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Problem Statement

* Most power side channel attacks on ADC’s focus on SAR and
other ADCs

* Single Slope ADC (SS ADC) security is under-explored

* SS ADCs are common in image sensors, which are commonly
used in security applications
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Threat Model
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Single Slope ADC Operation
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Research Questions

* Does the digital portion of a Single-Slope ADC leak information
about the sensed values through the power side channel?

* Can information leakage from the digital portion, through the power
side channel be reduced?

* Prior work [5] explored vulnerability of the analog circuitry via the
power side channel

[5] C. Korpe, K. Ahmad, E. Oztiirk, K. Tihaiya, R. Tran, H. Yang, J. Yang, G. Dundar, V. J. Mooney lll, and K. Ozanoglu, “A Side-Channel
Attack-Resilient Single-Slope ADC for Image Sensor Applications,” in Proceedings of the 2025 International Conference on

Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD), 2025.
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Methodology: Sample Size

* We attack SPICE simulations of a single pixel measurement

* Key idea:
* if a single pixel cannot be protected, then the protection of multiple pixels
will likely be problematic

* if a single pixel can be protected, we can then proceed with perhaps similar
techniques to protect large simultaneous samples of a realistic pixel array

size
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Methodology: Tool Flow
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CNN Architecture

TABLE I: CNN Architecture

Convl | Pooll Conv2 | Pool2 | FC1 | FC2 | FC3 Out
BW | 5512 | 55 | 53,12 | 22P 100 | 100 | 100 | 2,SX¢
SE | 5,512 | 5,5° | 53,12 | 2.2P 100 | 100 | 100 1

aConvolution Parameters are Size, Channels, Stride

PPooling Layers are MaxPooling with parameters Size, Stride
“SX refers to Softmax
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CNN Architecture: Bitwise

8 CNNSs, one per bit of digital output

1
P(Correct Guess) = 5 = 50%
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CNN Architecture: Bitwise
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CNN Architecture: Single-Ended

1 CNN predicting entire 8-bit output

1
P = ——= (0.399
(Correct Guess) TG Yo
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CNN Architecture: Single-Ended
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Experiment 1 — Unprotected ADC

* Area of standard cells: 513 nm?2
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Experiment 1 — Leakage

® Curre nt Spikes Obse rved at Diff digital_1px_ss_x:max[30]-digital_lpx_ss_x:max[90]
comparator toggle point

* Increased power
consumption after
comparator toggle point

Fig. 3: Difference between unprotected power traces for input values of 30

and 90.
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Experiment 1 — Leakage
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Experiment 1 — Results

Bit Accuracy
Train | Test (SS) | Test (FS)

7 99.8% 99.0% 99.0%
6 99.5% 99.7% 99.4%
5 99.3% 97.8% 99.2%
4 99.3% 99.0% 99.2%
3 98.9% 97.7% 98.7%
2 98.5% 96.4% 98.0%
1 98.8% 96.2% 97.8%
0 98.7% 97.0% 98.1%

BW | 93.1% 83.9% 89.8%

SE | 96.5% 85.5% 86.8%
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Experiment 2 — Protection Attempt
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Experiment 2 — Leakage
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Experiment 2 — Leakage

* Hamming distance (HD) of register transitions does not match
between true and dummy arrays.

* True Register:
* HD = Hamming weight(value)

* Dummy Register:
« HD € [1, Hamming weight (value)]

clk |
ramp > pixel /
true_reg_array 7\ 0 X 4

dummy_reg_array 7% 0 X 1 X 2 X 3 X5 X6 % 7 X 8
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Experiment 2 — Results

Bit Accuracy
Train | Test (SS) | Test (FS)

7 99.0% 98.8% 08.8%
6 99.0% 98.8% 98.9%
5 99.1% 98.9% 98.9%
4 98.9% 98.1% 97.9%
3 98.9% 98.7% 98.7%
2 98.1% 97.7% 97.9%
1 98.3% 98.1% 98.2%
0 98.6% 98.3% 98.4%

BW | 90.4% 88.0% 88.3%

SE | 98.8% 96.1% 96.3%

35



Experiment 2 — Results

Bit Accuracy
Train | Test (SS) | Test (FS)

7 99.0% 98.8% 08.8%
6 99.0% 98.8% 98.9%
5 99.1% 98.9% 98.9%
4 98.9% 98.1% 97.9%
3 98.9% 98.7% 98.7%
2 98.1% 97.7% 97.9%
1 98.3% 98.1% 98.2%
0 98.6% 98.3% 98.4%

BW | 90.4% 88.0% 88.3%

SE | 98.8% 96.1% 96.3%

36



Experiment 2 — Results

Bit Accuracy
Train | Test (SS) | Test (FS)

