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Abstract. Many electronic devices such as weighing scales, fitness equip-
ment and medical devices are nowadays shared by multiple users. In such
devices, automatic identification of device users becomes an important
step towards improved user convenience and personalized service. In this
paper, we propose a novel approach for subject identification using bal-
listocardiogram (BCG) signals collected unobtrusively from a modified
weighing scale. Our approach first segments BCG signals into heartbeats
using signal filtering and beat detection techniques, and averages beats
to obtain smoother ensemble averaged BCG frames that are more robust
to noise. Second, it extracts features related to subjects’ cardiovascular
performance and musculoskeletal system from their BCG frames. Finally,
it trains a machine learning model for predicting the owner of an unla-
beled BCG recording based on its features. We evaluated our approach
through a pilot experimental study with subjects’ BCG signals recorded
at rest and following different physiological modulation. Our approach
achieves up to 97% identification accuracy at rest conditions and incurs
a 15-20% accuracy drop on average under physiological modulation.

Keywords: subject identification · ballistocardiography · biometrics ·
machine learning

1 Introduction

Recent advancements have made it possible to embed various sensors into elec-
tronic devices such as electronic scales, fitness equipment, and hospital equip-
ment, which enable unobtrusive and non-invasive collection of physiological sig-
nals. These devices are often shared by multiple users such as members of a
family, athletes in a sports team, or patients in a hospital. It becomes desir-
able that these shared devices can automatically identify their users (subjects)
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based on collected signals, for improved user convenience, personalization of de-
vices and services, as well as enabling safer and more secure systems through
biometric authentication [6, 13].

Currently, subject identification in most smart household devices such as
smart scales rely either on simple biometrics such as weight and heart rate, or
require the user to manually introduce themselves by entering their ID or pairing
with a third party device (e.g., smartphone) at each time of use [4, 5, 21]. The
main drawback of the state-of-the-art is that biometrics such as weight or heart
rate are not subject-specific, i.e., they can change over time and different users
may have similar weights. The drawback of the latter is its inconvenience, e.g.,
the user has to carry their smartphone or enter their ID to the smart scale every
time. In contrast, automatic subject identification using physiological signals
alleviates both drawbacks – physiological signals are naturally present in living
individuals at all times and they often contain subject-specific features.

In this paper, we study subject identification using ballistocardiography (BCG),
an important physiological signal that measures the recoil forces of the body in
reaction to cardiac ejection of blood into the vascular tree [20]. With advances
in sensor technology (e.g. accelerometers), it has become easier to measure BCG
signals using pervasive accessories such as weighing scales, beds, chairs, and wear-
ables [9, 12, 16]. In particular, we use a modified weighing scale in our setup,
which has two main advantages. First is the popularity of weighing scales – more
than 80% of American households own a scale, and emerging smart scales lever-
age advanced capabilities [11]. Second, subjects naturally stand up when using
a scale, which ensures that the BCG measurements are completely longitudinal.

Our system for identifying scale users from their BCG signals has many
practical applications in the real world. One pervasive application is in smart
scales which are already equipped with sensors with capabilities exceeding weight
measurement. As these devices nowadays support multiple users, e.g., the Qar-
dioBase 2 supports up to 5 users [2], Withings WS-50 and Aria 2 support up to
8 users [1, 4] and Garmin Index Smart Scale supports up to 16 users [3], reli-
able subject identification methods other than manual subject selection, phone
pairing or weight biometrics would be beneficial.

While there has been prior work in identifying subjects using certain physi-
ological signals such as electrocardiogram (ECG), electroencephalogram (EEG)
and photoplethysmogram (PPG) [14, 17, 23], subject identification with BCG
signals has been less studied. Recent studies using BCG for subject identification
suffer from certain limitations [8, 9, 16, 22], which we aim to circumvent in this
work. First, in most studies a wearable device (head-mounted or wrist-mounted)
is needed to record the BCG signals [8, 9, 16, 22], which may cause inconvenience
to the user. In contrast, we rely on BCG signals collected from a modified weigh-
ing scale, without requiring wearables. Second, sensors on wearable devices only
capture the local vibrations at specific locations in the body (head or wrist),
whereas our scale can capture the longitudinal whole-body motions. Third, in
existing studies BCG signals are collected while subjects are motionless in a
specific posture without any external force or physiological modulation [8, 22].
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Fig. 1: Overview and steps of our approach

