
REMOTE SENSOR SECURITY THROUGH
ENCODED COMPUTATION AND
CRYPTOGRAPHIC SIGNATURES

Ph.D. Dissertation Defense
By

Kevin Hutto
Advisor: Prof. Vincent J. Mooney

School of Electrical And Computer Engineering
Georgia Institute of Technology

Atlanta, GA, USA

23 April 2024

• Introduction
• Research Overview
• Background and Prior Work
• Threat Model
• Security-Enhanced Analog-To-Digital Converter
• Implementing a Privacy Homomorphism With a Security-Enhanced ADC
• PUF-Based Authentication for Delivery of Software and Firmware Updates
• Conclusions
• List of Publications
• References

Outline

2

Motivation
• Devices such as security cameras, sensors, and even household appliances

today are increasingly connected to the internet, opening attack vectors to
malicious entities

• In 2017 attackers were able to exfiltrate data from a Casino by hacking into an internet-
connected and controlled fishtank [1]

• In 2021 attackers used default admin passwords to gain access to thousands of
camera feeds running Verkada software [2]

• In 2023 Akuvox smart intercoms were detected to have vulnerabilities allowing
exfiltration of video feed data [3]

• Remote devices, such as IoT devices, have additional security
considerations due to the potential ability of an adversary to gain access to
the memory contents of a specific device

3

• Expedition collecting data using
deployed remote sensors with
analog-to-digital converters
(ADCs) in an area of high
physical vulnerability.

• The deployed remote sensors are
communicating to a secure
server utilizing standard
networking protocols (e.g.,
TCP/IP)

• A non-participating party may
steal and reverse engineer some
of the remote sensor devices
without detection, possibly
leaking all on-chip and off-chip
RAM, including, but not limited to,
SRAM, Flash, DRAM, etc.

Introduction

4

Secure Server

ADC

Remote
Sensor

Attacker

• Introduction
• Research Overview
• Background and Prior Work
• Threat Model
• Security-Enhanced Analog-To-Digital Converter
• Implementing a Privacy Homomorphism With a Security-Enhanced ADC
• PUF-Based Authentication for Delivery of Software and Firmware Updates
• Conclusions
• List of Publications
• References

Outline

5

Research Overview

6

Secure Server Remote Device
Under Attack

PUFRAM

Encrypted
Communications

Analog
Input Data

1. Security-Enhanced Analog-To-Digital Converter
2. Utilization of the ADC for a Privacy Homomorphism
3. Physical Unclonable Function (PUF) Based Authentication for Delivery of

Software and Firmware Updates

Research Overview

7

Secure Server
Sensor Output

Decoding
Instructions

Encoded Computation
Output

Deployed Device

(1)
(2)

(3)
(4)

Encoded
Computation
Instructions

Decoding
Hardware

Embedded
CPU

Encoded
Computation
Instructions

Encoded
Computation

Encoding
Sensor

(5)

Decoded
Computation

Output

Analog
Input Data

PUF

• Introduction
• Research Overview
• Background and Prior Work
• Threat Model
• Security-Enhanced Analog-To-Digital Converter
• Implementing a Privacy Homomorphism With a Security-Enhanced ADC
• PUF-Based Authentication for Delivery of Software and Firmware Updates
• Conclusions
• List of Publications
• References

Outline

8

• In a seminal paper by Rivest, Adelman and Dertouzos in 1978 [4], the authors
suggest the development of a cryptographic framework which would allow the
performance of computation on encrypted data by a computer which cannot
derive the unencrypted input data or the unencrypted output result of the
computation

9

Privacy Homomorphism

where ϕ is the decoding function, ϕ-1 is the encoding function, d1
and d2 are data, f is an operation in the decoded structure, and f -1
is an equivalent operation in the encoded structure

Privacy Homomorphism
• The first published Fully Homomorphic Encryption (FHE),

scheme was developed in 2009 by Craig Gentry, utilizing a multi-
dimensional ideal lattice space [5]

• Numerous schemes have been proposed since Gentry’s, with
recent works, such as Brakerski-Gentry-Vaikuntanathan (BGV),
mostly utilizing polynomial rings instead of lattices
[6][7][8][9][10][11]

• Implementations such as HELib have large overheads compared
to plaintext operations (potentially millions of times longer with
state-of-the-art hardware such as BASALISC) [12][13][23]

• FHE schemes have large limitations such as no current support
for division and square root directly (as specific operations) in
publications and/or implementations

10

Physical Unclonable Functions
• A physical unclonable function (PUF) is a hardware security primitive that

utilizes tiny manufacturing variations, typically in silicon, to produce a unique
digital signature

• A PUF can function as a digital fingerprint and can be implemented on the
same medium as digital circuits such as microprocessors

• Many different mechanisms have been proposed to create PUFs utilizing
different variances affecting circuit features such as gate delay, resistance,
and capacitance

• The most ubiquitous commercially available PUFs utilize the pseudorandom
chance for an SRAM memory bit to initialize as either a ‘0’ or ‘1’

11

• Introduction
• Research Overview
• Background and Prior Work
• Threat Model
• Security-Enhanced Analog-To-Digital Converter
• Implementing a Privacy Homomorphism With a Security-Enhanced ADC
• PUF-Based Authentication for Delivery of Software and Firmware Updates
• Conclusions
• List of Publications
• References

Outline

12

Threat Model
• Two distinct entities: a secure

server and a deployed device
• Assume adversary has potential

to gain physical access to the
deployed device

• With physical access, the
attacker may be able to monitor
on-chip memory (i.e., RAM, but
not registers typically
inaccessible to software)

13

• The attacker can perform simple data-collection techniques used for power side-
channel analysis during operation [14]

• Assumed to have advanced hardware reverse-engineering techniques including
decapsulating, delayering, and detection of logic values, but requires removal and
destruction of the circuit

• We do not specifically address attacks on the secure server; rely on security provided
by existing research

Secure Server Remote Device
Under Attack

PUFRAM

Encrypted
Communications

Analog
Input Data

• Introduction
• Research Overview
• Background and Prior Work
• Threat Model
• Security-Enhanced Analog-To-Digital Converter

• Architecture
• Results
• Security

• Implementing a Privacy Homomorphism With a Security-Enhanced ADC
• PUF-Based Authentication for Delivery of Software and Firmware Updates
• Conclusions
• List of Publications
• References

Outline

14

Secure Server
Sensor Output

Decoding
Instructions

Encoded Computation
Output

Deployed Device

(1)
(2)

(3)
(4)

Encoded
Computation
Instructions

Decoding
Hardware

Embedded
CPU

Encoded
Computation
Instructions

Encoded
Computation

Encoding
Sensor

(5)

Decoded
Computation

Output

Analog
Input Data

PUF

Security-Enhanced Analog-to-Digital Converter

15

Security-Enhanced Analog-to-Digital Converter Concept

Standard ADC Encoding

Random ADC Encoding

Random Sensing with RanCode [15][16]

A RanCode ADC is implemented by directly encoding
analog values as a function of both the analog input
value and a pseudo-random permutation, shown here
for a flash-ADC architecture

16

011

000

101

010

001

110

111

100

Bu
ffe

r M
em

or
y

Random Encoding
Generator

3

Tr
ad

iti
on

al
 E

nc
ry

pt
io

n

Vi +
-Vref6
+
-Vref5
+
-Vref4
+
-Vref3
+
-Vref2
+
-Vref1
+
-Vref0

3

Pr
io

rit
y

En
co

de
r

RanCode High Level Architecture

17

H0 – Initial Hash (Key) Value
Si – Sensed Unencoded Data
Di – Encoded Sensor Output Data

8

Analog-to-
Digital

Components

512

Si

Initial Seed
H0

128

Encoding Circuitry

Key Derivation Circuitry

Analog
Input Data Di

8

Bu
ffe

r M
em

or
y

RanCode High Level Architecture

18

H0 – Initial Hash (Key) Value
Si – Sensed Unencoded Data
Di – Encoded Sensor Output Data

8

Analog-to-
Digital

Components

512

Si

Initial Seed
H0

128

Encoding Circuitry

Key Derivation Circuitry

Analog
Input Data Di

8

Bu
ffe

r M
em

or
y

RanCode Encoding Circuitry

19

H0 – Initial Hash (Key) Value
Si – Sensed Unencoded Data
Di – Encoded Sensor Output Data
LUTi – Look Up Table for the ith Encoding

8

Analog-to-
Digital

Components

512

Si

Initial Seed
H0

Key Derivation Circuitry

Analog
Input Data 4

Di

4

4 Addr
Dec

16

416 8

Pseudorandom
Permutation Gen

Shuffle Index

64 64

64 64

128

Encoding Circuitry

Pseudorandom
Permutation Gen

Addr
Dec

Bu
ffe

r M
em

or
y

RanCode Encoding Circuitry

20

H0 – Initial Hash (Key) Value
Si – Sensed Unencoded Data
Di – Encoded Sensor Output Data
LUTi – Look Up Table for the ith Encoding

8

Analog-to-
Digital

Components

512

Si

Initial Seed
H0

Key Derivation Circuitry

Analog
Input Data 4

Di

4

4 Addr
Dec

16

416 8

Pseudorandom
Permutation Gen

Shuffle Index

64 64

64 64

128

Encoding Circuitry

Pseudorandom
Permutation Gen

Addr
Dec

Bu
ffe

r M
em

or
y

RanCode Encoding Circuitry

21

H0 – Initial Hash (Key) Value
Si – Sensed Unencoded Data
Di – Encoded Sensor Output Data
LUTi – Look Up Table for the ith Encoding

Bu
ffe

r M
em

or
y

8

Analog-to-
Digital

Components

512

Si

Initial Seed
H0

Key Derivation Circuitry

Analog
Input Data 4

Di

4

4 Addr
Dec

16

416
𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖0

𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖1
8

Pseudorandom
Permutation Gen

Shuffle Index

64 64

64 64

𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖+11 𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖+10

128

Encoding Circuitry

Pseudorandom
Permutation Gen

Addr
Dec

0xA

0x8

0x5

0x1

0x3

0x0

0xB

0x9

𝑳𝑳𝑳𝑳𝑳𝑳𝒊𝒊𝟏𝟏 𝑳𝑳𝑳𝑳𝑳𝑳𝒊𝒊𝟎𝟎

0x8BInput
𝐷𝐷𝑖𝑖… …

0x12
𝑆𝑆𝑖𝑖

RanCode Encoding Circuitry

22

H0 – Initial Hash (Key) Value
Si – Sensed Unencoded Data
Di – Encoded Sensor Output Data
LUTi – Look Up Table for the ith Encoding

Bu
ffe

r M
em

or
y

8

Analog-to-
Digital

Components

512

Si

Initial Seed
H0

Key Derivation Circuitry

Analog
Input Data 4

Di

4

4 Addr
Dec

16

416
𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖0

𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖1
8

Pseudorandom
Permutation Gen

Shuffle Index

64 64

64 64

𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖+11 𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖+10

128

Encoding Circuitry

Pseudorandom
Permutation Gen

Addr
Dec

0xA

0x8

0x5

0x1

0x3

0x0

0xB

0x9

𝑳𝑳𝑳𝑳𝑳𝑳𝒊𝒊𝟏𝟏 𝑳𝑳𝑳𝑳𝑳𝑳𝒊𝒊𝟎𝟎

0x8BInput
𝐷𝐷𝑖𝑖… …

0x12
𝑆𝑆𝑖𝑖

RanCode Encoding Circuitry

23

H0 – Initial Hash (Key) Value
Si – Sensed Unencoded Data
Di – Encoded Sensor Output Data
LUTi – Look Up Table for the ith Encoding

