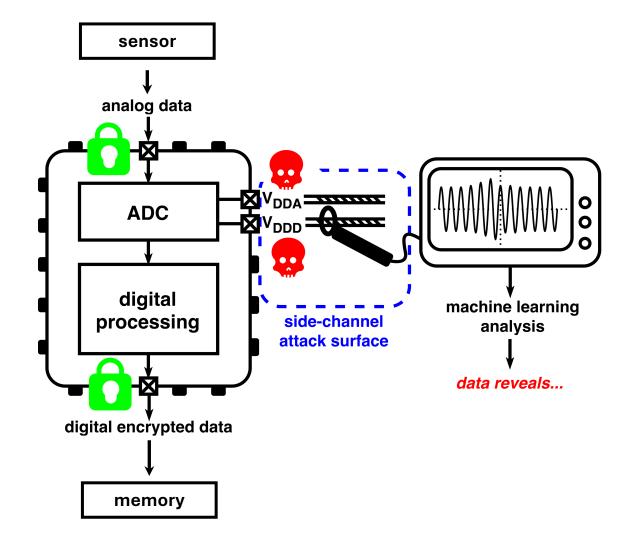
Protection of the Digital Circuitry of a Single Slope ADC against Side Channel Attacks

Kareem Ahmad¹, Ece Öztürk², Ceyda Körpe²,
Hyunsoo Yang³, Junbin Yang³, Kanishk Tihaiya¹, Ryanh Tran¹,
Günhan Dündar², Vincent John Mooney III^{1,3} and Kemal Ozanoglu²

¹School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, USA
 ²Department of Electrical and Electronics Engineering, Boğaziçi University, Istanbul, Turkiye
 ³School of Computer Science, Georgia Institute of Technology, Atlanta, USA

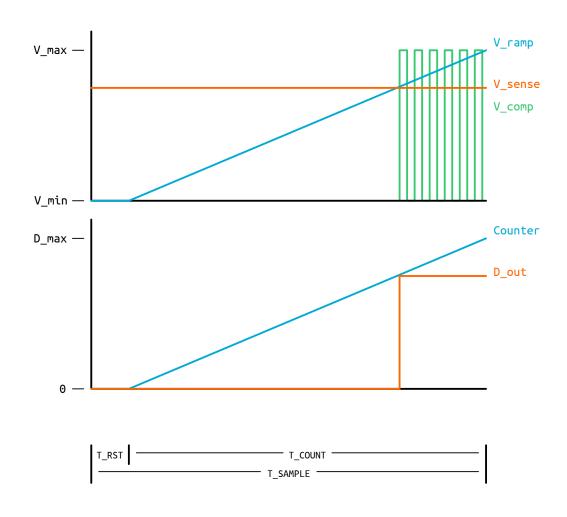
- Problem Statement
- Threat Model
- Single Slope ADC Operation
- Research Questions
- Methodology
- CNN Architecture
- Experiments [1-4]
- Conclusion

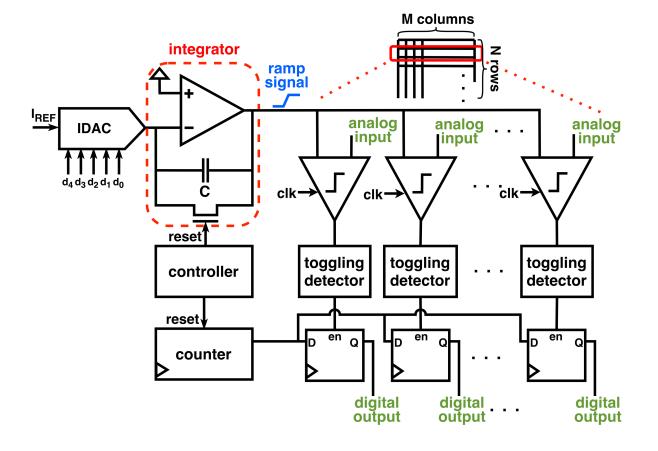
- Problem Statement
- Threat Model
- Single Slope ADC Operation
- Research Questions
- Methodology
- CNN Architecture
- Experiments [1-4]
- Conclusion


Problem Statement

- Most power side channel attacks on ADC's focus on SAR and other ADCs
- Single Slope ADC (SS ADC) security is under-explored
- SS ADCs are common in image sensors, which are commonly used in security applications

- Problem Statement
- Threat Model
- Single Slope ADC Operation
- Research Questions
- Methodology
- CNN Architecture
- Experiments [1-4]
- Conclusion


Threat Model


- Attacker has access to power pins
- Attacker does not have nondestructive access to internal analog sensor pins
- Attacker does not have access to unencrypted digital outputs

- Problem Statement
- Threat Model
- Single Slope ADC Operation
- Research Questions
- Methodology
- CNN Architecture
- Experiments [1-4]
- Conclusion

