
Y I M I N G T A N , A D I T Y A D I W A K A R ,
J A S O N J A G I E L O A N D V I N C E N T M O O N E Y

G E O R G I A I N S T I T U T E O F T E C H N O L O G Y , A T L A N T A , G E O R G I A , U S A

Software Compilation
Using FPGA Hardware:

Register Allocation

presented at MECO’2023 and CPSIoT’2023, Budva, Montenegro, June 6-10
www.mecoconference.me

Outline

 Motivation and Introduction

 Prior Work and Background

 Methodology

 Experimental Platform and Design

 Experimental Results

 Discussion and Future Work

 Conclusions

MECO'2023 & CPSIoT’2023, June 6-8, Budva, Montenegro

Outline

 Motivation and Introduction

 Prior Work and Background

 Methodology

 Experimental Platform and Design

 Experimental Results

 Discussion and Future Work

 Conclusions

MECO'2023 & CPSIoT’2023, June 6-8, Budva, Montenegro

Motivation and Introduction

MECO'2023 & CPSIoT’2023, June 6-8, Budva, Montenegro

Traditional Approach Our Approach

Outline

 Motivation and Introduction

 Prior Work and Background

 Methodology

 Experimental Platform and Design

 Experimental Results

 Discussion and Future Work

 Conclusions

MECO'2023 & CPSIoT’2023, June 6-8, Budva, Montenegro

Prior Work: MECO 2019

MECO'2023 & CPSIoT’2023, June 6-8, Budva, Montenegro

Org A Org B

CPU RoT

G. Lopez, M. Foreman, A. Daftardar, P. Coppock, Z. Tolaymat, and V. J. Mooney, “Hardware root-of-
trust based integrity for shared library function pointers in embedded systems,” in 8th Mediterranean
Conference on Embedded Computing (MECO), 2019, pp. 1–6.

Background: Software Compilation

MECO'2023 & CPSIoT’2023, June 6-8, Budva, Montenegro

C. Lattner and V. Adve,
“LLVM: A Compilation
Framework for Lifelong
Program Analysis &
Transformation,” in
Proceedings of
International Symposium
on Code Generation and
Optimization, March
2004, pp. 75–86.

A. Krall “Compiler
Backend Generation
from Structural
Processor Models,”
Technische Universitat
Wien, Oct, 2009.
https://perso.telecom-
paristech.fr/brandner/
paper/thesis_brandner
_2009.pdf Last
accessed: Nov 17, 2021.

Outline

 Motivation and Introduction

 Prior Work and Background

 Methodology

 Experimental Platform and Design

 Experimental Results

 Discussion and Future Work

 Conclusions

MECO'2023 & CPSIoT’2023, June 6-8, Budva, Montenegro

Methodology: Design Flow

MECO'2023 & CPSIoT’2023, June 6-8, Budva, Montenegro

Methodology: Register Allocation Algorithms

MECO'2023 & CPSIoT’2023, June 6-8, Budva, Montenegro

Algorithm 2 implements
register liveness calculation
using known techniques.

Algorithm 1 implements a
register allocation algorithm
based on the liveness
information from Algorithm 2.

Outline

 Motivation and Introduction

 Prior Work and Background

 Methodology

 Experimental Platform and Design

 Experimental Results

 Discussion and Future Work

 Conclusions

MECO'2023 & CPSIoT’2023, June 6-8, Budva, Montenegro

Experimental Platform

Intel DE-10 Standard Board

 ARM-based HPS

 Cyclone V FPGA

MECO'2023 & CPSIoT’2023, June 6-8, Budva, Montenegro

Terasic, “DE-10 standard
user manual,” 2017, last
accessed 29 Apr 2023.
[Online]. Available:
https://ftp.intel.com/Public/
Pub/fpgaup/pub/Intel_Mate
rial/Boards/DE10-
Standard/DE10_Standard_U
ser_Manual.pdf

Design Specifics Part 1

 Data Transfer: AXI bus

 Register Liveness
 Three enumerated data types

 Eleven states finite state machine

 Takes in gcd instructions

 Extracts opcode and registers

 Iterates through each gcd instruction to find where each
virtual register ends

 Outputs live range for each virtual register

MECO'2023 & CPSIoT’2023, June 6-8, Budva, Montenegro

Design Specifics Part 2

 Register Allocation
 Has four extra crucial states to find free physical registers

 S1: whether or not the current virtual register has been mapped to
a physical register

