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Motivation
• Devices such as security cameras, sensors, and even household appliances 

today are increasingly connected to the internet, opening attack vectors to 
malicious entities

• In 2017 attackers were able to exfiltrate data from a Casino by hacking into an internet-
connected and controlled fishtank [1]

• In 2021 attackers used default admin passwords to gain access to thousands of 
camera feeds running Verkada software [2]

• In 2023 Akuvox smart intercoms were detected to have vulnerabilities allowing 
exfiltration of video feed data [3]

• Remote devices, such as IoT devices, have additional security 
considerations due to the potential ability of an adversary to gain access to 
the memory contents of a specific device
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• Expedition collecting data using 
deployed remote sensors with 
analog-to-digital converters 
(ADCs) in an area of high 
physical vulnerability.

• The deployed remote sensors are 
communicating to a secure 
server utilizing standard 
networking protocols (e.g., 
TCP/IP) 

• A non-participating party may 
steal and reverse engineer some 
of the remote sensor devices 
without detection, possibly 
leaking all on-chip and off-chip 
RAM, including, but not limited to, 
SRAM, Flash, DRAM, etc. 

Introduction
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• In a seminal paper by Rivest, Adelman and Dertouzos in 1978 [4], the authors 
suggest the development of a cryptographic framework which would allow the 
performance of computation on encrypted data by a computer which cannot 
derive the unencrypted input data or the unencrypted output result of the 
computation
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Privacy Homomorphism

where ϕ is the decoding function, ϕ-1 is the encoding function, d1 
and d2 are data, f is an operation in the decoded structure, and f -1 
is an equivalent operation in the encoded structure



Privacy Homomorphism
• The first published Fully Homomorphic Encryption (FHE), 

scheme was developed in 2009 by Craig Gentry, utilizing a multi-
dimensional ideal lattice space [5]

• Numerous schemes have been proposed since Gentry’s, with 
recent works, such as Brakerski-Gentry-Vaikuntanathan (BGV), 
mostly utilizing polynomial rings instead of lattices 
[6][7][8][9][10][11]

• Implementations such as HELib have large overheads compared 
to plaintext operations (potentially millions of times longer with 
state-of-the-art hardware such as BASALISC) [12][13][23]

• FHE schemes have large limitations such as no current support 
for division and square root directly (as specific operations) in 
publications and/or implementations
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Physical Unclonable Functions
• A physical unclonable function (PUF) is a hardware security primitive that 

utilizes tiny manufacturing variations, typically in silicon, to produce a unique 
digital signature

• A PUF can function as a digital fingerprint and can be implemented on the 
same medium as digital circuits such as microprocessors

• Many different mechanisms have been proposed to create PUFs utilizing 
different variances affecting circuit features such as gate delay, resistance, 
and capacitance

• The most ubiquitous commercially available PUFs utilize the pseudorandom 
chance for an SRAM memory bit to initialize as either a ‘0’ or ‘1’
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Threat Model
• Two distinct entities: a secure 

server and a deployed device
• Assume adversary has potential 

to gain physical access to the 
deployed device

• With physical access, the 
attacker may be able to monitor 
on-chip memory (i.e., RAM,  but 
not registers typically 
inaccessible to software)

13

• The attacker can perform simple data-collection techniques used for power side-
channel analysis during operation [14]

• Assumed to have advanced hardware reverse-engineering techniques including 
decapsulating, delayering, and detection of logic values, but requires removal and 
destruction of the circuit

• We do not specifically address attacks on the secure server; rely on security provided 
by existing research
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Security-Enhanced Analog-to-Digital Converter Concept

Standard ADC Encoding

Random ADC Encoding

Random Sensing with RanCode [15][16] 

A RanCode ADC is implemented by directly encoding 
analog values as a function of both the analog input 
value and a pseudo-random permutation, shown here 
for a flash-ADC architecture
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RanCode High Level Architecture

17

H0 – Initial Hash (Key) Value
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RanCode High Level Architecture
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RanCode Encoding Circuitry
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RanCode Encoding Circuitry

20

H0 – Initial Hash (Key) Value
Si – Sensed Unencoded Data
Di – Encoded Sensor Output Data
LUTi – Look Up Table for the ith Encoding

8

Analog-to-
Digital 

Components

512

Si

Initial Seed 
H0

Key Derivation Circuitry

Analog
Input Data 4

Di

4

4 Addr
Dec

16

416 8

Pseudorandom 
Permutation Gen

Shuffle Index

64 64

64 64

128

Encoding Circuitry

Pseudorandom 
Permutation Gen

Addr
Dec

Bu
ffe

r M
em

or
y



RanCode Encoding Circuitry
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RanCode Encoding Circuitry
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RanCode Key Derivation Circuitry
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RanCode Key Derivation Circuitry
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RanCode Key Derivation Circuitry
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RanCode Analog Circuit
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RanCode Analog Circuit
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Synthesis Results

33

• Three ADC architectures supported:
o Flash 
o Successive-Approximation Register
o Integrating

• Decoding architecture allows server to 
retrieve unencoded sensor values

• Synthesis conducted targeting the 28nm 
Cyclone V 5CSXFC6D6F31C6
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Security of the RanCode Circuit
• We are concerned with an adversary's ability to interpret the encoded data 

produced by the RanCode circuit
• We will show that without the knowledge of the RanCode key, Hj, the 

adversary has an exponentially small chance of successfully interpreting the 
data