7 99.0% 98.8% 08.8%
6 99.0% 98.8% 98.9%
5 99.1% 98.9% 98.9%
4 98.9% 98.1% 97.9%
3 98.9% 98.7% 98.7%
2 98.1% 97.7% 97.9%
1 98.3% 98.1% 98.2%
0 98.6% 98.3% 98.4%

BW | 90.4% 88.0% 88.3%

SE | 98.8% 96.1% 96.3%

37



Table of Contents

* Problem Statement

* Threat Model
* Single Slope ADC Operation
 Research Questions
* Methodology
* CNN Architecture
* Experiments [1-4]
* Experiment 1
* Experiment 2

* Experiment4
* Experiment 3

e Conclusion

38



Experiment 4 — Randomized Protection

 Area of Standard Cells:
1956 nm?
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protection in prior work [1]
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Experiment 4 — Results

Bit Accuracy
Train | Test (SS) | Test (FS)

7 94.6% 56.2% 57.0%
6 97.0% 55.9% 61.4%
5 96.5% 57.8% 65.5%
4 95.8% 54.6% 63.2%
3 95.3% 52.5% 50.9%
2 93.7% 53.3% 54.1%
1 94.4% 49.9% 49.6%
0 98.5% 46.3% 39.7%

BW | 85.8% 0.64% 0.79%

SE | 97.3% 0.10% 0.18%
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Experiment 3 — Masked Protection

* Goal: dummy register
transitions should have
HD from zero as with true
register transitions

e Add second clock to reset
dummy register between
writes

 Area of Standard Cells:
1440 nm?
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Experiment 3 — Masked Protection

* Goal: dummy register
transitions should have
HD from zero as with true
register transitions

e Add second clock to reset
dummy register between
writes
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Experiment 3 — Leakage

* Power (energy consump-
tion) patterns are not
consistent across
process corners
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Experiment 3 — Results

Bit Accuracy
Train | Test (SS) | Test (FS)

7 99.6% 50.6% 4'7.4%
6 99.3% 50.7% 48.7%
5 98.9% 50.2% 51.0%
4 96.9% 50.2% 51.7%
3 98.1% 50.4% 51.7%
2 96.8% 50.3% 52.6%
1 97.7% 51.4% 53.4%
0 97.1% 50.1% 51.2%

BW | 85.3% 0.42% 0.45%

SE | 92.9% 0.20% 0.49%
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Summary: Table 6 (original)

Unprotected Failed Masked | Randomized

Bit 7 99.0% 98.8% 47.4% 57.0%
Bit 6 99.4% 98.9% 48.7% 61.4%
Bit 5 99.2% 98.9% 51.0% 65.5%
Bit 4 99.2% 97.9% 51.7% 63.2%
Bit 3 98.7% 98.7% 51.7% 50.9%
Bit 2 98.0% 97.9% 52.6% 54.1%
Bit 1 97.8% 98.2% 53.4% 49.6%
Bit 0 98.1% 98.4% 51.2% 39.7%
BW 89.8% 88.3% 0.45% 0.79%
SE 86.8% 96.3% 0.49% 0.18%

Area 513 nm? 994nm* | 1440 nm? 1956 nm?
100% 190% 280% 380%
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Summary: Table 6 (amended)

Unprotected Failed Masked | Randomized

Bit 7 99.0% 98.8% 47.4% 57.0%
Bit 6 99.4% 98.9% 48.7% 61.4%
Bit 5 99.2% 98.9% 51.0% 65.5%
Bit 4 99.2% 97.9% 51.7% 63.2%
Bit 3 98.7% 98.7% 51.7% 50.9%
Bit 2 98.0% 97.9% 52.6% 54.1%
Bit 1 97.8% 98.2% 53.4% 49.6%
Bit O 98.1% 98.4% 51.2% 39.7%
BW 89.8% 88.3% 0.45% 0.79%
SE 86.8% 96.3% 0.49% 0.18%

Area 996 nm” 1477 nm* | 1440 nm* 2439 nm”
100% 148% 145% 245%
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Digital Area Estimates for 50 pixel array

* Counter logic is shared

* Independent sampling logic

Unprotected Failed Masked Randomized
Area 24571 nm? 48626 nm? 96738 nm? 46788 nm?
100% 198% 294% 190%
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Future Work

* Post-layout/PNR simulations including parasitics
* Markov-based process variations in addition to process corners

* Attack using both SS ADC power traces (analog and digital traces)
* Power overhead cost calculation for the protected system including both
analog and digital circuitry

* Multi-pixel attacks
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