Bu
ffe

r M
em

or
y

8

Analog-to-
Digital

Components

512

Si

Initial Seed
H0

Key Derivation Circuitry

Analog
Input Data 4

Di

4

4 Addr
Dec

16

416
𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖0

𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖1
8

Pseudorandom
Permutation Gen

Shuffle Index

64 64

64 64

𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖+11 𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖+10

128

Encoding Circuitry

Pseudorandom
Permutation Gen

Addr
Dec

0xA

0x8

0x5

0x1

0x3

0x0

0xB

0x9

𝑳𝑳𝑳𝑳𝑳𝑳𝒊𝒊𝟏𝟏 𝑳𝑳𝑳𝑳𝑳𝑳𝒊𝒊𝟎𝟎

0x8BInput
𝐷𝐷𝑖𝑖… …

0x12
𝑆𝑆𝑖𝑖

RanCode Encoding Circuitry

24

H0 – Initial Hash (Key) Value
Si – Sensed Unencoded Data
Di – Encoded Sensor Output Data
LUTi – Look Up Table for the ith Encoding

Bu
ffe

r M
em

or
y

8

Analog-to-
Digital

Components

512

Si

Initial Seed
H0

Key Derivation Circuitry

Analog
Input Data 4

Di

4

4 Addr
Dec

16

416
𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖0

𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖1
8

Pseudorandom
Permutation Gen

Shuffle Index

64 64

64 64

𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖+11 𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖+10

128

Encoding Circuitry

Pseudorandom
Permutation Gen

Addr
Dec

0xA

0x8

0x5

0x1

0x3

0x0

0xB

0x9

𝑳𝑳𝑳𝑳𝑳𝑳𝒊𝒊𝟏𝟏 𝑳𝑳𝑳𝑳𝑳𝑳𝒊𝒊𝟎𝟎

0x8BInput
𝐷𝐷𝑖𝑖… …

0x12
𝑆𝑆𝑖𝑖

RanCode Encoding Circuitry

25

H0 – Initial Hash (Key) Value
Si – Sensed Unencoded Data
Di – Encoded Sensor Output Data
LUTi – Look Up Table for the ith Encoding

8

Analog-to-
Digital

Components

512

Si

Initial Seed
H0

Key Derivation Circuitry

Analog
Input Data 4

Di

4

4 Addr
Dec

16

416 8

Pseudorandom
Permutation Gen

Shuffle Index

64 64

64 64

128

Encoding Circuitry

Pseudorandom
Permutation Gen

Addr
Dec

Bu
ffe

r M
em

or
y

RanCode Key Derivation Circuitry

26

H0 – Initial Hash (Key) Value
Si – Sensed Unencoded Data
Di – Encoded Sensor Output Data
LUTi – Look Up Table for the ith Encoding

8

Analog-to-
Digital

Components

512

Si

Initial Seed
H0

Key Derivation Circuitry

Analog
Input Data 4

Di

4

4 Addr
Dec

16

416 8

Shuffle Unit

Shuffle Index

64 64

64 64

128

Encoding Circuitry

Shuffle Unit

Addr
Dec

Bu
ffe

r M
em

or
y

RanCode Key Derivation Circuitry

27

H0 – Initial Hash (Key) Value
Si – Sensed Unencoded Data
Di – Encoded Sensor Output Data
LUTi – Look Up Table for the ith Encoding

4
Di

4

48

Analog-to-
Digital

Components
Addr
Dec

16

416 8

Shuffle Unit

512

Shuffle Index

64 64

64 64

Si

Initial Seed
H0

Hj

Hj-1

512

128
Reg Buffer

OWF

Encoding Circuitry

Key Derivation Circuitry

Shuffle Unit

Analog
Input Data Addr

Dec

Bu
ffe

r M
em

or
y

RanCode Key Derivation Circuitry

28

H0 – Initial Hash (Key) Value
Si – Sensed Unencoded Data
Di – Encoded Sensor Output Data
LUTi – Look Up Table for the ith Encoding

4
Di

4

48

Analog-to-
Digital

Components
Addr
Dec

16

416 8

Shuffle Unit

512

Shuffle Index

64 64

64 64

Si

Initial Seed
H0

Hj

Hj-1

512

128
Reg Buffer

SHA-3

Encoding Circuitry

Key Derivation Circuitry

Shuffle Unit

Analog
Input Data Addr

Dec

Bu
ffe

r M
em

or
y

4
Di

4

48

Analog-to-
Digital

Components
Addr
Dec

16

416 8

Shuffle Unit

512

Shuffle Index

64 64

64 64

Si

Initial Seed
H0

Hj

Hj-1

512

128
Reg Buffer

SHA-3

Encoding Circuitry

Key Derivation Circuitry

Shuffle Unit

Analog
Input Data Addr

Dec

Bu
ffe

r M
em

or
y

RanCode Analog Circuit

29

H0 – Initial Hash (Key) Value
Si – Sensed Unencoded Data
Di – Encoded Sensor Output Data
LUTi – Look Up Table for the ith Encoding

RanCode Analog Circuit

30

H0 – Initial Hash (Key) Value
Si – Sensed Unencoded Data
Di – Encoded Sensor Output Data
LUTi – Look Up Table for the ith Encoding

Vi

+
-Vrefmax

+
-Vrefmax-1

+
-Vref0

……

Pri
Enc

4
Di

4

48 Addr
Dec

16

416 8

Shuffle Unit

512

Shuffle Index

64 64

64 64

Si

Initial Seed
H0

Hj

Hj-1

512

128
Reg Buffer

SHA-3

Encoding Circuitry

Key Derivation Circuitry

Shuffle Unit

Addr
Dec

Bu
ffe

r M
em

or
y

RanCode Analog Circuit

31

H0 – Initial Hash (Key) Value
Si – Sensed Unencoded Data
Di – Encoded Sensor Output Data
LUTi – Look Up Table for the ith Encoding

Vi

+
-Vrefmax

+
-Vrefmax-1

+
-Vref0

……

Pri
Enc

4
Di

4

48 Addr
Dec

16

416 8

Shuffle Unit

512

Shuffle Index

64 64

64 64

Si

Initial Seed
H0

Hj

Hj-1

512

128
Reg Buffer

SHA-3

Encoding Circuitry

Key Derivation Circuitry

Shuffle Unit

Addr
Dec

Bu
ffe

r M
em

or
y

First location where encoded input data
is stored in any form of memory

• Introduction
• Research Overview
• Background and Prior Work
• Threat Model
• Security-Enhanced Analog-To-Digital Converter

• Architecture
• Results
• Security

• Implementing a Privacy Homomorphism With a Security-Enhanced ADC
• PUF-Based Authentication for Delivery of Software and Firmware Updates
• Conclusions
• List of Publications
• References

Outline

32

Synthesis Results

33

• Three ADC architectures supported:
o Flash
o Successive-Approximation Register
o Integrating

• Decoding architecture allows server to
retrieve unencoded sensor values

• Synthesis conducted targeting the 28nm
Cyclone V 5CSXFC6D6F31C6

Vi

+
-Vrefmax

+
-Vrefmax-1

+
-Vref0

……

Pri
Enc

4
Di

4

48 Addr
Dec

16

416 8

Shuffle Unit

512

Shuffle Index

64 64

64 64

Si

Initial Seed
H0

Hj

Hj-1

512

128
Reg Buffer

SHA-3

Encoding Circuitry

Key Derivation Circuitry

Shuffle Unit

Addr
Dec

Bu
ffe

r M
em

or
y

• Introduction
• Research Overview
• Background and Prior Work
• Threat Model
• Security-Enhanced Analog-To-Digital Converter

• Architecture
• Results
• Security

• Implementing a Privacy Homomorphism With a Security-Enhanced ADC
• PUF-Based Authentication for Delivery of Software and Firmware Updates
• Conclusions
• List of Publications
• References

Outline

34

Security of the RanCode Circuit
• We are concerned with an adversary's ability to interpret the encoded data

produced by the RanCode circuit
• We will show that without the knowledge of the RanCode key, Hj, the

adversary has an exponentially small chance of successfully interpreting the
data

• Keep in mind that our attack surface excludes on-chip registers including
look-up tables; only the large on-chip memories such as SRAM cache blocks
(including buffer memory to store the digital images) are provided to the
adversary

35

Security of the RanCode Circuit

36

• To interpret encoded data the adversary has a few potential methods
• Discover the key Hj
• Discover the mappings in each LUTi

• If the adversary can achieve the determination of a correct Hj, then determining
LUTi is trivial to achieve as the hardware architecture is known by the adversary.

Vi

+
-Vrefmax

+
-Vrefmax-1

+
-Vref0

……

Pri
Enc

4
Di

4

48 Addr
Dec

16

416 8

Shuffle Unit

512

Shuffle Index

64 64

64 64

Si

Initial Seed
H0

Hj

Hj-1

512

128
Reg Buffer

SHA-3

Encoding Circuitry

Key Derivation Circuitry

Shuffle Unit

Addr
Dec

Bu
ffe

r M
em

or
y

Security of the RanCode Circuit

37

• Can Hj be determined?
• For Hj, no read mechanism is provided, and furthermore, there is no device interface

which allows access of any intermediate value from the encoding method
• After encoding (permuting), once the key Hj is overwritten by SHA-3, there is no way on

the remote device’s microchip to go backwards in time
• SHA-3 implements a one-way function

Vi

+
-Vrefmax

+
-Vrefmax-1

+
-Vref0

……

Pri
Enc

4
Di

4

48 Addr
Dec

16

416 8

Shuffle Unit

512

Shuffle Index

64 64

64 64

Si

Initial Seed
H0

Hj

Hj-1

512

128
Reg Buffer

SHA-3

Encoding Circuitry

Key Derivation Circuitry

Shuffle Unit

Addr
Dec

Bu
ffe

r M
em

or
y

• By utilizing SHA-3, each
subsequent encoding
(derived from a SHA-3
output) is effectively
independent of the
previous encoding

• Hj is 512 bits long –
infeasible for brute
force search

Security of the RanCode Circuit
• Can LUTi be determined?
• LUTi is dependent on the value of Hj, which is not known
• An attacker can only see the encoded output values, which select a value from a

single row in LUTi

• The attacker does not know the address (i.e., the input value) of the row in LUTi
selected

38

Vi

+
-Vrefmax

+
-Vrefmax-1

+
-Vref0

……

Pri
Enc

4
Di

4

48 Addr
Dec

16

416 8

Shuffle Unit

512

Shuffle Index

64 64

64 64

Si

Initial Seed
H0

Hj

Hj-1

512

128
Reg Buffer

SHA-3

Encoding Circuitry

Key Derivation Circuitry

Shuffle Unit

Addr
Dec

Bu
ffe

r M
em

or
y

• Each input has a unique
shuffle or permutation of
encodings in each LUTi

• The knowledge of
the input resulting in
the output does not
allow the prediction
of future LUTi values

Attempted Attack
• Attacker cannot brute force all Hj values,

so an attempt is made to prune potential
values without evaluating each Hj

• Attacker can see the encoded outputs
stored in RAM on the device

• Attacker attempts to correlate plaintext
inputs to outputs by guessing input
values

• E.g., at night the pixels may be black
• Assume the input guesses made by the

adversary are accurate for a limited
number of samples such that the exact
voltage encoded by the ADC is known

• For the guessed values, the attacker
inverts the permutation function to
retrieve Hj values

39

0xA

UNK

UNK

UNK

UNK

0x4

UNK

UNK

UNK

UNK

0x7

UNK

UNK

UNK

UNK

0x3

0x012F 0xA473
Input

… ………

UNK: Values unknown to attacker

Attack Cont.