• Keep in mind that our attack surface excludes on-chip registers including 
look-up tables; only the large on-chip memories such as SRAM cache blocks 
(including buffer memory to store the digital images) are provided to the 
adversary
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Security of the RanCode Circuit

36

• To interpret encoded data the adversary has a few potential methods
• Discover the key Hj
• Discover the mappings in each LUTi

• If the adversary can achieve the determination of a correct Hj, then determining 
LUTi is trivial to achieve as the hardware architecture is known by the adversary.
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Security of the RanCode Circuit

37

• Can Hj be determined?
• For Hj, no read mechanism is provided, and furthermore, there is no device interface 

which allows access of any intermediate value from the encoding method
• After encoding (permuting), once the key Hj is overwritten by SHA-3, there is no way on 

the remote device’s microchip to go backwards in time
• SHA-3 implements a one-way function
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infeasible for brute 
force search



Security of the RanCode Circuit
• Can LUTi be determined?
• LUTi is dependent on the value of Hj, which is not known
• An attacker can only see the encoded output values, which select a value from a 

single row in LUTi

• The attacker does not know the address (i.e., the input value) of the row in LUTi 
selected
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Attempted Attack
• Attacker cannot brute force all Hj values, 

so an attempt is made to prune potential 
values without evaluating each Hj

• Attacker can see the encoded outputs 
stored in RAM on the device

• Attacker attempts to correlate plaintext 
inputs to outputs by guessing input 
values

• E.g., at night the pixels may be black
• Assume the input guesses made by the 

adversary are accurate for a limited 
number of samples such that the exact 
voltage encoded by the ADC is known

• For the guessed values, the attacker 
inverts the permutation function to 
retrieve Hj values
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Attack Cont.

• If the input guesses are correct, a subset 
of the LUT values is determined

• With the known LUT subsets, the 
adversary attempts to determine future 
complete mappings

• The known input to output mappings 
allow the adversary to determine one 
location in each of the four 𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖𝑗𝑗  values

• The adversary knows any hash value 
input to the shuffle circuitry which does 
not result in the discovered partial 
mapping must be wrong

• How far does this partial known mapping 
lead to a reduced search space?
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Attack Cont.
• The Pseudorandom Permutation 

(Knuth Shuffle Algorithm [17]) is 
reversible

• Given a known arrangement of set 
elements and a know output, it can be 
easily determined what index was used 
in the algorithm 

• With only a partial knowledge of the 
shuffle output, a subset of possible 
indices can be disregarded
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Attack Cont.

• The partially known LUT values remove 1/16 
of the possible 2512 𝐻𝐻𝑗𝑗 values, leaving 2496 𝐻𝐻𝑗𝑗 
values

• Each of the 2496 possible 𝐻𝐻𝑗𝑗 values will 
provide a permutation which maps the 
known four locations in the four LUTs

• Only one of these possible 𝐻𝐻𝑗𝑗 values 
matches the actual internal value of 𝐻𝐻𝑗𝑗 

• If the wrong 𝐻𝐻𝑗𝑗 value is used, the follow-on 
calculated values 𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖+1 from 𝐻𝐻𝑗𝑗+1 will not 
match the actual RanCode mappings for 
subsequent encoding
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• In a seminal paper by Rivest, Adelman and Dertouzos in 1978 [4], the authors 
suggest the development of a cryptographic framework which would allow the 
performance of computation on encrypted data by a computer which cannot 
derive the unencrypted input data or the unencrypted output result of the 
computation
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Recall What is a Privacy Homomorphism

where ϕ is the decoding function, ϕ-1 is the encoding function, d1 
and d2 are data, f is an operation in the decoded structure, and f -1 
is an equivalent operation in the encoded structure



RanCompute, a Privacy Homomorphism

• The developed technology is referred 
to as RanCompute [18][19][20]

• RanCompute implements a privacy 
homomorphism 

• Two entities are involved
• The secure server
• The remote device

• The secure server contains the H0 initialization values for remote 
sensors implementing a RanCode 
architecture

• The remote sensor shown has two 
components, a RanCode 
implementation and a RanCompute 
application on an FPGA 
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RanCompute Privacy Homomorphism
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(c) Encode Operation Outputs

(d) Combine Inputs and Outputs

(b) Randomize Input Data

(a) Pre-Compute
Operation Outputs

• RanCompute creates two tables to facilitate 
a privacy homomorphism:

• Computation Table - Used by the device. 
o Contains mappings from RanCode 

encoded inputs to encoded 
computation outputs

• Decode Table - Used by the server. 
o Contains mappings from encoded 

computation outputs to unencoded 
outputs



RanCompute Privacy Homomorphism
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(c) Encode Operation Outputs

(d) Combine Inputs and Outputs

(b) Randomize Input Data

(a) Pre-Compute
Operation Outputs

𝜙𝜙 𝑓𝑓−1 𝜙𝜙1−1 𝑑𝑑1 ,𝜙𝜙2−1 𝑑𝑑2 = 𝑓𝑓(𝑑𝑑1,𝑑𝑑2)



(A) Plaintext Lookup 
Table Generation
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RanCompute Plaintext Table Generation
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(c) Encode Operation Outputs

(d) Combine Inputs and Outputs

(b) Randomize Input Data

(a) Pre-Compute
Operation Outputs

𝜙𝜙 𝑓𝑓−1 𝜙𝜙1−1 𝑑𝑑1 ,𝜙𝜙2−1 𝑑𝑑2 = 𝑓𝑓(𝑑𝑑1,𝑑𝑑2)