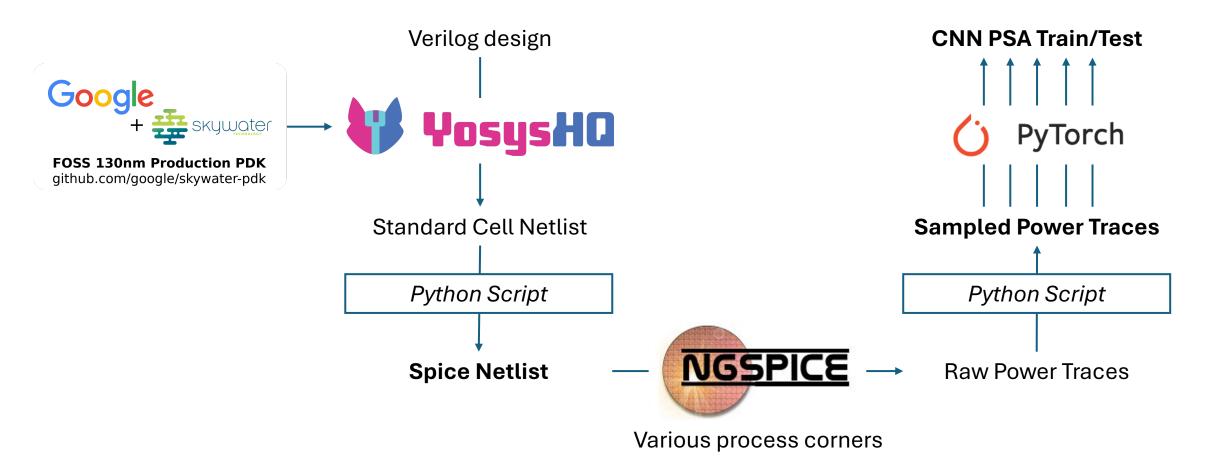
Single Slope ADC Operation

- Problem Statement
- Threat Model
- Single Slope ADC Operation
- Research Questions
- Methodology
- CNN Architecture
- Experiments [1-4]
- Conclusion

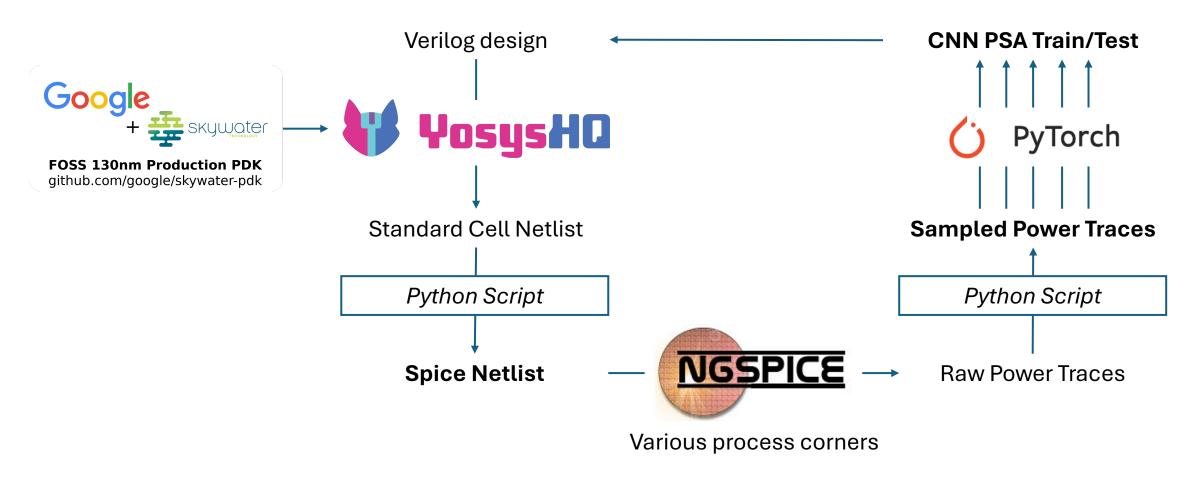
Research Questions

- Does the digital portion of a Single-Slope ADC leak information about the sensed values through the power side channel?
- Can information leakage from the digital portion, through the power side channel be reduced?

 Prior work [5] explored vulnerability of the analog circuitry via the power side channel


[5] C. Körpe, K. Ahmad, E. Öztürk, K. Tihaiya, R. Tran, H. Yang, J. Yang, G. Dündar, V. J. Mooney III, and K. Ozanoglu, "A Side-Channel Attack-Resilient Single-Slope ADC for Image Sensor Applications," in Proceedings of the 2025 International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD), 2025.

- Problem Statement
- Threat Model
- Single Slope ADC Operation
- Research Questions
- Methodology
- CNN Architecture
- Experiments [1-4]
- Conclusion


Methodology: Sample Size

- We attack SPICE simulations of a single pixel measurement
- Key idea:
 - if a single pixel cannot be protected, then the protection of multiple pixels will likely be problematic
 - if a single pixel can be protected, we can then proceed with perhaps similar techniques to protect large simultaneous samples of a realistic pixel array size

Methodology: Tool Flow

Methodology: Tool Flow Iteration

- Problem Statement
- Threat Model
- Single Slope ADC Operation
- Research Questions
- Methodology
- CNN Architecture
- Experiments [1-4]
- Conclusion