• If the input guesses are correct, a subset
of the LUT values is determined

• With the known LUT subsets, the
adversary attempts to determine future
complete mappings

• The known input to output mappings
allow the adversary to determine one
location in each of the four 𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖𝑗𝑗 values

• The adversary knows any hash value
input to the shuffle circuitry which does
not result in the discovered partial
mapping must be wrong

• How far does this partial known mapping
lead to a reduced search space?

40

0xA

UNK

UNK

UNK

UNK

0x4

UNK

UNK

UNK

UNK

0x7

UNK

UNK

UNK

UNK

0x3

0x012F 0xA473
Input

… ………

UNK: Values unknown to attacker

Attack Cont.
• The Pseudorandom Permutation

(Knuth Shuffle Algorithm [17]) is
reversible

• Given a known arrangement of set
elements and a know output, it can be
easily determined what index was used
in the algorithm

• With only a partial knowledge of the
shuffle output, a subset of possible
indices can be disregarded

41

0xA

UNK

UNK

UNK

UNK

0x4

UNK

UNK

UNK

UNK

0x7

UNK

UNK

UNK

UNK

0x3

0x012F 0xA473
Input

… ………

UNK: Values unknown to attacker

Attack Cont.

• The partially known LUT values remove 1/16
of the possible 2512 𝐻𝐻𝑗𝑗 values, leaving 2496 𝐻𝐻𝑗𝑗
values

• Each of the 2496 possible 𝐻𝐻𝑗𝑗 values will
provide a permutation which maps the
known four locations in the four LUTs

• Only one of these possible 𝐻𝐻𝑗𝑗 values
matches the actual internal value of 𝐻𝐻𝑗𝑗

• If the wrong 𝐻𝐻𝑗𝑗 value is used, the follow-on
calculated values 𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖+1 from 𝐻𝐻𝑗𝑗+1 will not
match the actual RanCode mappings for
subsequent encoding

42

0xA

UNK

UNK

UNK

UNK

0x4

UNK

UNK

UNK

UNK

0x7

UNK

UNK

UNK

UNK

0x3

0x012F 0xA473
Input

… ………

• Introduction
• Research Overview
• Background and Prior Work
• Threat Model
• Security-Enhanced Analog-To-Digital Converter
• Implementing a Privacy Homomorphism With a Security-Enhanced ADC

• Privacy Homomorphism Scheme
• Scheme Extensions
• Architecture for Edge Detection
• Security
• Comparison to Fully Homomorphic Encryption

• PUF-Based Authentication for Delivery of Software and Firmware Updates
• Conclusions
• List of Publications
• References

Outline

43

Secure Server
Sensor Output

Decoding
Instructions

Encoded Computation
Output

Deployed Device

(1)
(2)

(3)
(4)

Encoded
Computation
Instructions

Decoding
Hardware

Embedded
CPU

Encoded
Computation
Instructions

Encoded
Computation

Encoding
Sensor

(5)

Decoded
Computation

Output

Analog
Input Data

PUF

Implementing a privacy homomorphism with RanCode

44

• In a seminal paper by Rivest, Adelman and Dertouzos in 1978 [4], the authors
suggest the development of a cryptographic framework which would allow the
performance of computation on encrypted data by a computer which cannot
derive the unencrypted input data or the unencrypted output result of the
computation

45

Recall What is a Privacy Homomorphism

where ϕ is the decoding function, ϕ-1 is the encoding function, d1
and d2 are data, f is an operation in the decoded structure, and f -1
is an equivalent operation in the encoded structure

RanCompute, a Privacy Homomorphism

• The developed technology is referred
to as RanCompute [18][19][20]

• RanCompute implements a privacy
homomorphism

• Two entities are involved
• The secure server
• The remote device

• The secure server contains the H0 initialization values for remote
sensors implementing a RanCode
architecture

• The remote sensor shown has two
components, a RanCode
implementation and a RanCompute
application on an FPGA

46

Randomized Data
(RanCode)

RanCompute
Application

RanCompute
Application
Generation

Synthesis

H0 Initializations Remote Sensor
Secure Server

Reconfiguration
Bitstream

Vi

RanCompute Privacy Homomorphism

47

(c) Encode Operation Outputs

(d) Combine Inputs and Outputs

(b) Randomize Input Data

(a) Pre-Compute
Operation Outputs

• RanCompute creates two tables to facilitate
a privacy homomorphism:

• Computation Table - Used by the device.
o Contains mappings from RanCode

encoded inputs to encoded
computation outputs

• Decode Table - Used by the server.
o Contains mappings from encoded

computation outputs to unencoded
outputs

RanCompute Privacy Homomorphism

48

(c) Encode Operation Outputs

(d) Combine Inputs and Outputs

(b) Randomize Input Data

(a) Pre-Compute
Operation Outputs

𝜙𝜙 𝑓𝑓−1 𝜙𝜙1−1 𝑑𝑑1 ,𝜙𝜙2−1 𝑑𝑑2 = 𝑓𝑓(𝑑𝑑1,𝑑𝑑2)

(A) Plaintext Lookup
Table Generation

(A + B)BA

000

110

101

211

1

RanCompute Plaintext Table Generation

49

(c) Encode Operation Outputs

(d) Combine Inputs and Outputs

(b) Randomize Input Data

(a) Pre-Compute
Operation Outputs

𝜙𝜙 𝑓𝑓−1 𝜙𝜙1−1 𝑑𝑑1 ,𝜙𝜙2−1 𝑑𝑑2 = 𝑓𝑓(𝑑𝑑1,𝑑𝑑2)

Server’s RanCode Copy

(A) Plaintext Lookup
Table Generation

(C) Replace Inputs with
Encoded Values

(A + B)BA

000

110

101

211

(A + B)

0

1

1

2

LUT2LUT1

01

10

B’A’

01

11

00

10

1

2

3

RanCompute Input Encoding

50

(c) Encode Operation Outputs

(d) Combine Inputs and Outputs

(b) Randomize Input Data

(a) Pre-Compute
Operation Outputs

𝜙𝜙 𝑓𝑓−1 𝜙𝜙1−1 𝑑𝑑1 ,𝜙𝜙2−1 𝑑𝑑2 = 𝑓𝑓(𝑑𝑑1,𝑑𝑑2)

Server’s RanCode Copy

(A) Plaintext Lookup
Table Generation

(D) Output Permutation
Generation

(C) Replace Inputs with
Encoded Values

(A + B)BA

000

110

101

211

(A + B)

0

1

1

2

Values for Output
Encoding

2

3

1

0

LUT2LUT1

01

10

B’A’

01

11

00

10

1

2

3

4

RanCompute Output Encoding

51

(c) Encode Operation Outputs

(d) Combine Inputs and Outputs

(b) Randomize Input Data

(a) Pre-Compute
Operation Outputs

𝜙𝜙 𝑓𝑓−1 𝜙𝜙1−1 𝑑𝑑1 ,𝜙𝜙2−1 𝑑𝑑2 = 𝑓𝑓(𝑑𝑑1,𝑑𝑑2)

Server’s RanCode Copy

(A) Plaintext Lookup
Table Generation

(D) Output Permutation
Generation

(C) Replace Inputs with
Encoded Values

(E) Map Encoded Inputs
to Encoded Output

(A + B)BA

000

110

101

211

(A + B)

0

1

1

2

B’ A’

01

11

00

10

Values for Output
Encoding

2

3

1

0

(A+B)’

2

3

1

0

Computation Table

LUT2LUT1

01

10

B’A’

01

11

00

10

1

2

3

4

5

RanCompute Computation Table

52

(c) Encode Operation Outputs

(d) Combine Inputs and Outputs

(b) Randomize Input Data

(a) Pre-Compute
Operation Outputs

𝜙𝜙 𝑓𝑓−1 𝜙𝜙1−1 𝑑𝑑1 ,𝜙𝜙2−1 𝑑𝑑2 = 𝑓𝑓(𝑑𝑑1,𝑑𝑑2)

“Computation Table”

Server’s RanCode Copy

(A) Plaintext Lookup
Table Generation

(D) Output Permutation
Generation

(C) Replace Inputs with
Encoded Values

(F) Map Output Permutation
to Plaintext Output

(E) Map Encoded Inputs
to Encoded Output

(A + B)BA

000

110

101

211

(A + B)

0

1

1

2

B’ A’

01

11

00

10

Decode Table

Values for Output
Encoding

2

3

1

0

(A+B)’

2

3

1

0

(A+B)’

2

3

1

0

(A + B)

0

1

1

2

Computation Table

LUT2LUT1

01

10

B’A’

01

11

00

10

1

2

3

4

5

6

RanCompute Decode Table

53

(c) Encode Operation Outputs

(d) Combine Inputs and Outputs

(b) Randomize Input Data

(a) Pre-Compute
Operation Outputs

𝜙𝜙 𝑓𝑓−1 𝜙𝜙1−1 𝑑𝑑1 ,𝜙𝜙2−1 𝑑𝑑2 = 𝑓𝑓(𝑑𝑑1,𝑑𝑑2)

“Decode Table”

RanCompute Usage

54

Secure Server
Sensor Output

Decoding
Instructions

Encoded Computation
Output

Deployed Device

(1)
(2)

(3)
(4)

Encoded
Computation
Instructions

Decoding
Hardware

Embedded
CPU

Encoded
Computation
Instructions

Encoded
Computation

Encoding
Sensor

(5)

Decoded
Computation

Output

Analog
Input Data

PUF

RanCompute Usage

55

Secure Server
Sensor Output

Decode
Table

Encoded Computation
Output

Deployed Device

(1)
(2)

(3)
(4)

Computation
Table

Decoding
Hardware

Embedded
CPU

Computation
Table

Encoded
Computation

Encoding
Sensor

(5)

Decoded
Computation

Output

Analog
Input Data

PUF

RanCompute– Difference Calculation

56

Encode Encode Decode Decode

Lossy Precision Full Precision

…

…1 2

3 4 5

6

7

8

Full Precision: ∀𝑖𝑖 → 𝐷𝐷𝑖𝑖𝑓𝑓𝑓𝑓𝑖𝑖 𝑡𝑡,𝐿𝐿 = |𝐼𝐼𝑡𝑡−𝑇𝑇 𝑖𝑖 − 𝐼𝐼𝑡𝑡(𝑖𝑖)|

Difference calculated on 50x50 pixel images

Image Difference: measure of the difference of pixel values between two images:

• With a high-performance SHA-3 core
and proven dynamic FPGA technology,
image difference can be calculated for
720p (720 pixels by 1280 pixels) images
at 20fps

Lossy Precision: ∀𝑖𝑖 → 𝐷𝐷𝑖𝑖𝑓𝑓𝑓𝑓𝑖𝑖 𝑡𝑡,𝐿𝐿 = 𝐼𝐼𝑡𝑡−𝑇𝑇 𝑖𝑖 7: 4 − 𝐼𝐼𝑡𝑡 𝑖𝑖 7: 4 & 𝐼𝐼𝑡𝑡−𝑇𝑇 𝑖𝑖 3: 0 − 𝐼𝐼𝑡𝑡 𝑖𝑖 [3: 0]