Server’s RanCode Copy

(A) Plaintext Lookup 
Table Generation

(C) Replace Inputs with 
Encoded Values
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RanCompute Input Encoding
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(c) Encode Operation Outputs

(d) Combine Inputs and Outputs

(b) Randomize Input Data

(a) Pre-Compute
Operation Outputs

𝜙𝜙 𝑓𝑓−1 𝜙𝜙1−1 𝑑𝑑1 ,𝜙𝜙2−1 𝑑𝑑2 = 𝑓𝑓(𝑑𝑑1,𝑑𝑑2)



Server’s RanCode Copy

(A) Plaintext Lookup 
Table Generation

(D) Output Permutation 
Generation

(C) Replace Inputs with 
Encoded Values
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RanCompute Output Encoding
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(c) Encode Operation Outputs

(d) Combine Inputs and Outputs

(b) Randomize Input Data

(a) Pre-Compute
Operation Outputs

𝜙𝜙 𝑓𝑓−1 𝜙𝜙1−1 𝑑𝑑1 ,𝜙𝜙2−1 𝑑𝑑2 = 𝑓𝑓(𝑑𝑑1,𝑑𝑑2)



Server’s RanCode Copy

(A) Plaintext Lookup 
Table Generation

(D) Output Permutation 
Generation

(C) Replace Inputs with 
Encoded Values

(E) Map Encoded Inputs 
to Encoded Output
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RanCompute Computation Table
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(c) Encode Operation Outputs

(d) Combine Inputs and Outputs

(b) Randomize Input Data

(a) Pre-Compute
Operation Outputs

𝜙𝜙 𝑓𝑓−1 𝜙𝜙1−1 𝑑𝑑1 ,𝜙𝜙2−1 𝑑𝑑2 = 𝑓𝑓(𝑑𝑑1,𝑑𝑑2)

“Computation Table”



Server’s RanCode Copy

(A) Plaintext Lookup 
Table Generation

(D) Output Permutation 
Generation

(C) Replace Inputs with 
Encoded Values

(F) Map Output Permutation 
to Plaintext Output

(E) Map Encoded Inputs 
to Encoded Output
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RanCompute Decode Table
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(c) Encode Operation Outputs

(d) Combine Inputs and Outputs

(b) Randomize Input Data

(a) Pre-Compute
Operation Outputs

𝜙𝜙 𝑓𝑓−1 𝜙𝜙1−1 𝑑𝑑1 ,𝜙𝜙2−1 𝑑𝑑2 = 𝑓𝑓(𝑑𝑑1,𝑑𝑑2)

“Decode Table”



RanCompute Usage
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RanCompute Usage
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RanCompute– Difference Calculation
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Encode Encode Decode Decode

Lossy Precision Full Precision

…

…1 2

3 4 5

6

7

8

Full Precision: ∀𝑖𝑖 → 𝐷𝐷𝑖𝑖𝑓𝑓𝑓𝑓𝑖𝑖 𝑡𝑡,𝐿𝐿 = |𝐼𝐼𝑡𝑡−𝑇𝑇 𝑖𝑖 −  𝐼𝐼𝑡𝑡(𝑖𝑖)|

Difference calculated on 50x50 pixel images

Image Difference: measure of the difference of pixel values between two images:

• With a high-performance SHA-3 core 
and proven dynamic FPGA technology, 
image difference can be calculated for 
720p (720 pixels by 1280 pixels) images 
at 20fps

Lossy Precision: ∀𝑖𝑖 → 𝐷𝐷𝑖𝑖𝑓𝑓𝑓𝑓𝑖𝑖 𝑡𝑡,𝐿𝐿 = 𝐼𝐼𝑡𝑡−𝑇𝑇 𝑖𝑖 7: 4 −  𝐼𝐼𝑡𝑡 𝑖𝑖 7: 4  & 𝐼𝐼𝑡𝑡−𝑇𝑇 𝑖𝑖 3: 0 −  𝐼𝐼𝑡𝑡 𝑖𝑖 [3: 0]
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Extending Depth of Computations
• To accommodate many inputs, a single 

Computation Table will become very large as 
the number of inputs increases

• To perform an increased depth of number of 
sub-computations to compose a larger 
computation, we limit the number of possible 
output values (output binning) so that we can 
limit the size of our look up tables
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Unencoded 
Output Values 

(Addition)

Encoded Table 
Values

0 10

1 11

1 01

2 00

(a) Full Precision Computation Table (b) Reduced Precision Computation Table

A B
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Unencoded 
Output Values

(Addition)

Encoded Table 
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2 0
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Limiting Computation Output Possibilities
• Creation of the Computation Table and 

Decode Table when limiting the number 
of output possibilities

• Calculation precision is traded for 
reduced table sizes
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(B) Device Encoder Copy

(A) Plaintext Lookup Table 
Generation

(D) Output Permutation 
Generation

(C) Replace Inputs with 
Encoded Values

(F) Map Output Permutation 
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(E) Map Encoded Inputs 
to Encoded Output
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Chaining Computation Tables
• The previously produced 

Computation Table on two inputs 
is used to create a follow-on 
Computation Table to allow a 
third input
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RanCompute – Edge Detection

62

Edge Detection: image processing technique to 
extract object boundaries from an image