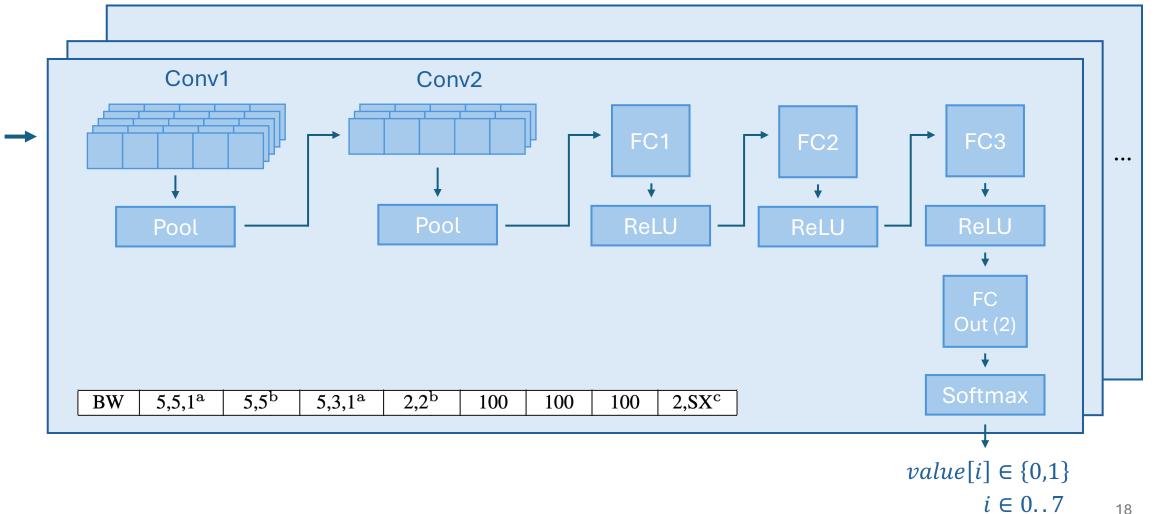
CNN Architecture

TABLE I: CNN Architecture

	Conv1	Pool1	Conv2	Pool2	FC1	FC2	FC3	Out
BW	5,5,1 ^a	5,5 ^b	5,3,1 ^a	2,2 ^b	100	100	100	2,SX ^c
SE	5,5,1 ^a	5,5 ^b	5,3,1 ^a	2,2 ^b	100	100	100	1

^aConvolution Parameters are Size, Channels, Stride

^bPooling Layers are MaxPooling with parameters Size, Stride

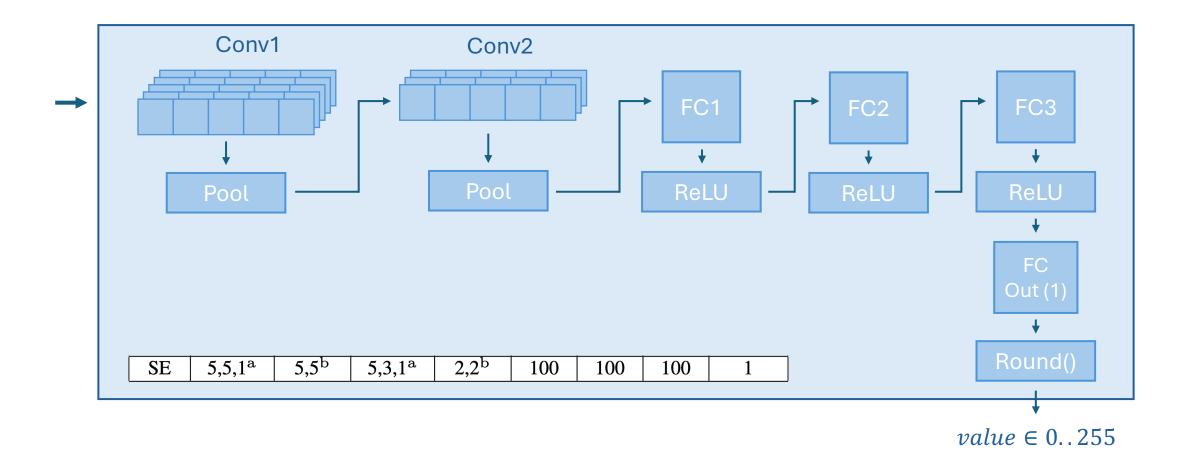

^cSX refers to Softmax

CNN Architecture: Bitwise

8 CNNs, one per bit of digital output

$$P(Correct Guess) = \frac{1}{2} = 50\%$$

CNN Architecture: Bitwise

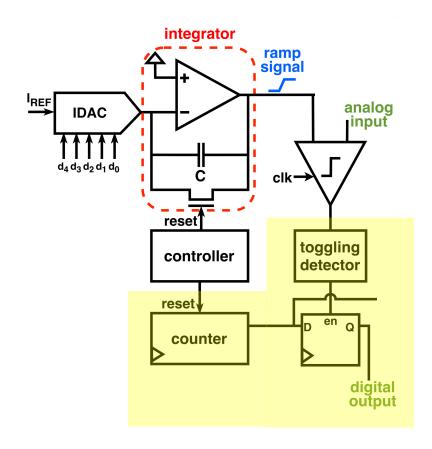


CNN Architecture: Single-Ended

1 CNN predicting entire 8-bit output

$$P(Correct\ Guess) = \frac{1}{256} \approx 0.39\%$$

CNN Architecture: Single-Ended



- Problem Statement
- Threat Model
- Single Slope ADC Operation
- Research Questions
- Methodology
- CNN Architecture
- Experiments [1-4]
 - Experiment 1
 - Experiment 2
 - Experiment 4
 - Experiment 3
- Conclusion

- Problem Statement
- Threat Model
- Single Slope ADC Operation
- Research Questions
- Methodology
- CNN Architecture
- Experiments [1-4]
 - Experiment 1
 - Experiment 2
 - Experiment 4
 - Experiment 3
- Conclusion

Experiment 1 – Unprotected ADC

- Area of standard cells: 513 nm²
- Train Dataset:
 - 256 traces @ FF corner
- Test Datasets:
 - 256 traces @ FS Corner
 - 256 traces @ SS Corner