• Introduction
• Research Overview
• Background and Prior Work
• Threat Model
• Security-Enhanced Analog-To-Digital Converter
• Implementing a Privacy Homomorphism With a Security-Enhanced ADC

• Privacy Homomorphism Scheme
• Scheme Extensions
• Architecture for Edge Detection
• Security
• Comparison to Fully Homomorphic Encryption

• PUF-Based Authentication for Delivery of Software and Firmware Updates
• Conclusions
• List of Publications
• References

Outline

57

Extending Depth of Computations
• To accommodate many inputs, a single

Computation Table will become very large as
the number of inputs increases

• To perform an increased depth of number of
sub-computations to compose a larger
computation, we limit the number of possible
output values (output binning) so that we can
limit the size of our look up tables

58

Unencoded
Output Values

(Addition)

Encoded Table
Values

0 10

1 11

1 01

2 00

(a) Full Precision Computation Table (b) Reduced Precision Computation Table

A B

0 0

0 1

1 0

1 1

Unencoded
Output Values

(Addition)

Encoded Table
Values

0.66 1

0.66 1

0.66 1

2 0

A B

0 0

0 1

1 0

1 1

Limiting Computation Output Possibilities
• Creation of the Computation Table and

Decode Table when limiting the number
of output possibilities

• Calculation precision is traded for
reduced table sizes

59

(B) Device Encoder Copy

(A) Plaintext Lookup Table
Generation

(D) Output Permutation
Generation

(C) Replace Inputs with
Encoded Values

(F) Map Output Permutation
to Plaintext Output

(E) Map Encoded Inputs
to Encoded Output

(A + B)BA

000

110

101

211

~(A + B)

0.66

0.66

0.66

2

B’ A’

01

11

00

10

Decode Table

Values for Output
Encoding

1

1

1

0

~(A+B)’

1

1

1

0

~(A+B)’

1

0

~(A + B)

0.66

2

Computation Table

LUT2LUT1

01

10

B’A’

01

11

00

10

1

2

3

4

5

6

~(A + B)

0.66

0.66

0.66

2

Chaining Computation Tables
• The previously produced

Computation Table on two inputs
is used to create a follow-on
Computation Table to allow a
third input

60

Replace Inputs with
Encoded Values

Previous Binned
Decode Table

Plaintext Lookup Table Generation

C~(A + B)

00.66

10.66

02

12

~(A+B)’

1

0

~(A + B)

0.66

2

(C) Device Encoder Copy

LUT3

1

0

~(~(A + B) + C)

1.16

1.16

2.5

2.5

(A+B)’

1

1

0

0

C’

1

0

1

0

~(~(A + B) + C)~(A + B) + C

1.160.66

1.161.66

2.52

2.53

1

2

3

4

Map Output Permutation
to Plaintext Output

Map Encoded Inputs
to Encoded Output

Decode Table

(A+B+C)’

0

1

Computation Table

6

7

(D) Output Permutation
Generation

Values for Output
Encoding

0

1

5

~(~(A + B) + C)

1.16

2.5

(A+B)’

1

1

0

0

C’

1

0

1

0

(A+B+C)’

0

0

1

1

• Introduction
• Research Overview
• Background and Prior Work
• Threat Model
• Security-Enhanced Analog-To-Digital Converter
• Implementing a Privacy Homomorphism With a Security-Enhanced ADC

• Privacy Homomorphism Scheme
• Scheme Extensions
• Architecture for Edge Detection
• Security
• Comparison to Fully Homomorphic Encryption

• PUF-Based Authentication for Delivery of Software and Firmware Updates
• Conclusions
• List of Publications
• References

Outline

61

RanCompute – Edge Detection

62

Edge Detection: image processing technique to
extract object boundaries from an image

𝐺𝐺𝑥𝑥 =
+1 0 −1
+2 0 −2
+1 0 −1

 ∗ 𝐼𝐼 𝐺𝐺𝑦𝑦 =
+1 +2 +1
0 0 0
−1 −1 −1

∗ 𝐼𝐼

𝐺𝐺 = 𝐺𝐺𝑥𝑥2 + 𝐺𝐺𝑦𝑦2

Input Output1 2

Input Image: 200x200 Pixels

P6 P8

+ P7

P1

- P2

P3

-

P3P2P1

P5P0P4

P8P7P6
+2

-2

P3 P8

+P5

P1

-P4

P6

-

+2

-2

Output

Directed Acyclic Graph for Each Pixel Computation

Canny Edge Detection [21]

RanCode
Computation

Table
(LUT Tree)

Encrypted
Bitstream

Dynamically
Reconfigurable Logic

Buffer
MemoryAnalog

Input

Vi

Buffer
Memory

Deployed Device

Image
Buffer

Memory

Decryption
Engine

64 88

63

LUT8

8

8

8

8

8

8

8

LUT

LUT

LUT

LUT

LUT

LUT

LUT

LUT

LUT

8
LUT

LUT Tree

Device Architecture – Edge Detection
• Architecture receives encrypted

bitstream which is loaded onto
reconfigurable logic

• Inputs are provided by RanCode
through a buffer

• Each LUT tree performs one pixel
computation

Device Architecture – Edge Detection

Three architectures
implemented:
• 4-bit image with binned

outputs
• 8-bit image with binned

outputs
• 8-bit image with binned

outputs and a carry

9-bit
Address
LUT (4-

bit data)

(c) Binned with Carry

4

4

8

8-bit
Address
LUT (5-

bit data)

A[7:4]

B[7:4]

B[3:0]

A[3:0]

16-bit
Address
LUT (8-

bit data)

Dynamically
Reconfigurable

Logic

(b) Binned LUT

A

B
8

8-bit
Address
LUT (4-

bit data)

(a) Binned, 4-bit Image

4

A

B
4

4

8

8

4

4

4

4

Carry

Dynamically
Reconfigurable

Logic

Results

65

1 2

3 4

Plaintext Binned Outputs

4-bit BinnedBinned with Carry

• All three encoded computations retain enough resolution to
clearly distinguish the features of the original image

• 8-bit binned too large to fit on our FPGA

Results
• Data requirements for the Computation

Tables for binned, 4-bit image
computation are within the bandwidth
rates of 5G transmissions for one frame
of edge detection every second

66

1 2

3 4

Plaintext Binned Outputs

4-bit BinnedBinned with Carry

• Introduction
• Research Overview
• Background and Prior Work
• Threat Model
• Security-Enhanced Analog-To-Digital Converter
• Implementing a Privacy Homomorphism With a Security-Enhanced ADC

• Privacy Homomorphism Scheme
• Scheme Extensions
• Architecture for Edge Detection
• Security
• Comparison to Fully Homomorphic Encryption

• PUF-Based Authentication for Delivery of Software and Firmware Updates
• Conclusions
• List of Publications
• References

Outline

67

Security Analysis
• RanCompute has three

main components:
• RanCode
• Computation Table(s)
• Decode Table

• RanCode was discussed
previously, so we will
now discuss the security
of the Computation
Table(s) and the Decode
Table in a RanCompute
application

68

Secure Server
Sensor Output

Decode
Table

Encoded Computation
Output

Deployed Device

(1)
(2)

(3)
(4)

Computation
Table

Decoding
Hardware

Embedded
CPU

Computation
Table

Encoded
Computation

Encoding
Sensor

(5)

Decoded
Computation

Output

Analog
Input Data

PUF

RanCode
Computation

Table
(LUT Tree)

Encrypted
Bitstream

Dynamically
Reconfigurable Logic

Buffer
MemoryAnalog

Input

Vi

Buffer
Memory

Deployed Device

Image
Buffer

Memory

Decryption
Engine

64 88

Security Analysis – Attack Model
• An actor can read run-time data stored in general purpose memory

• Cannot read microarchitectural units such as registers holding partial results of operations
• The attacker cannot precisely replicate the raw data values (analog or digital) sensed in the remote

environment
• The attacker can take the device offline at some point in time to attempt reverse engineering of the

device through destructive methods
• The attacker's goal is to eavesdrop the operation of the device and the executed computation such that

the attacker gains knowledge of either the unencoded sensor input data, an unencoded version of the
computation output, or both over a reasonably long period of time (including the past)

69

Attacker Access

Security of the Computation Table

• Each Computation Table output is obtained from
a unique random permutation generated by the
secure server

• Each new output seen by the adversary will be
unrelated to the previous output even if both
outputs were obtained from equivalent input
values

• The RanCode input encoding permutations are
completely distinct from the permutations used
for the Computation Table output encodings

70

Map Encoded Inputs
to Encoded Output

B’ A’

01

11

00

10

(A+B)’

2

3

1

0

Computation Table

Security Analysis – Output Binning
• Output binning affects the distribution

and frequency of encoded symbols in a
Computation Table output column

• In full precision table, each element in the
output column appears once

• In the binned table, ‘1’ appears 3 times while
‘0’ appears 1 times

• Frequency analysis may lead to the
ability to decode Computation Table
outputs if the entire Computation Table
is obtained

• To ensure protection, the Computation
Tables are sent in an encrypted format
(i.e., an encrypted FPGA bitstream) and
then decrypted when being loaded

71

B’ A’

01

11

00

10

(A+B)’

2

3

1

0

B’ A’

01

11

00

10

~(A+B)’

1

1

1

0

Full Precision Computation Table

Output Binned Computation Table

Each encoded
output appears
with equal
frequency

Each encoded
output appears a
unique number
of times

Security Analysis – Carry Bit

• The carry bit in an addition or subtraction
operation may reveal some information about
the magnitudes of the two inputs if observed in
plaintext

• The carry bit is encoded randomly as a ‘0’ or ‘1’
for each table

• Observation of the carry bit (which we assume adversary
cannot do) by an adversary would not reveal anything as
each Computation Table is only used once

• The distribution of the frequency of appearance
of the carry bits in the Computation Tables are
inaccessible to the adversary

72

9-bit
Address
LUT (4-

bit data)

(c) Binned with Carry

4

4

8

8-bit
Address
LUT (5-

bit data)

A[7:4]

B[7:4]

B[3:0]

A[3:0]

4

4

4

4

Carry

Security of a Many-input Computation
• Multiple iterations of a run of Computation Tables utilize

overlaps of the pixels previously used
• One encoded edge output relies on some overlap of encoded pixels

from another encoded edge output)

• However, each output is encoded via a new random
permutation

• To empirically check if an overlap of encoded inputs
causes correlated outputs in our scheme, we performed
NIST randomness testing on the encoded computed
output images

73

[22].