𝐺𝐺𝑥𝑥 =
+1 0 −1
+2 0 −2
+1 0 −1

 ∗ 𝐼𝐼 𝐺𝐺𝑦𝑦 =
+1 +2 +1
0 0 0
−1 −1 −1

∗ 𝐼𝐼

𝐺𝐺 = 𝐺𝐺𝑥𝑥2 + 𝐺𝐺𝑦𝑦2

Input Output1 2
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Directed Acyclic Graph for Each Pixel Computation

Canny Edge Detection [21]
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Device Architecture – Edge Detection
• Architecture receives encrypted 

bitstream which is loaded onto 
reconfigurable logic

• Inputs are provided by RanCode 
through a buffer

• Each LUT tree performs one pixel 
computation



Device Architecture – Edge Detection

Three architectures 
implemented:
• 4-bit image with binned 

outputs
• 8-bit image with binned 

outputs
• 8-bit image with binned 

outputs and a carry
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Results

65

1 2

3 4

Plaintext Binned Outputs

4-bit BinnedBinned with Carry

• All three encoded computations retain enough resolution to 
clearly distinguish the features of the original image

• 8-bit binned too large to fit on our FPGA



Results
• Data requirements for the Computation 

Tables for binned, 4-bit image 
computation are within the bandwidth 
rates of 5G transmissions for one frame 
of edge detection every second
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Security Analysis
• RanCompute has three 

main components:
• RanCode
• Computation Table(s)
• Decode Table

• RanCode was discussed 
previously, so we will 
now discuss the security 
of the Computation 
Table(s) and the Decode 
Table in a RanCompute 
application
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Security Analysis – Attack Model
• An actor can read run-time data stored in general purpose memory 

• Cannot read microarchitectural units such as registers holding partial results of operations
• The attacker cannot precisely replicate the raw data values (analog or digital) sensed in the remote 

environment 
• The attacker can take the device offline at some point in time to attempt reverse engineering of the 

device through destructive methods
• The attacker's goal is to eavesdrop the operation of the device and the executed computation such that 

the attacker gains knowledge of either the unencoded sensor input data, an unencoded version of the 
computation output, or both over a reasonably long period of time (including the past)
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Attacker Access



Security of the Computation Table

• Each Computation Table output is obtained from 
a unique random permutation generated by the 
secure server 

• Each new output seen by the adversary will be 
unrelated to the previous output even if both 
outputs were obtained from equivalent input 
values 

• The RanCode input encoding permutations are 
completely distinct from the permutations used 
for the Computation Table output encodings
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Security Analysis – Output Binning
• Output binning affects the distribution 

and frequency of encoded symbols in a 
Computation Table output column

• In full precision table, each element in the 
output column appears once

• In the binned table, ‘1’ appears 3 times while 
‘0’ appears 1 times

• Frequency analysis may lead to the 
ability to decode Computation Table 
outputs if the entire Computation Table 
is obtained

• To ensure protection, the Computation 
Tables are sent in an encrypted format 
(i.e., an encrypted FPGA bitstream) and 
then decrypted when being loaded
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Security Analysis – Carry Bit

• The carry bit in an addition or subtraction 
operation may reveal some information about 
the magnitudes of the two inputs if observed in 
plaintext

• The carry bit is encoded randomly as a ‘0’ or ‘1’ 
for each table

• Observation of the carry bit (which we assume adversary 
cannot do) by an adversary would not reveal anything as 
each Computation Table is only used once

• The distribution of the frequency of appearance 
of the carry bits in the Computation Tables are 
inaccessible to the adversary
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Security of a Many-input Computation
• Multiple iterations of a run of Computation Tables utilize 

overlaps of the pixels previously used 
• One encoded edge output relies on some overlap of encoded pixels 

from another encoded edge output)

• However, each output is encoded via a new random 
permutation

• To empirically check if an overlap of encoded inputs 
causes correlated outputs in our scheme, we performed 
NIST randomness testing on the encoded computed 
output images
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Security of the Decoding Table
• The Decoding Table resides only on the 

secure server 
• Can exclude direct adversarial access as a 

possible attack vector
• The Decoding Table input is derived from 

a pseudorandom permutation produced 
independently from the RanCode 
mappings

• The adversary can view a single output 
value from the Computation Table, 
corresponding to a single Decode Table 
input

• No information about the plaintext output 
value obtained from the Decode Table 
appears to be available only by providing 
one row of the Computation Table
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Map Output Permutation 
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Map Encoded Inputs 
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• The encoding scheme is reliant on a pseudorandom permutation derived each 
iteration from a 512-bit vector Hj

• If the circuit is reverse engineered to obtain the most recent Hj, the adversary can 
determine the encoding used for the last input encoded

• This is only enough information to determine one unencoded value for the difference 
computation which requires two input values

Security after Reverse Engineering
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Vulnerabilities
• We have attempted to red team exhaustively and note that we do not 

protect against
• An adversary who can determine Hj via a mechanism such as a Hardware Trojan
• Determination of the Computation Tables when output binning is utilized 
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Comparison to FHE

• For comparison, we map Canny Edge 
detection to the BGV FHE [11] scheme 
by utilizing the operations provided by 
HElib [23] and the timing realized by 
the hardware BGV implementation 
BASALISC [12]

• Complete computation per pixel 
consists of 15 additions/subtractions 
and two multiplies and a square root 
operation
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Comparison to FHE

• For comparison, we map Canny Edge 
detection to the BGV FHE [11] scheme 
by utilizing the operations provided by 
HElib [23] and the timing realized by 
the hardware BGV implementation 
BASALISC [12]