Experiment 1 – Leakage

 Current spikes observed at comparator toggle point

 Increased power consumption after comparator toggle point

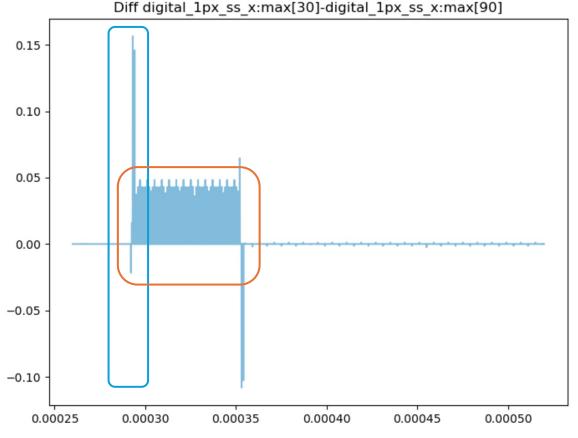
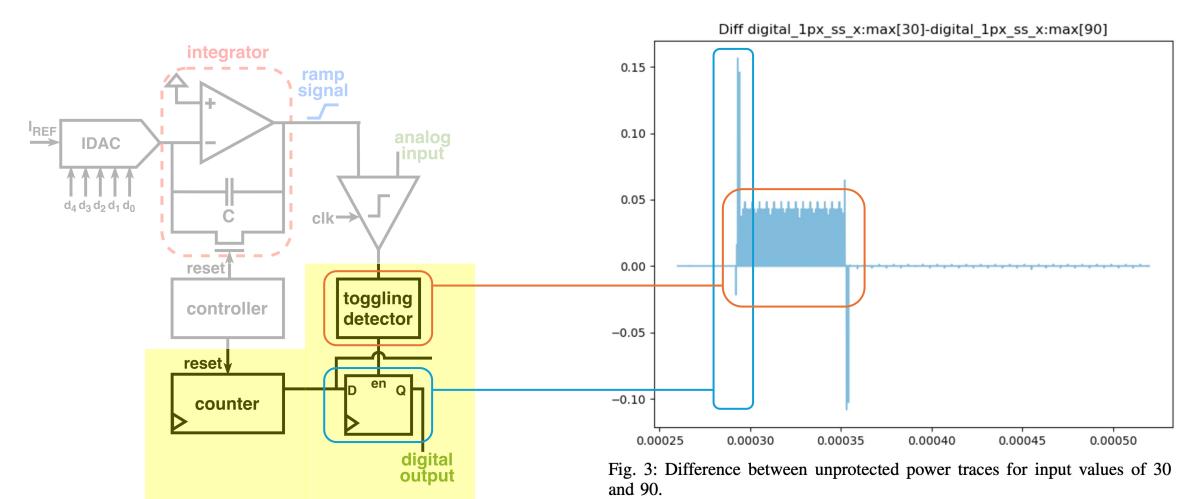



Fig. 3: Difference between unprotected power traces for input values of 30 and 90.

Experiment 1 – Leakage

Bit	Accuracy				
	Train	Test (SS)	Test (FS)		
7	99.8%	99.0%	99.0%		
6	99.5%	99.7%	99.4%		
5	99.3%	97.8%	99.2%		
4	99.3%	99.0%	99.2%		
3	98.9%	97.7%	98.7%		
2	98.5%	96.4%	98.0%		
1	98.8%	96.2%	97.8%		
0	98.7%	97.0%	98.1%		
BW	93.1%	83.9%	89.8%		
SE	96.5%	85.5%	86.8%		

Bit	Accuracy			
	Train	Test (SS)	Test (FS)	
7	99.8%	99.0%	99.0%	
6	99.5%	99.7%	99.4%	
5	99.3%	97.8%	99.2%	
4	99.3%	99.0%	99.2%	
3	98.9%	97.7%	98.7%	
2	98.5%	96.4%	98.0%	
1	98.8%	96.2%	97.8%	
0	98.7%	97.0%	98.1%	
BW	93.1%	83.9%	89.8%	
SE	96.5%	85.5%	86.8%	

Bit	Accuracy			
	Train	Test (SS)	Test (FS)	
7	99.8%	99.0%	99.0%	
6	99.5%	99.7%	99.4%	
5	99.3%	97.8%	99.2%	
4	99.3%	99.0%	99.2%	
3	98.9%	97.7%	98.7%	
2	98.5%	96.4%	98.0%	
1	98.8%	96.2%	97.8%	
0	98.7%	97.0%	98.1%	
BW	93.1%	83.9%	89.8%	
SE	96.5%	85.5%	86.8%	

Bit	Accuracy				
	Train	Test (SS)	Test (FS)		
7	99.8%	99.0%	99.0%		
6	99.5%	99.7%	99.4%		
5	99.3%	97.8%	99.2%		
4	99.3%	99.0%	99.2%		
3	98.9%	97.7%	98.7%		
2	98.5%	96.4%	98.0%		
1	98.8%	96.2%	97.8%		
0	98.7%	97.0%	98.1%		
BW	93.1%	83.9%	89.8%		
SE	96.5%	85.5%	86.8%		

Bit	Accuracy				
	Train	Test (SS)	Test (FS)		
7	99.8%	99.0%	99.0%		
6	99.5%	99.7%	99.4%		
5	99.3%	97.8%	99.2%		
4	99.3%	99.0%	99.2%		
3	98.9%	97.7%	98.7%		
2	98.5%	96.4%	98.0%		
1	98.8%	96.2%	97.8%		
0	98.7%	97.0%	98.1%		
BW	93.1%	83.9%	89.8%		
SE	96.5%	85.5%	86.8%		

- Problem Statement
- Threat Model
- Single Slope ADC Operation
- Research Questions
- Methodology
- CNN Architecture
- Experiments [1-4]
 - Experiment 1
 - Experiment 2
 - Experiment 4
 - Experiment 3
- Conclusion

Experiment 2 – Protection Attempt

• Area of standard cells: 994 nm² counter Training: dummy TT corner analog block register array Testing: ramp signal • SS, FS corners toggling en register array detector analog dummy input toggling detector

Fig. 4: Initial protection attempt with adding a register array (1) and a dummy toggling detector (2).

