-bit MPR, the state update is given by A[t+1] = U(x)A[t] mod P(x)

• U(x): update polynomial, degree n – 1, U(x) ≠ 0, 1
• P(x): feedback polynomial, degree n

• P(x) must be a primitive polynomial for an n -bit MPR to be full-period (period of 
2n – 1)

• MPR example for n = 3 [2, Fig. 3]:
• U(x) = x2 + x + 1
• P(x) = x3 + x2 + 1 8
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Background: Finite Fields Base 2
• Registers composed of n bits can be viewed as polynomials
• The element zero (all register bit values equal to 0) is not part of the 

multiplicative field, therefore the multiplication of U(x) by the current state A[t] 
occurs inside of a finite field (also named Galois field)

• When n  is a Mersenne exponent, 2n – 1 is prime and therefore the n -bit MPR has 
two cycles: one cycle of size one (for the case of zero) and one cycle of size 2n – 
1; this is a known result from field theory [2]
• Note: we start our MPR-based registers with all bits equal to one or a random number

• We have not been able to find the equation A[t+1] = U(x)A[t] mod P(x) in any work 
prior to [2], although it can be argued that this equation follows in a rather 
straightforward fashion from known field theory

• Additional proofs of exponential state size for combined MPRs are available in 
[2] with plenty of references to prior work and results in field theory
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Background: CMPRs
• On their own, MPRs are linear; however, to introduce nonlinearity, several MPRs 

can be combined to form a Compound MPR (CMPR)
• MPRs are combined using chaining functions
• Chaining functions are sets of Boolean equations that determine how the state 

of one MPR affects the state of another MPR [2]
• To instantiate a nonlinear CMPR, the chaining functions must also be nonlinear 

(e.g., include multiplicative terms, i.e., AND gates)
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Background: CMPR state size
• Unlike all know prior NLFSR approaches, CMPRs are straightforward to scale up 

or down while retaining exponential periodicity
• U(x) can be any value other than 0 or 1

• Note: if U(x) = x, the result is a shift register; we argue that a                                                           
Product Register (PR) is a generalization of a Feedback Shift Register (FSR) [2]

• P(x) only need be shown to be irreducible in order to be primitive due to the fact that, for a 
polynomial of Mersenne exponent degree, irreducibility implies primitivity [2]
• For example, x2 + x = x(x + 1) is reducible but x2 + x + 1 is irreducible; there is no way to give two polynomials 

whose multiplication results in x2 + x + 1; algorithms to deduce irreducibility are well-known
• The fundamental issue is that if n is not a Mersenne exponent this implies that 2n -1 is not prime, and then 

there exist cases where using an irreducible polynomial for P(x) does not result in full period

• Altering the size of a CMPR requires adding or removing MPRs
• For compatibility with the periodicity and linear complexity math from [2], the CMPR 

construction requires the use of unique Mersenne exponents
• => Using multiple MPRs of the same size is prohibited

• Periodicity of the CMPR is guaranteed even when scaling up or down. For an n-
bit CMPR, the worst-case expected period size is 0.45 * 2n [2] 13
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Design Overview: Architecture
• Architecture:

• 256-bit hybrid register: 128-bit NLFSR from Grain-128AEADv2 [5] connected to a 128-bit 
CMPR

• Main Components:
• Keystream Generator: 256-bit hybrid register
• Authentication Generator: 64-bit accumulator, 64-bit shift register

• Note that the Chaining Period Theorem (Theorem 1 of [2]) still applies
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Design Overview: Architecture
MPR Size, i Update Polynomial, Ui(x) Feedback Polynomial, Pi(x)

61 bits U61(x) = x3 + 1 P61(x) = x61 + x44 + x19 + x15 + 1

31 bits U31(x) = x2 + 1 P31(x) = x31 + x3 + x2 + x + 1

19 bits U19(x) = x4 + x2 P19(x) = x19 + x5 + x2 + x + 1

7 bits U7(x) = x4 + x P7(x) = x7 + x + 1

5 bits U5(x) = x3 P5(x) = x5 + x + 1

3 bits U3(x) = x2 P3(x) = x3 + x + 1

2 bits U2(x) = x + 1 P2(x) = x2 + x + 1

MPR Specifications for the 128-bit CMPR used in the Hybrid Register Construction

• For a given MPR, the choice of U(x) and P(x) is flexible
• For U(x), any U(x) ≠ 0,1 is valid
• For P(x), the polynomial should be irreducible to ensure the MPR has full period
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Design Overview: Architecture
• Chaining Functions:

• Depicted below, (C1, …, C7) are sets of nonlinear Boolean equations constructed with XOR 
gates of at most 4 inputs along with AND gates of at most 4 inputs

• Our design uses a chaining density of 40%, meaning all MPRs in the 128-bit CMPR receive 
chaining functions to approximately 40% of their bits
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Design Overview: Architecture

• Parameter Sizes:
• (Input) Key: 128 bits -> equal to initial state of the NLFSR
• (Input) Initialization Vector (IV): 96 bits -> equal to initial state of the 96 MSBs of the CMPR
• (Input) Plaintext Message: Arbitrary length
• (Output) Ciphertext: Equal to message length
• (Output) Authentication Tag: 64 bits

• Restrictions:
• A maximum of 281 keystream bits can be generated from a single (key, IV) pair
• This restriction is borrowed from Grain-128AEADv2 [5], since our work uses the same 