Security of the Decoding Table
• The Decoding Table resides only on the

secure server
• Can exclude direct adversarial access as a

possible attack vector
• The Decoding Table input is derived from

a pseudorandom permutation produced
independently from the RanCode
mappings

• The adversary can view a single output
value from the Computation Table,
corresponding to a single Decode Table
input

• No information about the plaintext output
value obtained from the Decode Table
appears to be available only by providing
one row of the Computation Table

74

Map Output Permutation
to Plaintext Output

Map Encoded Inputs
to Encoded Output

B’ A’

01

11

00

10

Decode Table

(A+B)’

2

3

1

0

(A+B)’

2

3

1

0

(A + B)

0

1

1

2

Computation Table

For each
computation,
adversary only
sees a single row

• The encoding scheme is reliant on a pseudorandom permutation derived each
iteration from a 512-bit vector Hj

• If the circuit is reverse engineered to obtain the most recent Hj, the adversary can
determine the encoding used for the last input encoded

• This is only enough information to determine one unencoded value for the difference
computation which requires two input values

Security after Reverse Engineering

75

Vi

+
-Vrefmax

+
-Vrefmax-1

+
-Vref0

……

Pri
Enc

4
Di

4

48 Addr
Dec

16

416 8

Shuffle Unit

512

Shuffle Index

64 64

64 64

Si

Initial Seed
H0

Hj

Hj-1

512

128
Reg Buffer

SHA-3

Encoding Circuitry

Key Derivation Circuitry

Shuffle Unit

Addr
Dec

Bu
ffe

r M
em

or
y

Vulnerabilities
• We have attempted to red team exhaustively and note that we do not

protect against
• An adversary who can determine Hj via a mechanism such as a Hardware Trojan
• Determination of the Computation Tables when output binning is utilized

76

RanCode
Computation

Table
(LUT Tree)

Encrypted
Bitstream

Reconfigurable
Logic

Buffer
MemoryAnalog

Input

Vi

Buffer
Memory

Deployed Device

Image
Buffer

Memory

Decryption
Engine

64 88

• Introduction
• Research Overview
• Background and Prior Work
• Threat Model
• Security-Enhanced Analog-To-Digital Converter
• Implementing a Privacy Homomorphism With a Security-Enhanced ADC

• Privacy Homomorphism Scheme
• Scheme Extensions
• Architecture for Edge Detection
• Security
• Comparison to Fully Homomorphic Encryption

• PUF-Based Authentication for Delivery of Software and Firmware Updates
• Conclusions
• List of Publications
• References

Outline

77

Comparison to FHE

• For comparison, we map Canny Edge
detection to the BGV FHE [11] scheme
by utilizing the operations provided by
HElib [23] and the timing realized by
the hardware BGV implementation
BASALISC [12]

• Complete computation per pixel
consists of 15 additions/subtractions
and two multiplies and a square root
operation

78

P6 P8

+ P7

P1

- P2

P3

-

P3P2P1

P5P0P4

P8P7P6
+2

-2

P3 P8

+P5

P1

-P4

P6

-

+2

-2

Output

Directed Acyclic Graph for Each Pixel Computation

Comparison to FHE

• For comparison, we map Canny Edge
detection to the BGV FHE [11] scheme
by utilizing the operations provided by
HElib [23] and the timing realized by
the hardware BGV implementation
BASALISC [12]

• Complete computation per pixel
consists of 15 additions/subtractions
and two multiplies and a square root
operation

• When, for example, X + 2Y is performed
as X + Y + Y instead of X + 2 * Y

79

P6 P8

+ P7

P1

- P2

P3

-

P3P2P1

P5P0P4

P8P7P6
+2

-2

P3 P8

+P5

P1

-P4

P6

-

+2

-2

Output

Directed Acyclic Graph for Each Pixel Computation

One Add

Two Adds

Comparison to FHE
• Square root can be implemented with

algorithms such as Newton-Raphson
[24]

• Multiple iterations required for accuracy
• Decent accuracy generally requires >4

iterations
• Each iteration requires a multiply

• Utilizing BGV with HElib shows a need
to bootstrap 8-bit encrypted values
after 3 multiplies

• Conservatively assume square root
requires 3 multiplies, 3 add/sub and 1
bootstrapping

80

Comparison to FHE
• Square root can be implemented with

algorithms such as Newton-Raphson [24]
• Multiple iterations required for accuracy
• Decent accuracy generally requires >4

iterations
• Each iteration requires a multiply

• Utilizing BGV with HElib shows a need to
bootstrap 8-bit encrypted values after 3
multiplies

• Conservatively assume square root
requires 3 multiplies, 3 add/sub and
1 bootstrapping

BASALISC Operation times

81

Operation Time
Add/Sub 8 μs
Mult 20 μs
Bootstrapping 40 ms

• 18 add/subs and 5 multiplies = 244 μs
• With bootstrapping, 40244 μs per pixel

• Total computation time for 720p image = ~10 hours
• Our implementation (achieving one 720p image per

second) shows ~37,000X speed up

Comparison to FHE
• Square root can be implemented with

algorithms such as Newton-Raphson [24]
• Multiple iterations required for accuracy
• Decent accuracy generally requires >4

iterations
• Each iteration requires a multiply

• Utilizing BGV with HElib shows a need to
bootstrap 8-bit encrypted values after 3
multiplies

• Conservatively assume square root
requires 3 multiplies, 3 add/sub and
1 bootstrapping

BASALISC Operation times

82

Operation Time
Add/Sub 8 μs
Mult 20 μs
Bootstrapping 40 ms

• 18 add/subs and 5 multiplies = 244 μs
• With bootstrapping, 40244 μs per pixel

• Total computation time for 720p image = ~10 hours
• Our implementation (achieving one 720p image per

second) shows ~37,000X speed up

The actual performance of Square
Root requires division, which BGV and
BASALISC do not enable

• Introduction
• Research Overview
• Background and Prior Work
• Threat Model
• Security-Enhanced Analog-To-Digital Converter
• Implementing a Privacy Homomorphism With a Security-Enhanced ADC
• PUF-Based Authentication for Delivery of Software and Firmware Updates

• PUF Authentication
• Two-Factor Authentication Protocol
• Protocol Testing

• Conclusions
• List of Publications
• References

Outline

83

Secure Server
Sensor Output

Decoding
Instructions

Encoded Computation Output

Deployed Device

(1)
(2)

(3)
(4)

Encoded
Computation
Instructions

Decoding
Hardware

Embedded
CPU

Encoded
Computation
Instructions

Encoded
Computation

Encoding
Sensor

(5)

Decoded
Computation

Output

Analog
Input Data

PUF

PUF-Based Authentication for Delivery of Software and
Firmware Updates

84

PUF-Based Authentication for Delivery of Software and
Firmware Updates

85

Secure Server

PUF

PubOp PubDev

PrivOpPrivDev

Development
OperationsUpdate

Files

Update Files

PUF Response

Deployed Device

Encrypted
Comms

PubDev

• Utilize a secure update mechanism named GridTrust
[25][26][27][28][29][30]

• The secure update mechanism is supplied to ensure
unauthorized device updates and Computation Tables are never
accepted and loaded by the remote sensor

• The update protocol includes a PUF on the device which
provides authentication to the server

• Protocol components include:
• Two public-private key pairs
• A PUF residing on the

deployed device

• Introduction
• Research Overview
• Background and Prior Work
• Threat Model
• Security-Enhanced Analog-To-Digital Converter
• Implementing a Privacy Homomorphism With a Security-Enhanced ADC
• PUF-Based Authentication for Delivery of Software and Firmware Updates

• PUF Authentication
• Two-Factor Authentication Protocol
• Protocol Testing

• Conclusions
• List of Publications
• References

Outline

86

SRAM PUF Utilization

• Utilize NXP LPC55S69
microprocessor, containing an
onboard SRAM PUF

• The PUF has two main functions
• Secret store – Use the SRAM PUF bits to

encode a secret value which is stored into
a protected flash memory

• Secret retrieval – Use the SRAM PUF bits
to decode a secret value from the
protected flash memory

87

Encoded
Secret

SRAM PUF bits

Secret Value

Index

Encode
Value

SRAM PUF bits

Index

Decode
ValueEncoded Secret Secret

Value

Secret Retrieval

Secret Store

PUF-Based Authentication (Enrollment)

2. AES Key, CTR, ID
3. PUF-based Key
and CTR store

4. 𝑚𝑚1 : 𝐴𝐴𝐴𝐴𝑆𝑆_𝐴𝐴𝐸𝐸𝐸𝐸𝐾𝐾𝐾𝐾𝑦𝑦(𝐸𝐸𝐿𝐿𝐶𝐶)

5. CTR = CTR++

6b. CTR = CTR++
7. Enrollment Successful

1. Generate
AES Key, CTR,
ID

Remote DeviceSecure Server

6a. 𝐴𝐴𝐴𝐴𝑆𝑆_𝐴𝐴𝐸𝐸𝐸𝐸𝐾𝐾𝐾𝐾𝑦𝑦(𝐸𝐸𝐿𝐿𝐶𝐶)
?= 𝑚𝑚1

PUF-based CTR
store

88

• Enrollment: Storing the PUF’s
unique signature in a secure
database at the server

• For SRAM PUFs with our
scheme this entails providing
a key(s) to the PUF

PUF-Based Authentication (Normal Operation)

1. Authentication Request

2. 𝑚𝑚1 ∶ 𝐴𝐴𝐴𝐴𝑆𝑆_𝐴𝐴𝐸𝐸𝐸𝐸𝐾𝐾𝐾𝐾𝑦𝑦(𝐸𝐸𝐿𝐿𝐶𝐶)

Deployed
Device

Secure
Server

4a. 𝐴𝐴𝐴𝐴𝑆𝑆_𝐴𝐴𝐸𝐸𝐸𝐸𝐾𝐾𝐾𝐾𝑦𝑦(𝐸𝐸𝐿𝐿𝐶𝐶)
?= 𝑚𝑚1

4b. CTR = CTR++

3. CTR = CTR++

PUF-based CTR
store

89

• The device authenticates itself
to the server by presenting the
correct encrypted counter value

• Both the device and server
increment the stored CTRs to
prevent replay attacks

• Introduction
• Research Overview
• Background and Prior Work
• Threat Model
• Security-Enhanced Analog-To-Digital Converter
• Implementing a Privacy Homomorphism With a Security-Enhanced ADC
• PUF-Based Authentication for Delivery of Software and Firmware Updates

• PUF Authentication
• Two-Factor Authentication Protocol
• Protocol Testing

• Conclusions
• List of Publications
• References

Outline

90

Two-Factor Authentication

91

Deployed
Device

1. Update Developed

Developer Operations
(Secure Server)

5. approved and
Signature Created

7. Transmit , ,

3. Transmit , ,

8. Authenticate with
and

4. Authenticate
with

2. Signature
Created from Update

9. Installed

6. PUF Authentication

• The protocol utilizes two separate public-private
key pairs,

• One private key controlled by the secure server
• One private key controlled by a development

team such as a software vendor
• Both public keys reside on the deployed device
• Before two-factor authentication of the update file

occurs, PUF authentication of the deployed device is
performed

• Introduction
• Research Overview
• Background and Prior Work
• Threat Model
• Security-Enhanced Analog-To-Digital Converter
• Implementing a Privacy Homomorphism With a Security-Enhanced ADC
• PUF-Based Authentication for Delivery of Software and Firmware Updates

• PUF Authentication
• Two-Factor Authentication Protocol
• Protocol Testing

• Conclusions
• List of Publications
• References

Outline

92

Protocol Testing

93

Substation

Substation Yard

Substation
Shed

NOC
Brocade
Router

GridTrust Server

Legend
Ethernet Cable
Fiber
USB Connection
Analog Wire

GridTrust
Native
Device

Circuit
Breaker

Relay Cabinet

Relay

Rugged
Comm
Switch

GridTrust
Interfacing DeviceRelay Input Signal

PUF board

PUF board
Temp

Sensor

Insider Attacker:
Malicious SW update with incorrect
relay settings

• Protocol (called GridTrust)
was prototyped in an electrical
substation with cooperation
from Marietta Power & Water

• Testing involved two remote
devices connected to the
server

• A red team audit was
performed by the Georgia
Tech Research Institute
CIPHER Lab

Red Team Testing

94

• Red team assessment performed
with TLS on and off

• The assessment team was unable
to forge any signature or replace any
legitimate update files with invalid
update files