Experiment 2 – Leakage

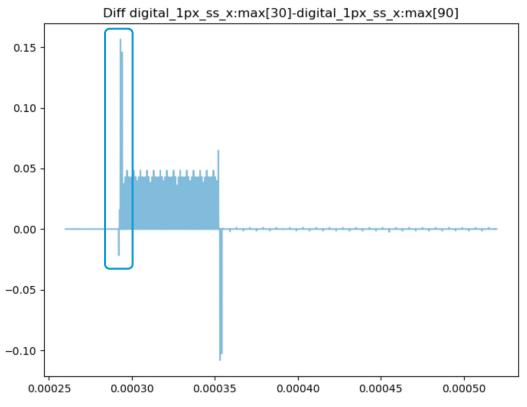


Fig. 3: Difference between unprotected power traces for input values of 30 and 90.

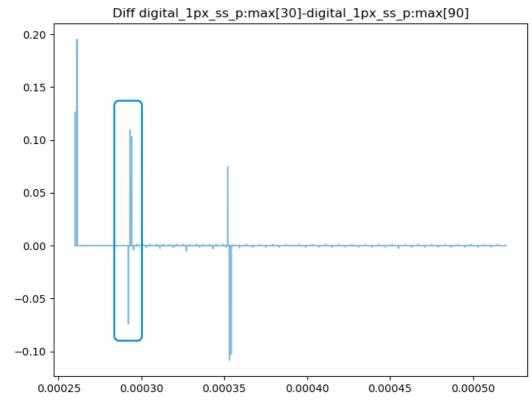
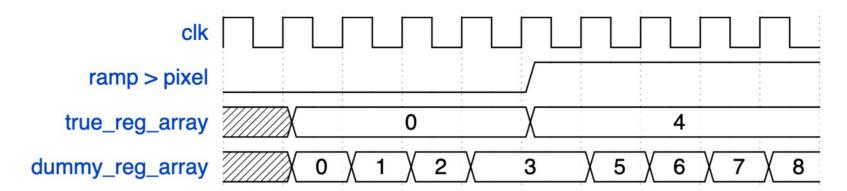



Fig. 5: Difference between power traces for input values of 30 and 90 using first attempt at masking.

Experiment 2 – Leakage

- Hamming distance (HD) of register transitions does not match between true and dummy arrays.
- True Register: 0 → *value*
 - HD = Hamming weight(value)
- Dummy Register: $value 1 \rightarrow value$
 - $HD \in [1, Hamming weight (value)]$

Bit	Accuracy			
	Train	Test (SS)	Test (FS)	
7	99.0%	98.8%	98.8%	
6	99.0%	98.8%	98.9%	
5	99.1%	98.9%	98.9%	
4	98.9%	98.1%	97.9%	
3	98.9%	98.7%	98.7%	
2	98.1%	97.7%	97.9%	
1	98.3%	98.1%	98.2%	
0	98.6%	98.3%	98.4%	
BW	90.4%	88.0%	88.3%	
SE	98.8%	96.1%	96.3%	

Bit	Accuracy			
	Train	Test (SS)	Test (FS)	
7	99.0%	98.8%	98.8%	
6	99.0%	98.8%	98.9%	
5	99.1%	98.9%	98.9%	
4	98.9%	98.1%	97.9%	
3	98.9%	98.7%	98.7%	
2	98.1%	97.7%	97.9%	
1	98.3%	98.1%	98.2%	
0	98.6%	98.3%	98.4%	
BW	90.4%	88.0%	88.3%	
SE	98.8%	96.1%	96.3%	

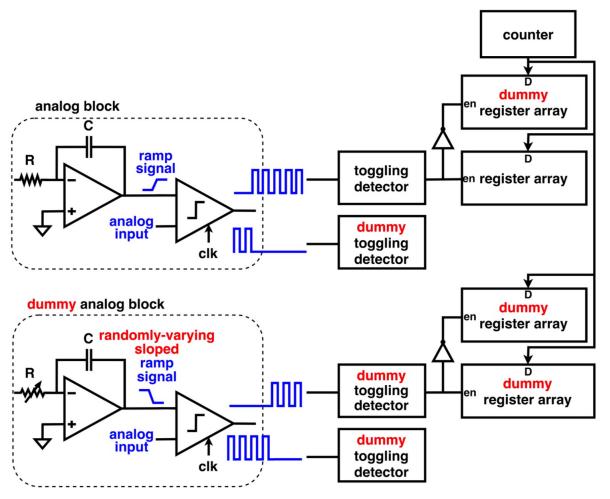

Bit	Accuracy				
	Train	Test (SS)	Test (FS)		
7	99.0%	98.8%	98.8%		
6	99.0%	98.8%	98.9%		
5	99.1%	98.9%	98.9%		
4	98.9%	98.1%	97.9%		
3	98.9%	98.7%	98.7%		
2	98.1%	97.7%	97.9%		
1	98.3%	98.1%	98.2%		
0	98.6%	98.3%	98.4%		
BW	90.4%	88.0%	88.3%		
SE	98.8%	96.1%	96.3%		