• Complete computation per pixel 
consists of 15 additions/subtractions 
and two multiplies and a square root 
operation

• When, for example, X + 2Y is performed 
as X + Y + Y instead of X + 2 * Y
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Comparison to FHE
• Square root can be implemented with 

algorithms such as Newton-Raphson 
[24]

• Multiple iterations required for accuracy
• Decent accuracy generally requires >4 

iterations
• Each iteration requires a multiply

• Utilizing BGV with HElib shows a need 
to bootstrap 8-bit encrypted values 
after 3 multiplies

• Conservatively assume square root 
requires 3 multiplies, 3 add/sub and 1 
bootstrapping
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• Decent accuracy generally requires >4 

iterations
• Each iteration requires a multiply

• Utilizing BGV with HElib shows a need to 
bootstrap 8-bit encrypted values after 3 
multiplies

• Conservatively assume square root 
requires 3 multiplies, 3 add/sub and        
1 bootstrapping
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• With bootstrapping, 40244 μs per pixel

• Total computation time for 720p image = ~10 hours
• Our implementation (achieving one 720p image per 

second) shows ~37,000X speed up



Comparison to FHE
• Square root can be implemented with 

algorithms such as Newton-Raphson [24]
• Multiple iterations required for accuracy
• Decent accuracy generally requires >4 

iterations
• Each iteration requires a multiply

• Utilizing BGV with HElib shows a need to 
bootstrap 8-bit encrypted values after 3 
multiplies

• Conservatively assume square root 
requires 3 multiplies, 3 add/sub and        
1 bootstrapping
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Operation Time
Add/Sub 8 μs
Mult 20 μs
Bootstrapping 40 ms

• 18 add/subs and 5 multiplies = 244 μs
• With bootstrapping, 40244 μs per pixel

• Total computation time for 720p image = ~10 hours
• Our implementation (achieving one 720p image per 

second) shows ~37,000X speed up

The actual performance of Square 
Root requires division, which BGV and 
BASALISC do not enable
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PUF-Based Authentication for Delivery of Software and 
Firmware Updates
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• Utilize a secure update mechanism named GridTrust 
[25][26][27][28][29][30]

• The secure update mechanism is supplied to ensure 
unauthorized device updates and Computation Tables are never 
accepted and loaded by the remote sensor

• The update protocol includes a PUF on the device which 
provides authentication to the server

• Protocol components include:
• Two public-private key pairs
• A PUF residing on the 

deployed device
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SRAM PUF Utilization

• Utilize NXP LPC55S69 
microprocessor, containing an 
onboard SRAM PUF

• The PUF has two main functions
• Secret store – Use the SRAM PUF bits to 

encode a secret value which is stored into 
a protected flash memory

• Secret retrieval – Use the SRAM PUF bits 
to decode a secret value from the 
protected flash memory
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PUF-Based Authentication (Enrollment)

2. AES Key, CTR, ID
3. PUF-based Key 
and CTR store

4. 𝑚𝑚1 :  𝐴𝐴𝐴𝐴𝑆𝑆_𝐴𝐴𝐸𝐸𝐸𝐸𝐾𝐾𝐾𝐾𝑦𝑦(𝐸𝐸𝐿𝐿𝐶𝐶)

5. CTR = CTR++

6b. CTR = CTR++
7. Enrollment Successful

1. Generate 
AES Key, CTR, 
ID

Remote DeviceSecure Server

6a. 𝐴𝐴𝐴𝐴𝑆𝑆_𝐴𝐴𝐸𝐸𝐸𝐸𝐾𝐾𝐾𝐾𝑦𝑦(𝐸𝐸𝐿𝐿𝐶𝐶) 
?= 𝑚𝑚1

PUF-based CTR 
store
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• Enrollment: Storing the PUF’s 
unique signature in a secure 
database at the server

• For SRAM PUFs with our 
scheme this entails providing 
a key(s) to the PUF



PUF-Based Authentication (Normal Operation)

1. Authentication Request

2. 𝑚𝑚1 ∶  𝐴𝐴𝐴𝐴𝑆𝑆_𝐴𝐴𝐸𝐸𝐸𝐸𝐾𝐾𝐾𝐾𝑦𝑦(𝐸𝐸𝐿𝐿𝐶𝐶)

Deployed 
Device

Secure 
Server

4a. 𝐴𝐴𝐴𝐴𝑆𝑆_𝐴𝐴𝐸𝐸𝐸𝐸𝐾𝐾𝐾𝐾𝑦𝑦(𝐸𝐸𝐿𝐿𝐶𝐶) 
?= 𝑚𝑚1

4b. CTR = CTR++

3. CTR = CTR++

PUF-based CTR 
store
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• The device authenticates itself 
to the server by presenting the 
correct encrypted counter value

• Both the device and server 
increment the stored CTRs to 
prevent replay attacks
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Two-Factor Authentication

91
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and 
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2. Signature 
Created from Update 
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6. PUF Authentication

• The protocol utilizes two separate public-private 
key pairs, 

• One private key controlled by the secure server
• One private key controlled by a development 

team such as a software vendor
• Both public keys reside on the deployed device
• Before two-factor authentication of the update file 

occurs, PUF authentication of the deployed device is 
performed
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Protocol Testing

93
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• Protocol (called GridTrust) 
was prototyped in an electrical 
substation with cooperation 
from Marietta Power & Water

• Testing involved two remote 
devices connected to the 
server

• A red team audit was 
performed by the Georgia 
Tech Research Institute 
CIPHER Lab