In contrast, we also study the effect of various physiological modulations such
as Valsalva maneuver, exercise, and cold pressor. Finally, as discussed by Her-
nandez et al. [9], most studies require simultaneous electrocardiogram (ECG)
recordings along with the BCG recordings [22], which can make it difficult to
measure the effectiveness of BCG signals for subject identification in isolation.
We propose and implement both ECG-assisted and non-assisted versions of our
system, where the ECG-assisted version employs the simultaneous ECG signal
only to improve beat detection and segmentation of BCG signals.

2 Methods

2.1 Hardware Setup

The overview of our study is provided in Figure 1. Two types of physiological
signals are recorded using our hardware setup: BCG and ECG. BCG signals are
recorded using a modified weighing scale, the function of which was previously
validated in [12]. The output of the scale is connected to the MP150 data ac-
quisition system (BIOPAC System, Inc., Goleta, CA). ECG signals are recorded
concurrently using BN-EL50 module (BIOPAC System, Inc., Goleta, CA) and
transmitted wirelessly to the MP150. All signals are sampled at 2 kHz.

2.2 Experimental Protocol

This study was conducted under a protocol approved by the Georgia Institute
of Technology Institutional Review Board and all subjects provided written con-
sent. 10 subjects without any known heart problems participated in the study
(five females and five males, age: 22±0.6, height: 172.3±9.8 cm and weight:
65.4±9.9 kg). This subject count is representative of the smart scale application
scenario, as current smart scales in the market support up to 5-16 users.†

In the protocol, different non-invasive physiological modulation techniques
(Valsalva maneuver, exercise and cold pressor test) were used to induce changes
in the BCG and ECG signals, in addition to the data collected during an initial
rest period. First, subjects were asked to stand on the BCG scale for five minutes.

†Examples: QardioBase 2, Fitbit Aria 2, Garmin Index Smart Scale.
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Then, they were asked to perform 20 seconds of Valsalva maneuver followed by
a two-minute rest period. To increase the heart rate further, subjects performed
two minutes of walking exercise on a treadmill at 4.8 kilometers per hour (kph).
This walking exercise was followed by 90 seconds of squatting exercise. Subjects
were then asked to stand on the BCG scale again for five minutes. At the end of
this recovery period, each subject’s left hand was immersed into 4◦C water for
15 seconds, followed by two minutes of a final rest period. Physiological signals
were collected throughout the protocol. In total, we collected 14 minutes of data
from each subject: five minutes of initial rest, two minutes after the Valsalva
maneuver, five minutes after exercise, and two minutes after the cold pressor.

2.3 Pre-processing and Beat Detection

After BCG and ECG signals are collected, they are filtered with finite impulse
response (FIR) Kaiser-window band-pass filters (0.5-20 Hz and 0.5-40 Hz, re-
spectively). We propose two options for beat detection (Figure 1): with ECG
assistance and without ECG assistance, one of which is chosen depending on
whether simultaneously recorded ECG signals are available. If a simultaneous
ECG signal is available, for each BCG-ECG pair, R-peaks are detected on the
ECG signal and the BCG is segmented into beats using the R-peak locations.
The beat length is determined to be 600ms as previously done in [19]. These
BCG beats are then ensemble averaged to remove noise and reduce the impact
of outlier beats. The moving window size is determined to be 3 beats/frame
with an overlap of 2 beats between consecutive ensemble averaged frames. We
empirically observed that larger window sizes are not desirable, as they decrease
the total number of ensemble averaged frames in each recording.