Table of Contents

- Problem Statement
- Threat Model
- Single Slope ADC Operation
- Research Questions
- Methodology
- CNN Architecture
- Experiments [1-4]
 - Experiment 1
 - Experiment 2
 - Experiment 4
 - Experiment 3
- Conclusion

Experiment 4 – Randomized Protection

- Area of Standard Cells:
 1956 nm²
- Builds upon analog protection in prior work [1]
- Duplicates logic from experiment 2 and drives the copy with a randomized comparator

Bit	Accuracy				
	Train	Test (SS)	Test (FS)		
7	94.6%	56.2%	57.0%		
6	97.0%	55.9%	61.4%		
5	96.5%	57.8%	65.5%		
4	95.8%	54.6%	63.2%		
3	95.3%	52.5%	50.9%		
2	93.7%	53.3%	54.1%		
1	94.4%	49.9%	49.6%		
0	98.5%	46.3%	39.7%		
BW	85.8%	0.64%	0.79%		
SE	97.3%	0.10%	0.18%		

Bit	Accuracy				
	Train	Test (SS)	Test (FS)		
7	94.6%	56.2%	57.0%		
6	97.0%	55.9%	61.4%		
5	96.5%	57.8%	65.5%		
4	95.8%	54.6%	63.2%		
3	95.3%	52.5%	50.9%		
2	93.7%	53.3%	54.1%		
1	94.4%	49.9%	49.6%		
0	98.5%	46.3%	39.7%		
BW	85.8%	0.64%	0.79%		
SE	97.3%	0.10%	0.18%		

Bit	Accuracy				
	Train	Test (SS)	Test (FS)		
7	94.6%	56.2%	57.0%		
6	97.0%	55.9%	61.4%		
5	96.5%	57.8%	65.5%		
4	95.8%	54.6%	63.2%		
3	95.3%	52.5%	50.9%		
2	93.7%	53.3%	54.1%		
1	94.4%	49.9%	49.6%		
0	98.5%	46.3%	39.7%		
BW	85.8%	0.64%	0.79%		
SE	97.3%	0.10%	0.18%		

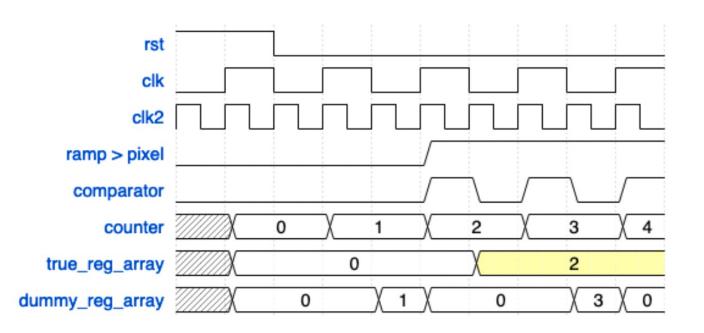
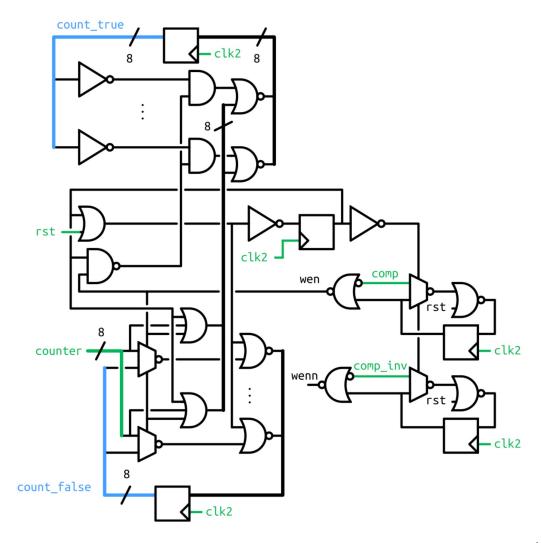
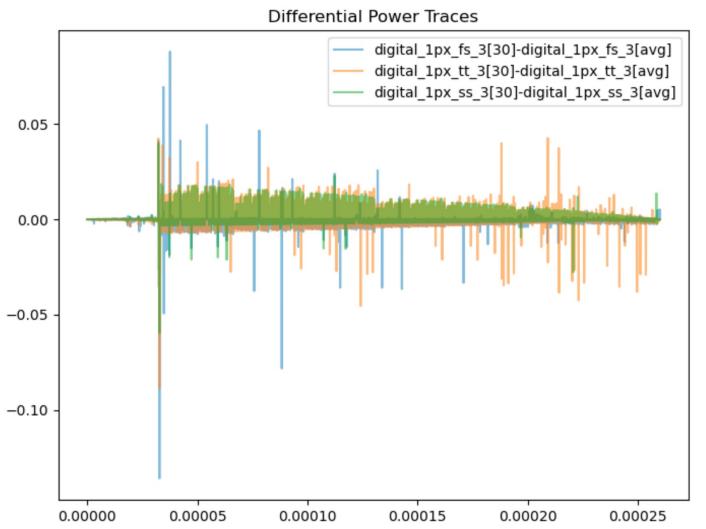