Red Team Testing
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• Red team assessment performed 
with TLS on and off

• The assessment team was unable 
to forge any signature or replace any 
legitimate update files with invalid 
update files



• Introduction
• Research Overview
• Background and Prior Work
• Threat Model
• Security-Enhanced Analog-To-Digital Converter
• Implementing a Privacy Homomorphism With a Security-Enhanced ADC
• PUF-Based Authentication for Delivery of Software and Firmware Updates
• Conclusions
• List of Publications
• References

Outline

95



Conclusion
• Enhanced security provided to remotely deployed devices via three 

mechanisms
• RanCode, a security enhanced ADC concept
• RanCompute, a mechanism to perform a privacy homormorphism using RanCode
• PUF-Based authentication for the purpose of authenticating RanCompute bitstreams and 

results
• RanCompute privacy homomorphism shows the ability to perform some 

classes of computations orders of magnitude faster than FHE implementations
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Bad data detection via Chi-Square

• Bad data detection via Chi-Square
• To simulate a software or hardware 

replacement of the sensor data such 
as in a false-data injection attack, we 
performed four configurations of the 
RanCode encoding and decoding 
circuit
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Alternate RanCode ADC Architectures
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Integrating (Dual-slope) and Successive Approximation ADCs are commonly used ADC architectures. 
Investigation into employing this architectures with RanCode is being performed.
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Integrating ADC Example Operation

• An analog value 
equating to 0x2A is 
applied as input

• The input is added 
with the CtrOff value of 
0xE7, creating 0x12

• 0x1 selects 0x8, 0x2 
selects 0xB

• Final sensor output is 
0x8B
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0xE7



SAR Example Operation

Masked 
Comp

Comp 
Out

Input Unmasked 
Reg

MaskSA RegRound

111100 01011000 00000000 00001000 00000

111100 01011100 00000000 00001100 00001

001100 01011110 00000000 00001110 00002

001100 01011101 00000000 00001101 00003

001100 01011100 10000000 00001100 10004

111100 01011100 01000000 00001100 01005

001100 01011100 01100000 00001100 01106

111100 01011100 01010000 00001100 01017

1100 0101Result 

SA 
Register

DAC

S/H

Analog Input 
Vin

(1100 0101)

Comp
+

-

0x80
Maski

Init Value



SAR Example Operation

Masked 
Comp

Comp 
Out

Input Unmasked 
Reg

MaskSA RegRound

011100 01011000 00001010 01011000 00000

111100 01011100 00001010 01010100 00001

101100 01011110 00001010 01010110 00002

001100 01011101 00001010 01010111 00003

001100 01011100 10001010 01010110 10004

011100 01011100 01001010 01010110 01005

001100 01011100 01101010 01010110 00106

011100 01011100 01011010 01010110 00017

0110 0000Result 

SA 
Register

DAC

S/H

Analog Input 
Vin

(1100 0101)

Comp
+

-

Maski 0x80
Init Value



RanCode Decoding Circuit
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With the same starting value for H0, decoding is accomplished 
by reordering the encoding components

4

64 64

4

4
84Compare

Compare

Shuffle UnitsHj
512

Comparator 15

Priority 
Encoder0

Comparator 0

Comparator 1

64

4 4

4

4

4

0
D[3:0]i

Compare Circuit

S[3:0]i

8

Di

Si



RanCode Flash Decoder
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4

Di

4

64 64 64 64
4

4

4

4

16

16
4

4
Compare

Compare

Compare

Compare

Out

Shuffle 
Unit

512

Shuffle Index

64 64

Initial Seed 
H0

Hj

Hj-1

512

256
Reg Buffer

SHA-3

Decoding Circuitry

Key Derivation Circuitry

Shuffle 
Unit

Shuffle 
Unit

Shuffle 
Unit

64 64



RanCode Integrating Decoder
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4

Di

64 64
4

4

8

8
4

Compare

Compare

Out

Shuffle 
Unit

512

Shuffle Index

64 64

Initial Seed 
H0

Hj

Hj-1

512

136
Reg Buffer

SHA-3

Decoding Circuitry

Key Derivation Circuitry

Shuffle 
Unit

Two’s 
Comp

8

Adder
8

CtrOffi



RanCode SAR Decoder
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4

Di

64 64
4

4

8

84
Compare

Compare

Out

Shuffle 
Unit

512

Shuffle Index

64 64

Initial Seed 
H0

Hj

Hj-1

512

136
Reg Buffer

SHA-3

Decoding Circuitry

Key Derivation Circuitry

Shuffle 
Unit 8

8

Maski

+



RanCode Decode Compare Circuit
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Out

Comparator 15

Priority 
Encoder0

Comparator 0

Comparator 1

64

4 4

4

4

4

0Di

Compare Circuit



Security Analysis
• Pseudorandom Permutation (Knuth Shuffle Algorithm [17]) is reversible

• Given a known arrangement of set elements and a know output, it can be easily determined 
what index was used in the algorithm 

• With only a partial knowledge of the shuffle output, a subset of possible indices 
can be disregarded

• For a given set with 𝑘𝑘 elements, there are 𝑘𝑘! permutations. With knowledge of the 
address of one element there are 𝑘𝑘 − 1 unknown element locations and (𝑘𝑘 − 1)! 
possible permutations for the remaining unknown element locations
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Security Analysis
• 64 bits of the 𝐻𝐻𝑗𝑗 are used to select from the 16! permutations. Each permutation 

held in 𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖𝑚𝑚 has a possible 2^64 / 16! = ~2^16 corresponding indices

• 𝐼𝐼 𝑘𝑘,𝑚𝑚, 𝑙𝑙𝑠𝑠 = 2
𝑙𝑙𝑠𝑠
𝑚𝑚

𝑘𝑘!