NLFSR
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Design Overview: Operation

• Initialization:
• Keystream Generator Initialization: Hybrid register is clocked 128 times to sufficiently 

randomize its state
• Authentication Generator Initialization: Hybrid register is clocked an additional 128 

times; accumulator and shift register are populated with keystream generator bits

• Keystream and Tag Generation:
• After initialization, keystream bits are generated by computing the XOR of bits 0, 3, and 7 of 

the hybrid register for each post-initialization clock cycle
• For even clock cycles, the keystream bit is used for encryption
• For odd clock cycles, the keystream bit is used for authentication
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Statistical Testing and Security Analysis
• Statistical Testing:

• We perform statistical testing of ciphertexts on two fronts: (i) bit contribution tests [10] to 
verify random relationship between stream cipher inputs and outputs, and (ii) NIST 
statistical test suite [11] to verify ciphertexts do not exhibit hidden statistical 
weaknesses

• Security Analysis:
• Security analysis of CMPRs [2] indicates that CMPRs are resilient against algebraic 

attacks, cube attacks (and distinguishers), correlation attacks, and linear 
cryptanalysis, provided the CMPR is well-designed

• A "well-designed" CMPR should: (i) incorporate nonlinear chaining functions, (ii) ensure 
that chaining functions do not skip over any MPRs (chaining functions from a given MPR 
should connect to the next smallest MPR in the design), and (iii) ensure that at least two 
MPRs not containing tweakable inputs (key, IV) are present before the MPR from which the 
keystream is extracted

• Our hybrid register design follows aforementioned design guidelines (i)-(iii)
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Hardware Implementation Results

• ASIC hardware implementation performed using NCSU FreePDK45 process 
(45nm) [6]

• Synthesis: Synopsys DesignCompiler [7]
• Auto Place & Route (APR): Cadence Innovus [8]
• Layout: Cadence Virtuoso [9]
• Hardware implementation and comparison performed for Hybrid Register 

Stream Cipher, TRIVIUM, Espresso, and Grain-128AEADv2
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Hardware Implementation Results

Design Authentication Security Latency* (Clock Cycles)

Hybrid Register Stream 
Cipher

Yes 128 bits
(i.e., 2128)

128

Grain-128AEADv2 Yes 128 bits 512

Espresso No 128 bits 256

TRIVIUM No 80 bits 1152

• We perform comparisons to authentication-capable and non-
authenticating designs separately

• To compare the hybrid register stream cipher to non-
authenticating designs, we do not include the authentication 
generator as part of the hardware implementation process

*Latency: # of clock 
cycles prior to 
generation of 
encrypted bits
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Hardware Implementation Results

Design Area (µm^2) Power (mW) PDP* (pJ)

Hybrid Register Stream 
Cipher

4402 0.981 3.27

Espresso 5894 1.949 6.49

TRIVIUM 5627 3.0226 10.08

Hardware Implementation Comparison (Non-Authenticating Designs)

Design Area (µm^2) Power (mW) PDP* (pJ)

Hybrid Register Stream 
Cipher

5650 1.313 4.37

Grain-128AEADv2 6401 2.936 9.78

Hardware Implementation Comparison (Authentication-Capable Designs)

*PDP: power-delay product, equal to power times clock period
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Hardware Implementation Results: Summary

• The Hybrid Register Stream cipher utilizes lower area and consumes less energy 
than TRIVIUM, Espresso, and Grain-128AEADv2

• 11.7% lower area and 55% lower power than Grain-128AEADv2
• 21.8% lower area and 67.5% lower power than TRIVIUM
• 25.3% lower area and 49.7% lower power than Espresso
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Scalability

• The Hybrid Register Stream cipher can be designed with more bit if (i) a larger 
key is desired, (ii) a larger IV is desired, or (iii) both a larger key and a larger IV are 
desired

• Many, many bit sizes can be designed with Mersenne exponents
• To showcase scalability, we designed two additional sizes of Hybrid Register 

Stream Ciphers: 320 bits and 384 bits
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CMPR Specification for 384-bit Hybrid 
Register Stream Cipher 

MPR Size, i Update Polynomial, Ui(x) Feedback Polynomial, Pi(x)

107 bits U107(x) = x7 P107(x) = x107 + x59 + x54 + x39 + 1

89 bits U89(x) = x7 + x6 P89(x) = x89 + x38 + 1

31 bits U31(x) = x3 + 1 P31(x) = x31 + x3 + 1

17 bits U17(x) = x4 P17(x) = x17 + x3 + 1

7 bits U7(x) = x5 + x P7(x) = x7 + x + 1

3 bits U3(x) = x2 P3(x) = x3 + x + 1

2 bits U2(x) = x + 1 P2(x) = x2 + x + 1

MPR Specifications for the 256-bit CMPR used in the 384-bit Hybrid Register Construction
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NON-AEAD ASIC HARDWARE IMPLEMENTATION RESULTS FOR THE

Design Area (µm2) Power (mW) PDP (pJ)

320-bit Hybrid Register 6453 1.435 4.78

384-bit Hybrid Register 8367 1.511 5.03

TABLE VIII

LARGER HYBRID REGISTER STREAM CIPHER VARIANTS
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Future Work

• Possible avenues for future work include the following:
• Evaluating use of the hybrid register in other types of cryptosystems such as hash 

functions, message authentication codes (MACs), and block ciphers
• Side channel-secure implementations of the hybrid register primitive
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