• Introduction
• Research Overview
• Background and Prior Work
• Threat Model
• Security-Enhanced Analog-To-Digital Converter
• Implementing a Privacy Homomorphism With a Security-Enhanced ADC
• PUF-Based Authentication for Delivery of Software and Firmware Updates
• Conclusions
• List of Publications
• References

Outline

95

Conclusion
• Enhanced security provided to remotely deployed devices via three

mechanisms
• RanCode, a security enhanced ADC concept
• RanCompute, a mechanism to perform a privacy homormorphism using RanCode
• PUF-Based authentication for the purpose of authenticating RanCompute bitstreams and

results
• RanCompute privacy homomorphism shows the ability to perform some

classes of computations orders of magnitude faster than FHE implementations

96

Secure Server
Sensor Output

Decoding
Instructions

Encoded Computation
Output

Deployed Device

(1)
(2)

(3)
(4)

Encoded
Computation
Instructions

Decoding
Hardware

Embedded
CPU

Encoded
Computation
Instructions

Encoded
Computation

Encoding
Sensor

(5)

Decoded
Computation

Output

Analog
Input Data

PUF

Conclusion
• Enhanced security provided to remotely deployed devices via three

mechanisms
• RanCode, a security enhanced ADC concept
• RanCompute, a mechanism to perform a privacy homormorphism using RanCode
• PUF-Based authentication for the purpose of authenticating RanCompute bitstreams and

results
• RanCompute privacy homomorphism shows the ability to perform some

classes of computations orders of magnitude faster than FHE implementations

97

Secure Server
Sensor Output

Decoding
Instructions

Encoded Computation
Output

Deployed Device

(1)
(2)

(3)
(4)

Encoded
Computation
Instructions

Decoding
Hardware

Embedded
CPU

Encoded
Computation
Instructions

Encoded
Computation

Encoding
Sensor

(5)

Decoded
Computation

Output

Analog
Input Data

PUF

Conclusion
• Enhanced security provided to remotely deployed devices via three

mechanisms
• RanCode, a security enhanced ADC concept
• RanCompute, a mechanism to perform a privacy homormorphism using RanCode
• PUF-Based authentication for the purpose of authenticating RanCompute bitstreams and

results
• RanCompute privacy homomorphism shows the ability to perform some

classes of computations orders of magnitude faster than FHE implementations

98

Secure Server
Sensor Output

Decoding
Instructions

Encoded Computation
Output

Deployed Device

(1)
(2)

(3)
(4)

Encoded
Computation
Instructions

Decoding
Hardware

Embedded
CPU

Encoded
Computation
Instructions

Encoded
Computation

Encoding
Sensor

(5)

Decoded
Computation

Output

Analog
Input Data

PUF

Conclusion
• Enhanced security provided to remotely deployed devices via three

mechanisms
• RanCode, a security enhanced ADC concept
• RanCompute, a mechanism to perform a privacy homormorphism using RanCode
• PUF-Based authentication for the purpose of authenticating RanCompute bitstreams and

results
• RanCompute privacy homomorphism shows the ability to perform some

classes of computations orders of magnitude faster than FHE implementations

99

Secure Server
Sensor Output

Decoding
Instructions

Encoded Computation
Output

Deployed Device

(1)
(2)

(3)
(4)

Encoded
Computation
Instructions

Decoding
Hardware

Embedded
CPU

Encoded
Computation
Instructions

Encoded
Computation

Encoding
Sensor

(5)

Decoded
Computation

Output

Analog
Input Data

PUF

• Introduction
• Research Overview
• Background and Prior Work
• Threat Model
• Security-Enhanced Analog-To-Digital Converter
• Implementing a Privacy Homomorphism With a Security-Enhanced ADC
• PUF-Based Authentication for Delivery of Software and Firmware Updates
• Conclusions
• List of Publications
• References

Outline

100

• Journal publications
• K. Hutto, V. Mooney, “Implementing Privacy Homomorphism with Random Encoding and Computation Controlled by a Remote Secure Server,”

ACM Transactions on Embedded Computing Systems (TECS).
• Under Review: K. Hutto, K. Vetter, V. Mooney, “Canny Edge Detection as a Privacy Homomorphism on a Remote Device,” IEEE Transactions Computer-Aided

Design of Integrated Circuits and Systems (TCAD).

• Conference publications
• K. Hutto, V. Mooney, “Late Breaking Results: COPPER: Computation Obfuscation by Producing Permutations for Encoding Randomly,” 2023 60th Design

Automation Conference (DAC 60), July 2023.
• K. Hutto, S. Grijalva, V. Mooney, “RanCompute: Computational Security in Embedded Devices via Random Input and Output Encodings,” 2022 11th

Mediterranean Conference on Embedded Computing (MECO’22), June 2022, Best Paper Award (1 out of 152).
• K. Hutto, S. Paul, B. Newberg, V. Boyapati, Y. Vunnam, S. Grijalva, V. Mooney, “PUF-Based Two-Factor Authentication Protocol for Securing the Power Grid

Against Insider Threat,” Kansas Power and Energy Conference (KPEC’22), April 2022.
• K. Hutto, S. Grijalva, V. Mooney, “Hardware-Based Randomized Encoding for Sensor Authentication in Power Grid SCADA Systems,” 2022 Texas Power and

Energy Conference, February 2022.
• K. Hutto, V. Mooney, “Sensing with Random Encoding for Enhanced Security in Embedded Systems,” 2021 10th Mediterranean Conference on Embedded

Computing (MECO’21), pp. 809-814, June 2021.

• Non-thesis Publications
• J. Keller, S. Paul, K. Hutto, S. Grijalva, V. Mooney, “Developing Simulation Capabilities for Supply Chain Cybersecurity of the Electricity Grid,” 2023 IEEE PES

Innovative Smart Grid Technologies Latin America, November 2023.
• J. Keller, K. Hutto; S. Grijalva; V. Mooney; T. Lewis; R. Barrett; B. Holland; E. Patten, "Experimental System for Supply Chain Cyber-Security of Distribution

Switch Controls," 2024 Texas Power and Energy Conference, March 2024.

Publications

101

• Introduction
• Research Overview
• Background and Prior Work
• Threat Model
• Security-Enhanced Analog-To-Digital Converter
• Implementing a Privacy Homomorphism With a Security-Enhanced ADC
• PUF-Based Authentication for Delivery of Software and Firmware Updates
• Conclusions
• List of Publications
• References

Outline

102

References
• [1] “Forbes, Criminals Hacked A Fish Tank To Steal Data From A Casino, Accessed:2024-03-01. [Online]. Available: https://www.forbes.com/sites/leemathews/2017/07/27/criminals-hacked-a-fish-tank-to-steal-data-

from-a-casino.

• [2] “Researchers uncover over a dozen security flaws in akuvox e11 smart intercom,” Ravie Lakshmanan, 2023. [Online]. Available: https://thehackernews.com/2023/03/researchers-uncover-over-
dozen-security.html.

• [3] “Security startup verkada hack exposes 150,000 security cameras in tesla facto-ries, jails, and more,” Chaim Gartenberg, 2021. [Online]. Available:
https://www.theverge.com/2021/3/9/22322122/verkada-hack-150000-security-cameras-tesla-factory-cloudflare-jails-hospitals

• [4] R. L. Rivest, L. Adleman, and M. L. Dertouzos, “On data banks and privacy homomorphisms,”Foundations of Secure Computation, 1978.

• [5] C. Gentry, “A fully homomorphic encryption scheme,” crypto.stanford.edu/craig, Ph.D. dissertation, Stanford University, 2009.

• [6] M. Albrecht et al., Homomorphic encryption standard, Cryptology ePrint Archive, Paper 2019/939, https://eprint.iacr.org/2019/939, 2019. [Online]. Available: https://eprint.iacr.org/2019/939.

• [7] C. Bonte, I. Iliashenko, J. Park, H. V. L. Pereira, and N. P. Smart, “Final: Faster fhe instantiated with ntru and lwe,” in Advances in Cryptology – ASIACRYPT 2022: 28th International Conference
on the Theory and Application of Cryptology and Information Security, Taipei, Taiwan, December 5–9, 2022, Proceedings, Part II, Taipei, Taiwan: Springer-Verlag, 2023, pp. 188–215, ISBN: 978-3-
031-22965-7. [Online]. Available: https://doi.org/10.1007/978-3-031-22966-4$%5C $7.

• [8] I. Chillotti, N. Gama, M. Georgieva, and M. Izabach`ene, “Tfhe: Fast fully homomorphic encryption over the torus,” Journal of Cryptology, vol. 33, no. 1, pp. 34–91, Jan. 2020. [Online]. Available:
https://doi.org/10.1007/s00145-019-09319-x.

• [9] A. Acar, H. Aksu, A. S. Uluagac, and M. Conti, “A survey on homomorphic encryption schemes: Theory and implementation,” ACM Comput. Surv., vol. 51, no. 4, Jul. 2018. [Online]. Available:
https://doi.org/10.1145/3214303.

• [10] Z. Brakerski and V. Vaikuntanathan, “Fully homomorphic encryption from ring-lwe and security for key dependent messages,” in Advances in Cryptology – CRYPTO 2011, P. Rogaway, Ed.,
Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 505–524, ISBN: 978-3-642-22792-9.

• [11] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(leveled) fully homomorphic encryption without bootstrapping,” in Proceedings of the 3rd Innovations in Theoretical Computer Science
Conference, ser. ITCS ’12, Cambridge, Massachusetts: Association for Computing Machinery, 2012, pp. 309–325, ISBN: 9781450311151.

• [12] R. Geelen et al., “Basalisc: Programmable hardware accelerator for bgv fully homomorphic encryption,” IACR Transactions on Cryptographic Hardware and Embedded Systems, vol. 2023, no.
4, pp. 32–57, Aug. 2023. [Online]. Available: https://tches.iacr.org/index.php/TCHES/article/view/11157.

• [13] N. Samardzic et al., “Craterlake: A hardware accelerator for efficient unbounded computation on encrypted data,” in Proceedings of the 49th Annual International Symposium on Computer
Architecture, ser. ISCA ’22, New York, New York: Association for Computing Machinery, 2022, pp. 173–187, ISBN: 9781450386104. [Online]. Available: https://doi.org/10.1145/3470496.3527393.

• [14] P. Socha, V. Miˇskovsk´y, and M. Novotn´y, “A comprehensive survey on the noninvasive passive side-channel analysis,” Sensors, vol. 22, no. 21, pp. 80–96, 2022. [Online].

• [15] K. Hutto and V. Mooney, “Sensing with random encoding for enhanced security in embedded systems,” in 2021 10th Mediterranean Conference on Embedded Computing (MECO), 2021, pp.
1–6.

103

https://www.forbes.com/sites/leemathews/2017/07/27/criminals-hacked-a-fish-tank-to-steal-data-from-a-casino
https://www.forbes.com/sites/leemathews/2017/07/27/criminals-hacked-a-fish-tank-to-steal-data-from-a-casino
https://thehackernews.com/2023/03/researchers-uncover-over-dozen-security.html
https://thehackernews.com/2023/03/researchers-uncover-over-dozen-security.html
https://www.theverge.com/2021/3/9/22322122/verkada-hack-150000-security-cameras-tesla-factory-cloudflare-jails-hospitals
https://doi.org/10.1145/3470496.3527393

References Cont.
• [16] K. Hutto, S. Grijalva, and V. Mooney, “Hardware-based randomized encoding for sensor authentication in power grid scada systems,” in 2022 IEEE Texas Power and Energy

Conference (TPEC), 2022, pp. 1–6.