 S2: whether any physical register is available
 S3: which physical register is available next in line
 S4: recording the mapping between the virtual register and the

physical register

 Deals with memory spills
 Frees the physical registers that were allocated to virtual

registers that are no longer live
 Outputs a mapping between all virtual registers used in gcd

instructions and their corresponding physical registers

MECO'2023 & CPSIoT’2023, June 6-8, Budva, Montenegro

Outline

 Motivation and Introduction

 Prior Work and Background

 Methodology

 Experimental Platform and Design

 Experimental Results

 Discussion and Future Work

 Conclusions

MECO'2023 & CPSIoT’2023, June 6-8, Budva, Montenegro

Experiment

MECO'2023 & CPSIoT’2023, June 6-8, Budva, Montenegro

1. Use Clang to emit app.ll from app.cpp on a
laptop (note we used gcd.c for app.cpp)

2. Emit instructions in binary-IR format from
app.ll on the laptop to the HPS

3. Transfer instructions in binary-IR format
from the HPS to the FPGA interfacing
through the AXI bus

4. Place instructions in binary-IR format in
the FPGA via hardcoding in the System
Verilog files for register allocation

5. Register allocation algorithms in System
Verilog which read the binary-IR
instructions and perform physical register
replacement on the FPGA

6. Generate the assembly file app.s from
instructions with physical registers on the
FPGA

7. Manually read app.s from the FPGA
8. Use gcc to generate app.o on the laptop
9. Link the executable app.o on the laptop

Experiment

MECO'2023 & CPSIoT’2023, June 6-8, Budva, Montenegro

1. Use Clang to emit app.ll from app.cpp on a
laptop (note we used gcd.c for app.cpp)

Experiment

MECO'2023 & CPSIoT’2023, June 6-8, Budva, Montenegro

1. Use Clang to emit app.ll from app.cpp on a
laptop (note we used gcd.c for app.cpp)

2. Emit instructions in binary-IR format from
app.ll on the laptop to the HPS

3.

Experiment

MECO'2023 & CPSIoT’2023, June 6-8, Budva, Montenegro

1. Use Clang to emit app.ll from app.cpp on a
laptop (note we used gcd.c for app.cpp)

2. Emit instructions in binary-IR format from
app.ll on the laptop to the HPS

3. Transfer instructions in binary-IR format
from the HPS to the FPGA interfacing
through the AXI bus

4.

Experiment

MECO'2023 & CPSIoT’2023, June 6-8, Budva, Montenegro

1. Use Clang to emit app.ll from app.cpp on a
laptop (note we used gcd.c for app.cpp)

2. Emit instructions in binary-IR format from
app.ll on the laptop to the HPS

3. Transfer instructions in binary-IR format
from the HPS to the FPGA interfacing
through the AXI bus

4. Place instructions in binary-IR format in
the FPGA via hardcoding in the System
Verilog files for register allocation

5.

Experiment

MECO'2023 & CPSIoT’2023, June 6-8, Budva, Montenegro

1. Use Clang to emit app.ll from app.cpp on a
laptop (note we used gcd.c for app.cpp)

2. Emit instructions in binary-IR format from
app.ll on the laptop to the HPS

3. Transfer instructions in binary-IR format
from the HPS to the FPGA interfacing
through the AXI bus

4. Place instructions in binary-IR format in
the FPGA via hardcoding in the System
Verilog files for register allocation

5. Register allocation algorithms in System
Verilog which read the binary-IR
instructions and perform physical register
replacement on the FPGA

6.

Experiment

MECO'2023 & CPSIoT’2023, June 6-8, Budva, Montenegro

1. Use Clang to emit app.ll from app.cpp on a
laptop (note we used gcd.c for app.cpp)

2. Emit instructions in binary-IR format from
app.ll on the laptop to the HPS

3. Transfer instructions in binary-IR format
from the HPS to the FPGA interfacing
through the AXI bus

4. Place instructions in binary-IR format in
the FPGA via hardcoding in the System
Verilog files for register allocation

5. Register allocation algorithms in System
Verilog which read the binary-IR
instructions and perform physical register
replacement on the FPGA

6. Generate the assembly file app.s from
instructions with physical registers on the
FPGA

7.
8.
9.