• The shuffle unit only uses half of the bits of 𝐻𝐻𝑗𝑗 , unused bits must be accounted 
for as they affect the follow-on values 𝐻𝐻𝑗𝑗+1

• After pruning, total number of possible indices to test is:

• 𝑃𝑃 𝑘𝑘,𝑚𝑚, 𝑙𝑙𝑠𝑠, 𝑙𝑙ℎ = 2
𝑙𝑙𝑠𝑠
𝑚𝑚

𝑘𝑘!
 ∗ 𝑘𝑘 − 1 !𝑚𝑚  ∗ 2𝑙𝑙ℎ− 𝑙𝑙𝑠𝑠

• 𝑃𝑃 16, 4, 256, 512 =  2496 possible 𝐻𝐻𝑗𝑗 after pruning
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Security Analysis
• 𝑙𝑙ℎ= length of hash input, 512 bits
• 𝑙𝑙𝑠𝑠 = length of hash subset used for permutation, 256 bits
• 𝑚𝑚 = number of LUT modules, 4
• 𝑘𝑘 = elements permuted, 16

4

Di

Vi

4

+
-Vrefma

x +
-Vrefmax-

1

+
-Vref0

……

64 64 64 64
4

4

4

4
Pri 
Enc 16 16

Addr 
Dec

Addr 
Dec

Addr 
Dec

Addr 
Dec

16

16 4

16

416
𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖2

𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖3

𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖1

𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖0

Permutation GeneratorH0
512
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Garbled Circuits
• The goal of secure multi-party computation (MPC) is to enable a group 

of independent data owners who do not trust each other or any 
common third party to jointly compute a function that depends on all 
of their private inputs

• Garbled Circuits: A form of MPC to allow secure computation between 
mistrusting parties with private inputs without a trusted third party. 
Involves encrypting tables with multiple keys
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RanCompute– Difference Calculation

121

Encode Encode Decode Decode

Lossy Precision Full Precision

…

…1 2

3 4 5

6

7

8

Full Precision: ∀𝑖𝑖 → 𝐷𝐷𝑖𝑖𝑓𝑓𝑓𝑓𝑖𝑖 𝑡𝑡,𝐿𝐿 = |𝐼𝐼𝑡𝑡−𝑇𝑇 𝑖𝑖 −  𝐼𝐼𝑡𝑡(𝑖𝑖)|

Difference calculated on 50x50 pixel images

Image Difference: measure of the difference of pixel values between two images:

• With a high-performance SHA-3 core and 
proven dynamic FPGA technology, image 
difference can be calculated for 720p 
images at 20fps.

• Synthesis conducted targeting the Cyclone V 
5CSXFC6D6F31C6

Lossy Precision: ∀𝑖𝑖 → 𝐷𝐷𝑖𝑖𝑓𝑓𝑓𝑓𝑖𝑖 𝑡𝑡,𝐿𝐿 = 𝐼𝐼𝑡𝑡−𝑇𝑇 𝑖𝑖 7: 4 −  𝐼𝐼𝑡𝑡 𝑖𝑖 7: 4  & 
𝐼𝐼𝑡𝑡−𝑇𝑇 𝑖𝑖 3: 0 −  𝐼𝐼𝑡𝑡 𝑖𝑖 [3: 0]



Image Difference Calculations
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Encode Encode Decode Encode Encode Decode

Full precision computations, 50x50 pixels



RanCompute Matching Outputs
• One aspect which helps to hide the identity of a digital 

computation is to have different computation tables with 
identical output frequencies

• Output frequency – the number of times (multiplicity) a specific output 
appears in all possible outputs (including repeat values) resulting from a 
function Fm() given a finite input set

• We add a minimum number of encodings to ensure matching 
output frequencies of two target computations

A B 𝑭𝑭𝟏𝟏 𝑨𝑨,𝑩𝑩
= 𝑨𝑨 + 𝑩𝑩

0 0 0 (𝑆𝑆01)

0 1 1 (𝑆𝑆11)

1 0 1 (𝑆𝑆11)

1 1 2 (𝑆𝑆21)

A B 𝑭𝑭𝟐𝟐 𝑨𝑨,𝑩𝑩
= 𝑨𝑨 ∗ 𝑩𝑩

0 0 0 (𝑆𝑆02)

0 1 0 (𝑆𝑆02)

1 0 0 (𝑆𝑆02)

1 1 1 (𝑆𝑆12)

A B 𝑭𝑭𝟏𝟏 𝑨𝑨,𝑩𝑩
= 𝑨𝑨 + 𝑩𝑩

0 0 00 (𝑆𝑆01)

0 1 01 (𝑆𝑆11)

1 0 01 (𝑆𝑆11)

1 1 10 (𝑆𝑆21)

A B 𝑭𝑭𝟐𝟐 𝑨𝑨,𝑩𝑩
= 𝑨𝑨 ∗ 𝑩𝑩

0 0 00 (𝑆𝑆0𝑎𝑎2 )

0 1 01 (𝑆𝑆0𝑏𝑏2 )

1 0 01 (𝑆𝑆0𝑏𝑏2 )