Bit	Accuracy				
	Train	Test (SS)	Test (FS)		
7	94.6%	56.2%	57.0%		
6	97.0%	55.9%	61.4%		
5	96.5%	57.8%	65.5%		
4	95.8%	54.6%	63.2%		
3	95.3%	52.5%	50.9%		
2	93.7%	53.3%	54.1%		
1	94.4%	49.9%	49.6%		
0	98.5%	46.3%	39.7%		
BW	85.8%	0.64%	0.79%		
SE	97.3%	0.10%	0.18%		

Table of Contents

- Problem Statement
- Threat Model
- Single Slope ADC Operation
- Research Questions
- Methodology
- CNN Architecture
- Experiments [1-4]
 - Experiment 1
 - Experiment 2
 - Experiment 4
 - Experiment 3
- Conclusion


Experiment 3 – Masked Protection

- Goal: dummy register transitions should have HD from zero as with true register transitions
- Add second clock to reset dummy register between writes
- Area of Standard Cells:
 1440 nm²


Experiment 3 – Masked Protection

- Goal: dummy register transitions should have HD from zero as with true register transitions
- Add second clock to reset dummy register between writes
- Area of Standard Cells:
 1440 nm²

Experiment 3 – Leakage

 Power (energy consumption) patterns are not consistent across process corners

Bit	Accuracy				
	Train	Test (SS)	Test (FS)		
7	99.6%	50.6%	47.4%		
6	99.3%	50.7%	48.7%		
5	98.9%	50.2%	51.0%		
4	96.9%	50.2%	51.7%		
3	98.1%	50.4%	51.7%		
2	96.8%	50.3%	52.6%		
1	97.7%	51.4%	53.4%		
0	97.1%	50.1%	51.2%		
BW	85.3%	0.42%	0.45%		
SE	92.9%	0.20%	0.49%		

Bit	Accuracy				
	Train	Test (SS)	Test (FS)		
7	99.6%	50.6%	47.4%		
6	99.3%	50.7%	48.7%		
5	98.9%	50.2%	51.0%		
4	96.9%	50.2%	51.7%		
3	98.1%	50.4%	51.7%		
2	96.8%	50.3%	52.6%		
1	97.7%	51.4%	53.4%		
0	97.1%	50.1%	51.2%		
BW	85.3%	0.42%	0.45%		
SE	92.9%	0.20%	0.49%		

Bit	Accuracy				
	Train	Test (SS)	Test (FS)		
7	99.6%	50.6%	47.4%		
6	99.3%	50.7%	48.7%		
5	98.9%	50.2%	51.0%		
4	96.9%	50.2%	51.7%		
3	98.1%	50.4%	51.7%		
2	96.8%	50.3%	52.6%		
1	97.7%	51.4%	53.4%		
0	97.1%	50.1%	51.2%		
BW	85.3%	0.42%	0.45%		
SE	92.9%	0.20%	0.49%		

Table of Contents

- Problem Statement
- Threat Model
- Single Slope ADC Operation
- Research Questions
- Methodology
- CNN Architecture
- Experiments [1-4]
- Conclusion

Summary: Table 6 (original)

	Unprotected	Failed	Masked	Randomized
Bit 7	99.0%	98.8%	47.4%	57.0%
Bit 6	99.4%	98.9%	48.7%	61.4%
Bit 5	99.2%	98.9%	51.0%	65.5%
Bit 4	99.2%	97.9%	51.7%	63.2%
Bit 3	98.7%	98.7%	51.7%	50.9%
Bit 2	98.0%	97.9%	52.6%	54.1%
Bit 1	97.8%	98.2%	53.4%	49.6%
Bit 0	98.1%	98.4%	51.2%	39.7%
BW	89.8%	88.3%	0.45%	0.79%
SE	86.8%	96.3%	0.49%	0.18%
Area	$513\mathrm{nm}^2$	994 nm ²	$1440\mathrm{nm}^2$	$1956\mathrm{nm}^2$
	100%	190%	280%	380%

Summary: Table 6 (amended)

	Unprotected	Failed	Masked	Randomized
Bit 7	99.0%	98.8%	47.4%	57.0%
Bit 6	99.4%	98.9%	48.7%	61.4%
Bit 5	99.2%	98.9%	51.0%	65.5%
Bit 4	99.2%	97.9%	51.7%	63.2%
Bit 3	98.7%	98.7%	51.7%	50.9%
Bit 2	98.0%	97.9%	52.6%	54.1%
Bit 1	97.8%	98.2%	53.4%	49.6%
Bit 0	98.1%	98.4%	51.2%	39.7%
BW	89.8%	88.3%	0.45%	0.79%
SE	86.8%	96.3%	0.49%	0.18%
Area	996 nm ²	$1477\mathrm{nm}^2$	$1440\mathrm{nm}^2$	$2439\mathrm{nm}^2$
	100%	148%	145%	245%

	Unprotected	Failed	Masked	Randomized
Bit 7	99.0%	98.8%	47.4%	57.0%
Bit 6	99.4%	98.9%	48.7%	61.4%
Bit 5	99.2%	98.9%	51.0%	65.5%
Bit 4	99.2%	97.9%	51.7%	63.2%
Bit 3	98.7%	98.7%	51.7%	50.9%
Bit 2	98.0%	97.9%	52.6%	54.1%
Bit 1	97.8%	98.2%	53.4%	49.6%
Bit 0	98.1%	98.4%	51.2%	39.7%
BW	89.8%	88.3%	0.45%	0.79%
SE	86.8%	96.3%	0.49%	0.18%
Area	996 nm ²	$1477 \mathrm{nm}^2$	$1440\mathrm{nm}^2$	$2439\mathrm{nm}^2$
	100%	148%	145%	245%