• [17] D. E. Knuth, “The art of computer programming. volume 2, seminumerical algorithms,” p. 192, 1997.

• [18] K. Hutto, S. Grijalva, and V. Mooney, “Rancompute: Computational security in embedded devices via random input and output encodings,” in 2022 11th Mediterranean
Conference on Embedded Computing (MECO), 2022, pp. 1–8.

• [19] K. Hutto and V. Mooney, “Late breaking results: Copper: Computation obfuscation by producing permutations for encoding randomly,” in 2023 60th ACM/IEEE Design
Automation Conference (DAC), 2023, pp. 1–2.

• [20] K. Hutto and V. Mooney, “Implementing privacy homomorphism with random encoding and computation controlled by a remote secure server,” ACM Trans. Embed. Comput.
Syst., Mar. 2024, Just Accepted. [Online]. Available: https://doi.org/10.1145/3651617.

• [21] J. Canny, “A computational approach to edge detection,” IEEE transactions on pattern analysis and machine intelligence, vol. PAMI-8, no. 6, pp. 679–698, 1986.

• [22] L. E. Bassham III et al., Sp 800-22 Rev. 1a. A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications. National Institute of
Standards and Technology, Gaithersburg, MD, 2010.

• [23] S. Halevi and V. Shoup, Design and implementation of helib: A homomorphic encryption library, Cryptology ePrint Archive, Paper 2020/1481, 2020. [Online]. Available:
https://eprint.iacr.org/2020/1481.

• [24] R. G. Lyons, Streamlining Digital Signal Processing: A Tricks of the Trade Guidebook. Wiley-IEEE Press, 2012, ch. 25, pp. 243–250, ISBN: 9781118316948.

• [25] S. Paul, Y.-C. Chen, S. Grijalva, and V. J. Mooney, “A cryptographic method for defense against mitm cyber attack in the electricity grid supply chain,” in 2022 IEEE Power &
Energy Society Innovative Smart Grid Technologies Conference (ISGT), 2022, pp. 1–5.

• [26] J. Keller, S. Paul, S. Grijalva, and V. J. Mooney, “Experimental setup for grid control device software updates in supply chain cyber-security,” in 2022 North American Power
Symposium (NAPS), 2022, pp. 1–6.

• [27] B. Newberg, S. Grijalva, and V. Mooney, “Open-source architecture for multi-party update verification for data acquisition devices,” in 2022 IEEE Power and Energy Conference
at Illinois (PECI), 2022, pp. 1–7.

• [28] K. Hutto et al., “Puf-based two-factor authentication protocol for securing the power grid against insider threat,” in 2022 IEEE Kansas Power and Energy Conference (KPEC),
2022, pp. 1–6.

• [29] J. Keller, S. Paul, K. Hutto, S. Grijalva, and V. J. Mooney, “Developing simulation capabilities for supply chain cybersecurity of the electricity grid,” in 2023 IEEE PES Innovative
Smart Grid Technologies Latin America (ISGT-LA), 2023, pp. 205–209.

• [30] J. Keller et al., “Experimental system for supply chain cyber-security of distribution switch controls,” in 2024 IEEE Texas Power and Energy Conference (TPEC), 2024, pp. 1–6.

104

Extra Slides

105

RanCode Shuffle Unit

Select Line logic
64

Stage 4 Stage 3 Stage 2 Stage 1

4

4

4

4

4

Stage 15 ……..

Shuffle
Index

223

LUTi+1

…4………

106 Physical Implementation of the Knuth Shuffle Algorithm

Bad data detection via Chi-Square

• Bad data detection via Chi-Square
• To simulate a software or hardware

replacement of the sensor data such
as in a false-data injection attack, we
performed four configurations of the
RanCode encoding and decoding
circuit

107

RanCode
Encoder

Decoder
Circuit

RanCode
Encoder

Decoder
Circuit

Decoder
Circuit

RanCode
Encoder

No
Encoding

No
Decoding

Encoding Decoding Bad Data
Check

(b)

(a)

(c)

(d)

Alternate RanCode ADC Architectures

SA
Register

DAC

S/H
Analog Input

Vin

Buffer
Memory

Comp
+

-

Mask

Digital
Output

0x80
1

2

3

Successive Approximation ADC

Integrating ADC

108

Integrating (Dual-slope) and Successive Approximation ADCs are commonly used ADC architectures.
Investigation into employing this architectures with RanCode is being performed.

True
Counter

Ramp
Generator

CtrOffi

Load

Start / Stop

8

Si

Analog Input

+
-

Control
Circuitry

Dummy
CounterEn En

Integrating ADC Example Operation

• An analog value
equating to 0x2A is
applied as input

• The input is added
with the CtrOff value of
0xE7, creating 0x12

• 0x1 selects 0x8, 0x2
selects 0xB

• Final sensor output is
0x8B

0xA

0x8

0x5

0x1

0x3

0x0

0xB

0x9
0x2A

0x8B
Input … …

CtrOffi

0x12ADC True
Counter

0xE7

SAR Example Operation

Masked
Comp

Comp
Out

Input Unmasked
Reg

MaskSA RegRound

111100 01011000 00000000 00001000 00000

111100 01011100 00000000 00001100 00001

001100 01011110 00000000 00001110 00002

001100 01011101 00000000 00001101 00003

001100 01011100 10000000 00001100 10004

111100 01011100 01000000 00001100 01005

001100 01011100 01100000 00001100 01106

111100 01011100 01010000 00001100 01017

1100 0101Result

SA
Register

DAC

S/H

Analog Input
Vin

(1100 0101)

Comp
+

-

0x80
Maski

Init Value

SAR Example Operation

Masked
Comp

Comp
Out

Input Unmasked
Reg

MaskSA RegRound

011100 01011000 00001010 01011000 00000

111100 01011100 00001010 01010100 00001

101100 01011110 00001010 01010110 00002

001100 01011101 00001010 01010111 00003

001100 01011100 10001010 01010110 10004

011100 01011100 01001010 01010110 01005

001100 01011100 01101010 01010110 00106

011100 01011100 01011010 01010110 00017

0110 0000Result

SA
Register

DAC

S/H

Analog Input
Vin

(1100 0101)

Comp
+

-

Maski 0x80
Init Value

RanCode Decoding Circuit

112

With the same starting value for H0, decoding is accomplished
by reordering the encoding components

4

64 64

4

4
84Compare

Compare

Shuffle UnitsHj
512

Comparator 15

Priority
Encoder0

Comparator 0

Comparator 1

64

4 4

4

4

4

0
D[3:0]i

Compare Circuit

S[3:0]i

8

Di

Si

RanCode Flash Decoder

113

4

Di

4

64 64 64 64
4

4

4

4

16

16
4

4
Compare

Compare

Compare

Compare

Out

Shuffle
Unit

512

Shuffle Index

64 64

Initial Seed
H0

Hj

Hj-1

512

256
Reg Buffer

SHA-3

Decoding Circuitry

Key Derivation Circuitry

Shuffle
Unit

Shuffle
Unit

Shuffle
Unit

64 64

RanCode Integrating Decoder

114

4

Di

64 64
4

4

8

8
4

Compare

Compare

Out

Shuffle
Unit

512

Shuffle Index

64 64

Initial Seed
H0

Hj

Hj-1

512

136
Reg Buffer

SHA-3

Decoding Circuitry

Key Derivation Circuitry

Shuffle
Unit

Two’s
Comp

8

Adder
8

CtrOffi

RanCode SAR Decoder

115

4

Di

64 64
4

4

8

84
Compare

Compare

Out

Shuffle
Unit

512

Shuffle Index

64 64

Initial Seed
H0

Hj

Hj-1

512

136
Reg Buffer

SHA-3

Decoding Circuitry

Key Derivation Circuitry

Shuffle
Unit 8

8

Maski

+

RanCode Decode Compare Circuit

116

Out

Comparator 15

Priority
Encoder0

Comparator 0

Comparator 1

64

4 4

4

4

4

0Di

Compare Circuit

Security Analysis
• Pseudorandom Permutation (Knuth Shuffle Algorithm [17]) is reversible

• Given a known arrangement of set elements and a know output, it can be easily determined
what index was used in the algorithm

• With only a partial knowledge of the shuffle output, a subset of possible indices
can be disregarded

• For a given set with 𝑘𝑘 elements, there are 𝑘𝑘! permutations. With knowledge of the
address of one element there are 𝑘𝑘 − 1 unknown element locations and (𝑘𝑘 − 1)!
possible permutations for the remaining unknown element locations

117

Security Analysis
• 64 bits of the 𝐻𝐻𝑗𝑗 are used to select from the 16! permutations. Each permutation

held in 𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖𝑚𝑚 has a possible 2^64 / 16! = ~2^16 corresponding indices

• 𝐼𝐼 𝑘𝑘,𝑚𝑚, 𝑙𝑙𝑠𝑠 = 2
𝑙𝑙𝑠𝑠
𝑚𝑚

𝑘𝑘!

• The shuffle unit only uses half of the bits of 𝐻𝐻𝑗𝑗 , unused bits must be accounted
for as they affect the follow-on values 𝐻𝐻𝑗𝑗+1

• After pruning, total number of possible indices to test is:

• 𝑃𝑃 𝑘𝑘,𝑚𝑚, 𝑙𝑙𝑠𝑠, 𝑙𝑙ℎ = 2
𝑙𝑙𝑠𝑠
𝑚𝑚

𝑘𝑘!
 ∗ 𝑘𝑘 − 1 !𝑚𝑚 ∗ 2𝑙𝑙ℎ− 𝑙𝑙𝑠𝑠

• 𝑃𝑃 16, 4, 256, 512 = 2496 possible 𝐻𝐻𝑗𝑗 after pruning

118

Security Analysis
• 𝑙𝑙ℎ= length of hash input, 512 bits
• 𝑙𝑙𝑠𝑠 = length of hash subset used for permutation, 256 bits
• 𝑚𝑚 = number of LUT modules, 4
• 𝑘𝑘 = elements permuted, 16

4

Di

Vi

4

+
-Vrefma

x +
-Vrefmax-

1

+
-Vref0

……

64 64 64 64
4

4

4

4
Pri
Enc 16 16

Addr
Dec

Addr
Dec

Addr
Dec

Addr
Dec

16

16 4

16

416
𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖2

𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖3

𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖1

𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖0

Permutation GeneratorH0
512

119

Garbled Circuits
• The goal of secure multi-party computation (MPC) is to enable a group

of independent data owners who do not trust each other or any
common third party to jointly compute a function that depends on all
of their private inputs

• Garbled Circuits: A form of MPC to allow secure computation between
mistrusting parties with private inputs without a trusted third party.
Involves encrypting tables with multiple keys

120

RanCompute– Difference Calculation

121

Encode Encode Decode Decode

Lossy Precision Full Precision

…

…1 2

3 4 5

6

7

8

Full Precision: ∀𝑖𝑖 → 𝐷𝐷𝑖𝑖𝑓𝑓𝑓𝑓𝑖𝑖 𝑡𝑡,𝐿𝐿 = |𝐼𝐼𝑡𝑡−𝑇𝑇 𝑖𝑖 − 𝐼𝐼𝑡𝑡(𝑖𝑖)|

Difference calculated on 50x50 pixel images

Image Difference: measure of the difference of pixel values between two images:

• With a high-performance SHA-3 core and
proven dynamic FPGA technology, image
difference can be calculated for 720p
images at 20fps.