If a simultaneously recorded ECG signal is not available, we use the J-peaks of
the BCG signals as our reference points. J-peaks are the points having the highest
amplitude and occurring approximately 250ms after the beginning of each beat
[12]. To detect J-peaks, the BCG portion where amplitude is greater than zero
is taken on the BCG signal and the upper envelope is constructed. The local
maxima points in this envelope correspond to the J-peaks, which are detected
from the enveloped signal. A minimum distance of 400ms between consecutive
peaks is enforced to detect the local maxima, which corresponds to a heart rate
of 150 beats/min [9]. This strategy minimizes the risk of missing beats even if the
subject’s heart rate is high. Also, using an envelope function flattens the actual
BCG signal by covering the less prominent smaller peaks and makes the J-peaks
more explicit, so that misdetections are prevented. Once the J-peaks are located,
we take the BCG signal segments that are 250ms before and 350ms after each
J-peak location on the BCG recording (600ms in total). We keep the portion
before the J-peak shorter than the portion after it, since the J-peak typically
occurs around 250ms [9]. The detected beats are ensemble averaged into frames
using a moving average window size of 3 beats/frame, identical to the above.

2.4 Feature Extraction

Following the formation of ensemble averaged BCG frames as explained in the
previous section, our system extracts relevant features from these frames. In par-
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ticular, we focus on the I-J-K waves of the frames, which have previously been
found clinically useful in cardiovascular performance assessment [10]. These fea-
tures are also driven by the underlying anatomical structure of the heart, vascu-
lature, and musculoskeletal system for the person, and thus exhibit more inter-
subject variability compared to intra-subject variability, even in the presence of
changing cardiovascular health.

Our system extracts a total of 12 features from each ensemble averaged frame,
including the amplitudes and locations of I, J, K-waves; the durations of I-J, J-K
and I-J-K segments; the RMS power of the I-J-K complex; and the amplitudes
of I-J and J-K waves. As a typical J-wave occurs approximately 250ms after the
beginning of a beat [15, 24], it can be detected by taking the peak with the largest
amplitude in between 150-400ms of the frame. The I and K-waves are determined
as the valleys before and after the J-wave, respectively. For consistency, the same
features are extracted regardless of whether ECG recordings are available, i.e.,
no ECG-related feature (such as R-R interval) is included in our feature set.

2.5 Classifier Training and Prediction

We pose the subject identification problem as a multi-class classification task
that can be solved via supervised machine learning. Let D denote the training
data. Each instance in the training data corresponds to an ensemble averaged
BCG frame, and is of the form: (xi, yi), where xi = (xi,1, xi,2, ..., xi,12) are the 12
features extracted as described in the previous section, and yi is the label equal
to the unique subject identifier of the subject that the frame belongs to. The
training dataset D is used to build a classifier denotedM that learns to predict
the subject identifier of a frame usings its features, i.e., M : x→ subject ID.

We use Support Vector Machine (SVM) to train our classifier model M,
which is a popular supervised learning method in biometrics and bioinformatics
due to its accuracy, flexibility, and ability to deal with high-dimensional feature
spaces [25], as well as high performance in physiological signal analysis [9, 26].
SVM aims to construct a hyperplane or set of hyperplanes that separates points
from different classes with largest margins. In addition to linear margins, SVM
can enforce non-linear margins through kernel functions [7, 18] for capturing lin-
ear and non-linear relationships in the feature space. As such, we implemented
SVM with grid search to automatically search for optimal hyperparameters, in-
cluding the kernel function (linear or RBF), kernel coefficient γ (options ranging
from 0.0001 to 1 in multiples of 10), and penalty parameter C (options ranging
from 0.01 to 100 in multiples of 10). Our model supports multi-class classification
through the one-vs-all strategy.

At prediction (test) time, an unlabeled BCG recording is provided to the
system. This recording goes through the pre-processing, beat detection, ensemble
averaging, and feature extraction process. At the end of the process, a set of
unlabeled feature vectors are obtained: Xu = (xu

1 ,x
u
2 , ...,x

u
n), where n is the

number of ensemble averaged frames in the unlabeled recording. Each of the
unlabeled feature vectors are provided to M, and M predicts a label for each
vector, collectively denoted by: Y u = (yu1 , y

u
2 , ..., y

u
n). Finally, our system predicts
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the subject of the whole test BCG recording using the label that is observed most
number of times in Y u. We denote this final output prediction by ypred.