	Unprotected	Failed	Masked	Randomized
Bit 7	99.0%	98.8%	47.4%	57.0%
Bit 6	99.4%	98.9%	48.7%	61.4%
Bit 5	99.2%	98.9%	51.0%	65.5%
Bit 4	99.2%	97.9%	51.7%	63.2%
Bit 3	98.7%	98.7%	51.7%	50.9%
Bit 2	98.0%	97.9%	52.6%	54.1%
Bit 1	97.8%	98.2%	53.4%	49.6%
Bit 0	98.1%	98.4%	51.2%	39.7%
BW	89.8%	88.3%	0.45%	0.79%
SE	86.8%	96.3%	0.49%	0.18%
Area	996 nm ²	$1477 \mathrm{nm}^2$	$1440\mathrm{nm}^2$	$2439\mathrm{nm}^2$
	100%	148%	145%	245%

	Unprotected	Failed	Masked	Randomized
Bit 7	99.0%	98.8%	47.4%	57.0%
Bit 6	99.4%	98.9%	48.7%	61.4%
Bit 5	99.2%	98.9%	51.0%	65.5%
Bit 4	99.2%	97.9%	51.7%	63.2%
Bit 3	98.7%	98.7%	51.7%	50.9%
Bit 2	98.0%	97.9%	52.6%	54.1%
Bit 1	97.8%	98.2%	53.4%	49.6%
Bit 0	98.1%	98.4%	51.2%	39.7%
BW	89.8%	88.3%	0.45%	0.79%
SE	86.8%	96.3%	0.49%	0.18%
Area	996 nm ²	$1477\mathrm{nm}^2$	$1440\mathrm{nm}^2$	$2439\mathrm{nm}^2$
	100%	148%	145%	245%

	Unprotected	Failed	Masked	Randomized
Bit 7	99.0%	98.8%	47.4%	57.0%
Bit 6	99.4%	98.9%	48.7%	61.4%
Bit 5	99.2%	98.9%	51.0%	65.5%
Bit 4	99.2%	97.9%	51.7%	63.2%
Bit 3	98.7%	98.7%	51.7%	50.9%
Bit 2	98.0%	97.9%	52.6%	54.1%
Bit 1	97.8%	98.2%	53.4%	49.6%
Bit 0	98.1%	98.4%	51.2%	39.7%
BW	89.8%	88.3%	0.45%	0.79%
SE	86.8%	96.3%	0.49%	0.18%
Area	996 nm ²	$1477 \mathrm{nm}^2$	$1440\mathrm{nm}^2$	$2439\mathrm{nm}^2$
	100%	148%	145%	245%

Digital Area Estimates for 50 pixel array

- Counter logic is shared
- Independent sampling logic

	Unprotected	Failed	Masked	Randomized
Area	24571 nm ²	48626 nm ²	96738 nm ²	46788 nm ²
	100%	198%	294%	190%

Future Work

- Post-layout/PNR simulations including parasitics
- Markov-based process variations in addition to process corners
- Attack using both SS ADC power traces (analog and digital traces)
 - Power overhead cost calculation for the protected system including both analog and digital circuitry
- Multi-pixel attacks

References

- [1] T. Jeong, A. Chandrakasan, and H.-S. Lee, "S2ADC: A 12-bit, 1.25MS/s Secure SAR ADC with Power Side-Channel Attack Resistance," in 2020 IEEE Custom Integrated Circuits Conference (CICC), 2020, pp. 1–4.
- [2] R. Chen, H. Wang, Chandrakasan, and H.-S. Lee, "RaM-SAR: a low energy and area overhead, 11.3 fj/conv.-step 12b 25ms/s secure random-mapping SAR ADC with power and EM side-channel attack resilience," in 2022 IEEE Symposium on VLSI Technology and Circuits. IEEE, 2022, pp. 94–95.
- [3] S. N. Karanth et al., "Randomization Approaches for Secure SAR ADC Design Resilient Against Power Side-Channel Attacks," in 2024 IEEE Int. Symp. on Hardware Oriented Security and Trust (HOST), 2024, pp. 282–292.
- [4] T. Miki et al., "A Random Interrupt Dithering SAR Technique for Secure ADC Against Reference-Charge Side-Channel Attack," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 67, no. 1, pp. 14–18, 2020."
- [5] C. Körpe, K. Ahmad, E. Öztürk, K. Tihaiya, R. Tran, H. Yang, J. Yang, G. Dündar, V. J. M. III, and K. Ozanoglu, "A Side-Channel Attack-Resilient Single-Slope ADC for Image Sensor Applications," in Proceedings of the 2025 International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD), 2025.
- [6] Veripool, "Verilator," https://veripool.org/verilator/documentation/, 2025.
- [7] Google / SkyWater Technology Foundry, "SkyWater 130nm PDK," https://skywater-pdk.readthedocs.io/, 2020.
- [8] C. Wolf et al., "Yosys open synthesis suite," https://yosyshq.net/yosys/, 2013.
- [9] T. N. Project, "NGSpice circuit simulator," http://ngspice.sourceforge.net/, 2025.
- [10] P. Developers, "PyTorch: An open source machine learning framework," https://pytorch.org/, 2025.