1 1 10 (𝑆𝑆12)
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RanCompute Matching Outputs
• One aspect which helps to hide the identity of a digital 

computation is to have different computation tables with 
identical output frequencies

• Output frequency – the number of times (multiplicity) a specific output 
appears in all possible outputs (including repeat values) resulting from a 
function Fm() given a finite input set

• We add a minimum number of encodings to ensure matching 
output frequencies of two target computations

A B 𝑭𝑭𝟏𝟏 𝑨𝑨,𝑩𝑩
= 𝑨𝑨 + 𝑩𝑩

0 0 0 (𝑆𝑆01)

0 1 1 (𝑆𝑆11)

1 0 1 (𝑆𝑆11)

1 1 2 (𝑆𝑆21)

A B 𝑭𝑭𝟐𝟐 𝑨𝑨,𝑩𝑩
= 𝑨𝑨 ∗ 𝑩𝑩

0 0 0 (𝑆𝑆02)

0 1 0 (𝑆𝑆02)

1 0 0 (𝑆𝑆02)

1 1 1 (𝑆𝑆12)

A B 𝑭𝑭𝟏𝟏 𝑨𝑨,𝑩𝑩
= 𝑨𝑨 + 𝑩𝑩

0 0 00 (𝑆𝑆01)

0 1 01 (𝑆𝑆11)

1 0 01 (𝑆𝑆11)

1 1 10 (𝑆𝑆21)

A B 𝑭𝑭𝟐𝟐 𝑨𝑨,𝑩𝑩
= 𝑨𝑨 ∗ 𝑩𝑩

0 0 00 (𝑆𝑆0𝑎𝑎2 )

0 1 01 (𝑆𝑆0𝑏𝑏2 )

1 0 01 (𝑆𝑆0𝑏𝑏2 )

1 1 10 (𝑆𝑆12)
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RanCompute Matching Outputs
• One aspect which helps to hide the identity of a digital 

computation is to have different computation tables with 
identical output frequencies

• Output frequency – the number of times (multiplicity) a specific output 
appears in all possible outputs (including repeat values) resulting from a 
function Fm() given a finite input set

• We add a minimum number of encodings to ensure matching 
output frequencies of two target computations

A B 𝑭𝑭𝟏𝟏 𝑨𝑨,𝑩𝑩
= 𝑨𝑨 + 𝑩𝑩

0 0 0 (𝑆𝑆01)

0 1 1 (𝑆𝑆11)

1 0 1 (𝑆𝑆11)

1 1 2 (𝑆𝑆21)

A B 𝑭𝑭𝟐𝟐 𝑨𝑨,𝑩𝑩
= 𝑨𝑨 ∗ 𝑩𝑩

0 0 0 (𝑆𝑆02)

0 1 0 (𝑆𝑆02)

1 0 0 (𝑆𝑆02)

1 1 1 (𝑆𝑆12)

A B 𝑭𝑭𝟏𝟏 𝑨𝑨,𝑩𝑩
= 𝑨𝑨 + 𝑩𝑩

0 0 00 (𝑆𝑆01)

0 1 01 (𝑆𝑆11)

1 0 01 (𝑆𝑆11)

1 1 10 (𝑆𝑆21)

A B 𝑭𝑭𝟐𝟐 𝑨𝑨,𝑩𝑩
= 𝑨𝑨 ∗ 𝑩𝑩

0 0 00 (𝑆𝑆0𝑎𝑎2 )

0 1 01 (𝑆𝑆0𝑏𝑏2 )

1 0 01 (𝑆𝑆0𝑏𝑏2 )

1 1 10 (𝑆𝑆12)
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RanCompute Matching Outputs

A B

0 0 0 ( )

0 1 1 ( )

1 0 1 ( )

1 1 2 ( )

A B

0 0 0 ( )

0 1 0 ( )

1 0 0 ( )

1 1 1 ( )

A B

0 0 00 ( )

0 1 01 ( )

1 0 01 ( )

1 1 10 ( )

A B

0 0 00 ( )

0 1 01 ( )

1 0 01 ( )

1 1 10 ( )

𝑆𝑆0𝑎𝑎2 = Symbol representing zero for
         function F2, version a 

𝑆𝑆01= Symbol representing zero for
        function F1  

𝑆𝑆0𝑏𝑏2 = Symbol representing zero for
         function F2, version b 
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RanCompute Matching Outputs

A B

0 0 11 ( )

0 1 00 ( )

1 0 10 ( )

1 1 11 ( )

A B

0 0 11 ( )

0 1 00 ( )

1 0 10 ( )

1 1 11 ( )

• Look-Up Table (LUT) result for each of the operations with 
randomized inputs and randomized outputs equalized for frequency
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• Configure the sensor to create 
data directly in an encoded format 
with no mechanism to decode the 
sensor data on-chip. 

• Maintain a way to perform 
processing on the sensor encoded 
data through usage of a privacy 
homomorphism. 

• Only decode the processed data 
once offloaded to a secure server 
which possesses the capability to 
perform decoding. 

• Now an adversary with all data on 
the device gains no information

Research Goals

Remote 
Sensor

Secure 
Server
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• Each input pixel has a unique permutation
• Each output pixel has a unique permutation
• Each computation has a unique LUT
• Without a mapping for any of the pixels (input our output), we are not sure how 

an adversary can convert the images into actual values, even in the case where 
the single level image difference calculation is known

• Note that we are assuming that the adversary does not have a sensor capturing 
the exact same (or even approximately the same) images and associated pixels
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Security Analysis
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