2.6 Confidence Measurement and Threshold

In our system, each prediction is associated with a confidence value, denoting
how confident our system is in predicting that ypred is the true subject ID of a
test BCG recording. Prediction confidence is measured as:

Confidence =
# of occurrences of ypred in Y u

|Y u|
(1)

We use a threshold τ such that for a test recording with confidence < τ , our
system outputs that subject identification was unsuccessful for that recording
(i.e., “subject could not be found”), instead of making an unconfident prediction
which has higher risk of being incorrect. If confidence ≥ τ , the system outputs
ypred as usual.

Our confidence-based thresholding approach has multiple advantages. When
using a smart scale, if the scale is not sufficiently confident who the user is, it
could be preferable that the user manually tells the scale who the user is, instead
of the scale carrying a higher risk of misidentifying the user. Misidentifications
may allow one scale user to view another user’s data which could be sensitive
(e.g., pregnant housemember), or misidentified user’s readings may be saved un-
der another user’s name which may cause problems in long-term health tracking.
Furthermore, in future BCG-based biometric authentication systems that grant
access to classified environments, mispredictions and false positives should be
avoided since they may grant access to unauthorized users. On the other hand,
finding an appropriate value for the threshold parameter τ is worthy of investi-
gation. By definition, τ ∈ [0, 1]. Having a large τ has the desirable outcome that
we prevent incorrect predictions, since incorrect predictions typically have lower
confidence. However, if τ is too large, some correct predictions (true positives)
which do not have as large confidence might be lost. We empirically study the
impact of different τ in a variety of settings in Section 3.2.

3 Evaluation and Results
In the experiments, we operate in multiples of 20 seconds since it is a reasonable
amount of time to stand on a smart scale for BMI, vital signs, and fat and water
percentage measurement. To do so, we divide the continuous BCG and ECG sig-
nals into 20-second long segments to obtain multiple non-overlapping recordings
per subject. We use leave-k-recordings-out cross-validation (LkRO-CV), i.e., we
run multiple iterations where in each iteration we leave out k recordings of each
subject (out of n total recordings per subject) from the training data. These
k recordings constitute the test data, whereas the remaining n − k recordings
constitute the training data.

3.1 Subject Identification Accuracy

We measure the subject identification accuracy of our approach under two sce-
narios. First, we keep the test recording durations fixed and vary the total train-
ing data duration for each subject. Note here that training data does not need to
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(a) Varying training duration (b) Varying test duration

Fig. 2: Subject identification accuracy of our approach with and without ECG assis-
tance in beat detection. In (a), test recording duration is fixed to 20 seconds. In (b),
total training data duration per subject is fixed to 1 minute.

be collected in one session; data from multiple sessions can be concatenated. Sec-
ond, we keep the total training data duration fixed and vary the test recording
durations for each subject. We report the results in Figures 2a and 2b.

In Figure 2a, the test recording duration is fixed to 20 seconds and we exper-
iment with total training duration varying between 20 seconds and 280 seconds.
Overall, we observe that ECG assistance in beat detection improves the subject
identification accuracy of our system. Although the accuracy difference between
the assisted and non-assisted versions is 14% when training durations are short
(e.g., 20 seconds), the difference decreases as longer training data becomes avail-
able and becomes less than 7% when total training data duration is 4 minutes
or longer. Furthermore, 1 minute of training data is sufficient for our system to
achieve 80% and 93% subject identification accuracy in the non-assisted and as-
sisted cases, respectively. This training data can be collected in 3 initial sessions
of scale usage. Note that the accuracy of random prediction is only 10% (since
we have 10 test subjects). Having more training data clearly improves accuracy,
as shown by the accuracy becoming 97% with 4 minutes or more training data.

In Figure 2b, the total training data duration is fixed to 1 minute per subject
and we experiment with test recording durations varying between 20 seconds
and 240 seconds. We observe that subject identification is accurate even for 20
seconds of test recordings: 80% and 91% for non-assisted and assisted versions
of our system. Accuracy increases substantially with longer test recordings and
our system achieves 95% and 100% accuracy for the non-assisted and assisted
cases, when test recordings are longer than 2 minutes.