• Synthesis conducted targeting the Cyclone V
5CSXFC6D6F31C6

Lossy Precision: ∀𝑖𝑖 → 𝐷𝐷𝑖𝑖𝑓𝑓𝑓𝑓𝑖𝑖 𝑡𝑡,𝐿𝐿 = 𝐼𝐼𝑡𝑡−𝑇𝑇 𝑖𝑖 7: 4 − 𝐼𝐼𝑡𝑡 𝑖𝑖 7: 4 &
𝐼𝐼𝑡𝑡−𝑇𝑇 𝑖𝑖 3: 0 − 𝐼𝐼𝑡𝑡 𝑖𝑖 [3: 0]

Image Difference Calculations

122

Encode Encode Decode Encode Encode Decode

Full precision computations, 50x50 pixels

RanCompute Matching Outputs
• One aspect which helps to hide the identity of a digital

computation is to have different computation tables with
identical output frequencies

• Output frequency – the number of times (multiplicity) a specific output
appears in all possible outputs (including repeat values) resulting from a
function Fm() given a finite input set

• We add a minimum number of encodings to ensure matching
output frequencies of two target computations

A B 𝑭𝑭𝟏𝟏 𝑨𝑨,𝑩𝑩
= 𝑨𝑨 + 𝑩𝑩

0 0 0 (𝑆𝑆01)

0 1 1 (𝑆𝑆11)

1 0 1 (𝑆𝑆11)

1 1 2 (𝑆𝑆21)

A B 𝑭𝑭𝟐𝟐 𝑨𝑨,𝑩𝑩
= 𝑨𝑨 ∗ 𝑩𝑩

0 0 0 (𝑆𝑆02)

0 1 0 (𝑆𝑆02)

1 0 0 (𝑆𝑆02)

1 1 1 (𝑆𝑆12)

A B 𝑭𝑭𝟏𝟏 𝑨𝑨,𝑩𝑩
= 𝑨𝑨 + 𝑩𝑩

0 0 00 (𝑆𝑆01)

0 1 01 (𝑆𝑆11)

1 0 01 (𝑆𝑆11)

1 1 10 (𝑆𝑆21)

A B 𝑭𝑭𝟐𝟐 𝑨𝑨,𝑩𝑩
= 𝑨𝑨 ∗ 𝑩𝑩

0 0 00 (𝑆𝑆0𝑎𝑎2)

0 1 01 (𝑆𝑆0𝑏𝑏2)

1 0 01 (𝑆𝑆0𝑏𝑏2)

1 1 10 (𝑆𝑆12)

123

RanCompute Matching Outputs
• One aspect which helps to hide the identity of a digital

computation is to have different computation tables with
identical output frequencies

• Output frequency – the number of times (multiplicity) a specific output
appears in all possible outputs (including repeat values) resulting from a
function Fm() given a finite input set

• We add a minimum number of encodings to ensure matching
output frequencies of two target computations

A B 𝑭𝑭𝟏𝟏 𝑨𝑨,𝑩𝑩
= 𝑨𝑨 + 𝑩𝑩

0 0 0 (𝑆𝑆01)

0 1 1 (𝑆𝑆11)

1 0 1 (𝑆𝑆11)

1 1 2 (𝑆𝑆21)

A B 𝑭𝑭𝟐𝟐 𝑨𝑨,𝑩𝑩
= 𝑨𝑨 ∗ 𝑩𝑩

0 0 0 (𝑆𝑆02)

0 1 0 (𝑆𝑆02)

1 0 0 (𝑆𝑆02)

1 1 1 (𝑆𝑆12)

A B 𝑭𝑭𝟏𝟏 𝑨𝑨,𝑩𝑩
= 𝑨𝑨 + 𝑩𝑩

0 0 00 (𝑆𝑆01)

0 1 01 (𝑆𝑆11)

1 0 01 (𝑆𝑆11)

1 1 10 (𝑆𝑆21)

A B 𝑭𝑭𝟐𝟐 𝑨𝑨,𝑩𝑩
= 𝑨𝑨 ∗ 𝑩𝑩

0 0 00 (𝑆𝑆0𝑎𝑎2)

0 1 01 (𝑆𝑆0𝑏𝑏2)

1 0 01 (𝑆𝑆0𝑏𝑏2)

1 1 10 (𝑆𝑆12)

124

RanCompute Matching Outputs
• One aspect which helps to hide the identity of a digital

computation is to have different computation tables with
identical output frequencies

• Output frequency – the number of times (multiplicity) a specific output
appears in all possible outputs (including repeat values) resulting from a
function Fm() given a finite input set

• We add a minimum number of encodings to ensure matching
output frequencies of two target computations

A B 𝑭𝑭𝟏𝟏 𝑨𝑨,𝑩𝑩
= 𝑨𝑨 + 𝑩𝑩

0 0 0 (𝑆𝑆01)

0 1 1 (𝑆𝑆11)

1 0 1 (𝑆𝑆11)

1 1 2 (𝑆𝑆21)

A B 𝑭𝑭𝟐𝟐 𝑨𝑨,𝑩𝑩
= 𝑨𝑨 ∗ 𝑩𝑩

0 0 0 (𝑆𝑆02)

0 1 0 (𝑆𝑆02)

1 0 0 (𝑆𝑆02)

1 1 1 (𝑆𝑆12)

A B 𝑭𝑭𝟏𝟏 𝑨𝑨,𝑩𝑩
= 𝑨𝑨 + 𝑩𝑩

0 0 00 (𝑆𝑆01)

0 1 01 (𝑆𝑆11)

1 0 01 (𝑆𝑆11)

1 1 10 (𝑆𝑆21)

A B 𝑭𝑭𝟐𝟐 𝑨𝑨,𝑩𝑩
= 𝑨𝑨 ∗ 𝑩𝑩

0 0 00 (𝑆𝑆0𝑎𝑎2)

0 1 01 (𝑆𝑆0𝑏𝑏2)

1 0 01 (𝑆𝑆0𝑏𝑏2)

1 1 10 (𝑆𝑆12)

125

RanCompute Matching Outputs

A B

0 0 0 ()

0 1 1 ()

1 0 1 ()

1 1 2 ()

A B

0 0 0 ()

0 1 0 ()

1 0 0 ()

1 1 1 ()

A B

0 0 00 ()

0 1 01 ()

1 0 01 ()

1 1 10 ()

A B

0 0 00 ()

0 1 01 ()

1 0 01 ()

1 1 10 ()

𝑆𝑆0𝑎𝑎2 = Symbol representing zero for
 function F2, version a

𝑆𝑆01= Symbol representing zero for
 function F1

𝑆𝑆0𝑏𝑏2 = Symbol representing zero for
 function F2, version b

126

RanCompute Matching Outputs

A B

0 0 11 ()

0 1 00 ()

1 0 10 ()

1 1 11 ()

A B

0 0 11 ()

0 1 00 ()

1 0 10 ()

1 1 11 ()

• Look-Up Table (LUT) result for each of the operations with
randomized inputs and randomized outputs equalized for frequency

127

• Configure the sensor to create
data directly in an encoded format
with no mechanism to decode the
sensor data on-chip.

• Maintain a way to perform
processing on the sensor encoded
data through usage of a privacy
homomorphism.

• Only decode the processed data
once offloaded to a secure server
which possesses the capability to
perform decoding.

• Now an adversary with all data on
the device gains no information

Research Goals

Remote
Sensor

Secure
Server

128

• Each input pixel has a unique permutation
• Each output pixel has a unique permutation
• Each computation has a unique LUT
• Without a mapping for any of the pixels (input our output), we are not sure how

an adversary can convert the images into actual values, even in the case where
the single level image difference calculation is known

• Note that we are assuming that the adversary does not have a sensor capturing
the exact same (or even approximately the same) images and associated pixels

129

Security Analysis

	REMOTE SENSOR SECURITY THROUGH ENCODED COMPUTATION AND�CRYPTOGRAPHIC SIGNATURES
	Outline
	Motivation
	Introduction
	Outline
	Research Overview
	Research Overview
	Outline
	Privacy Homomorphism
	Privacy Homomorphism
	Physical Unclonable Functions
	Outline
	Threat Model
	Outline
	Security-Enhanced Analog-to-Digital Converter
	Security-Enhanced Analog-to-Digital Converter Concept
	RanCode High Level Architecture
	RanCode High Level Architecture
	RanCode Encoding Circuitry
	RanCode Encoding Circuitry
	RanCode Encoding Circuitry
	RanCode Encoding Circuitry
	RanCode Encoding Circuitry
	RanCode Encoding Circuitry
	RanCode Encoding Circuitry
	RanCode Key Derivation Circuitry
	RanCode Key Derivation Circuitry
	RanCode Key Derivation Circuitry
	RanCode Analog Circuit
	RanCode Analog Circuit
	RanCode Analog Circuit
	Outline
	Synthesis Results
	Outline
	Security of the RanCode Circuit
	Security of the RanCode Circuit
	Security of the RanCode Circuit
	Security of the RanCode Circuit
	Attempted Attack
	Attack Cont.
	Attack Cont.
	Attack Cont.
	Outline
	Implementing a privacy homomorphism with RanCode
	Recall What is a Privacy Homomorphism
	RanCompute, a Privacy Homomorphism
	RanCompute Privacy Homomorphism
	RanCompute Privacy Homomorphism
	RanCompute Plaintext Table Generation
	RanCompute Input Encoding
	RanCompute Output Encoding
	RanCompute Computation Table
	RanCompute Decode Table
	RanCompute Usage
	RanCompute Usage
	RanCompute– Difference Calculation
	Outline
	Extending Depth of Computations
	Limiting Computation Output Possibilities
	Chaining Computation Tables
	Outline
	RanCompute – Edge Detection
	Device Architecture – Edge Detection
	Device Architecture – Edge Detection
	Results
	Results
	Outline
	Security Analysis
	Security Analysis – Attack Model
	Security of the Computation Table
	Security Analysis – Output Binning
	Security Analysis – Carry Bit
	Security of a Many-input Computation
	Security of the Decoding Table
	Security after Reverse Engineering
	Vulnerabilities
	Outline
	Comparison to FHE
	Comparison to FHE
	Comparison to FHE
	Comparison to FHE
	Comparison to FHE
	Outline
	PUF-Based Authentication for Delivery of Software and Firmware Updates
	PUF-Based Authentication for Delivery of Software and Firmware Updates
	Outline
	SRAM PUF Utilization
	PUF-Based Authentication (Enrollment)
	PUF-Based Authentication (Normal Operation)
	Outline
	Two-Factor Authentication
	Outline
	Protocol Testing
	Red Team Testing
	Outline
	Conclusion
	Conclusion
	Conclusion
	Conclusion
	Outline
	Publications
	Outline
	References
	References Cont.
	Extra Slides
	RanCode Shuffle Unit
	Bad data detection via Chi-Square
	Alternate RanCode ADC Architectures
	Integrating ADC Example Operation
	SAR Example Operation
	SAR Example Operation
	RanCode Decoding Circuit
	RanCode Flash Decoder
	RanCode Integrating Decoder
	RanCode SAR Decoder
	RanCode Decode Compare Circuit
	Security Analysis
	Security Analysis
	Security Analysis
	Garbled Circuits
	RanCompute– Difference Calculation
	Image Difference Calculations
	RanCompute Matching Outputs
	RanCompute Matching Outputs
	RanCompute Matching Outputs
	RanCompute Matching Outputs
	RanCompute Matching Outputs
	Research Goals
	Security Analysis