3.2 Prediction Confidence

We vary the confidence threshold τ between 0 and 1 in increments of 0.1 and
measure the mispredictions prevented as well as the correct predictions lost under
different τ values. We report the results in Figure 3 for three different training
durations: 20 seconds, 1 minute, and 4 minutes. In each setting, two lines are
plotted: the ratio of mispredictions prevented and the ratio of correct predictions
lost (due to a correct prediction not having sufficiently high confidence to meet
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(a) Non-assisted, TD=20s (b) Non-assist., TD=1min (c) Non-assist., TD=4min

(d) Assisted, TD=20s (e) Assisted, TD=1min (f) Assisted, TD=4min

Fig. 3: Impact of confidence threshold parameter τ under different total training data
durations, with and without ECG assistance. (TD = Training Duration)

τ). We observe that τ ≤ 0.3 causes little or no loss in correct predictions while
being able to prevent some mispredictions. On the other hand, the value of τ
which maximizes the difference between prevented mispredictions and loss of
correct predictions is around τ ∼= 0.6 or 0.7 (our default value for the reported
results). In addition, longer training durations not only increase confidence in
correct predictions but also decrease confidence in mispredictions. For example,
with τ = 0.6, the loss in correct predictions is 0.26 in Figure 3d, it is 0.18 in
Figure 3e, and 0.13 in Figure 3f. The confidence values for correct predictions
must have increased to lose fewer predictions under the same τ . Furthermore, in
Figure 3d the prevented misprediction ratio is 0.76, in Figure 3e it is 0.82, and in
Figure 3f it is 0.91. Confidence values for mispredictions must have decreased to
prevent more mispredictions under the same τ . Hence, we conclude that longer
training durations have a dual positive impact on prediction confidence.

3.3 Experiments on Physiologically Modulated Signals

In the experiments so far, we trained and tested our system using BCG signals
from subjects’ fully rested (sedentary) conditions. While we expect this to be the
common setting, in some cases it is also possible that subjects are involved in
some form of physiological exercise before they step on the scale, which increases
their heart rate and results in non-traditional BCG and ECG signals. These are
called physiological modulations. Recalling Section 2.2, we collected data with
three types of modulations: Valsalva maneuver, walking and squats exercise, and
cold pressor. To evaluate the generalizability of our approach, we also measure
subject identification under physiological modulation. We perform training using
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either 1 minute or 4 minutes of rest data and measure accuracy using modulated
BCG recordings as test data. Results are provided in Table 1.

Comparing Table 1 with Figure 2, we observe that on average, the accu-
racy of modulated recordings is 15-20% lower than rest recordings. This drop is
expected, considering that the training data does not contain any modulation,
hence our model is not acquainted with modulated signals with different fea-
ture values. In particular, we would expect the location (duration) features to
have different values depending on the existence of modulation, due to increased
heart rates and shortened R-R intervals resulting from modulation. Note that
the type of modulation is also important; for example, exercise and cold pressor
typically cause higher accuracy loss than the Valsalva maneuver. On the other
hand, considering that the accuracy of random prediction is 10%, our results in
Table 1 show that our approach still has substantial identification ability.

Table 1: Impact of physiological modulation on accuracy.

Train Data Test Data Accuracy

Our approach w/

ECG assistance

Rest (1 min)

Valsalva 0.820

Exercise 0.708

Cold pressor 0.721

Rest (4 min)

Valsalva 0.863

Exercise 0.773

Cold pressor 0.779

Our approach w/o

ECG assistance

Rest (1 min)

Valsalva 0.696

Exercise 0.632

Cold pressor 0.623

Rest (4 min)

Valsalva 0.717

Exercise 0.697

Cold pressor 0.638

4 Conclusion and Future Work

In this paper, we studied subject identification using BCG signals collected from
a weighing scale. In future work, we will consider its applicability to bed-, chair-
, and wearable-based BCG sensors; as well as fitness equipment for identifying
athletes in sports teams and medical equipment for patient monitoring in hospi-
tals and long-term care facilities. We will also focus on validating our approach
with larger datasets with more subjects, as well as customize our system ac-
cording to the detected modulation impact to render the overall approach less
susceptible to modulation-related accuracy loss.
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