Experiment

MECO'2023 & CPSIoT’2023, June 6-8, Budva, Montenegro

1. Use Clang to emit app.ll from app.cpp on a
laptop (note we used gcd.c for app.cpp)

2. Emit instructions in binary-IR format from
app.ll on the laptop to the HPS

3. Transfer instructions in binary-IR format
from the HPS to the FPGA interfacing
through the AXI bus

4. Place instructions in binary-IR format in
the FPGA via hardcoding in the System
Verilog files for register allocation

5. Register allocation algorithms in System
Verilog which read the binary-IR
instructions and perform physical register
replacement on the FPGA

6. Generate the assembly file app.s from
instructions with physical registers on the
FPGA

7. Manually read app.s from the FPGA
8.
9.

Experiment

MECO'2023 & CPSIoT’2023, June 6-8, Budva, Montenegro

1. Use Clang to emit app.ll from app.cpp on a
laptop (note we used gcd.c for app.cpp)

2. Emit instructions in binary-IR format from
app.ll on the laptop to the HPS

3. Transfer instructions in binary-IR format
from the HPS to the FPGA interfacing
through the AXI bus

4. Place instructions in binary-IR format in
the FPGA via hardcoding in the System
Verilog files for register allocation

5. Register allocation algorithms in System
Verilog which read the binary-IR
instructions and perform physical register
replacement on the FPGA

6. Generate the assembly file app.s from
instructions with physical registers on the
FPGA

7. Manually read app.s from the FPGA
8. Use gcc to generate app.o on the laptop
9.

Experiment

MECO'2023 & CPSIoT’2023, June 6-8, Budva, Montenegro

1. Use Clang to emit app.ll from app.cpp on a
laptop (note we used gcd.c for app.cpp)

2. Emit instructions in binary-IR format from
app.ll on the laptop to the HPS

3. Transfer instructions in binary-IR format
from the HPS to the FPGA interfacing
through the AXI bus

4. Place instructions in binary-IR format in
the FPGA via hardcoding in the System
Verilog files for register allocation

5. Register allocation algorithms in System
Verilog which read the binary-IR
instructions and perform physical register
replacement on the FPGA

6. Generate the assembly file app.s from
instructions with physical registers on the
FPGA

7. Manually read app.s from the FPGA
8. Use gcc to generate app.o on the laptop
9. Link the executable app.o on the laptop

Experimental Result Tables I and II

MECO'2023 & CPSIoT’2023, June 6-8, Budva, Montenegro

Table I shows
the resource
utilization on
the FPGA is
efficient.

Table II shows the
time Quartus takes to
generate FPGA
bitstreams.

Experimental Result Tables III and IV

MECO'2023 & CPSIoT’2023, June 6-8, Budva, Montenegro

Table III shows
the average
execution time at
50 MHz of gcd
over different
inputs.

Table III does not
include AXI bus
communication time.
Table IV is needed to
estimate HPS to FPGA
and FPGA to HPS
communication
overhead.

Outline

 Motivation and Introduction

 Prior Work and Background

 Methodology

 Experimental Platform and Design

 Experimental Results

 Discussion and Future Work

 Conclusions

MECO'2023 & CPSIoT’2023, June 6-8, Budva, Montenegro

Discussion

MECO'2023 & CPSIoT’2023, June 6-8, Budva, Montenegro

 FPGA register allocation fully
functional with gcd hardcoded in
System Verilog
 No aspect of our methodology is specific to

any particular FPGA platform

 Data transfer not integrated

 LLVM software compilation flow
fully functional including final
generation of executable assembly
code (gcd.o)

Future Work in Red

MECO'2023 & CPSIoT’2023, June 6-8, Budva, Montenegro

1. Use Clang to emit app.ll from app.cpp
on the HPS of the board

2. Emit instructions in binary-IR format
from app.ll on the HPS

3. Transfer instructions in binary-IR
format from the HPS to the FPGA
BRAM interfacing through the AXI bus

4. Register allocation algorithms in System
Verilog which read the binary-IR
instructions and perform physical
register replacement on the FPGA

5. Generate the assembly file app.s from
instructions with physical registers on
the FPGA

6. Send app.s from the FPGA to the HPS
7. Use gcc to generate app.o on the HPS
8. Link then execute app.o on the HPS

Outline

 Motivation and Introduction

 Prior Work and Background

 Methodology

 Experimental Platform and Design

 Experimental Results

 Discussion and Future Work

 Conclusions

MECO'2023 & CPSIoT’2023, June 6-8, Budva, Montenegro

Conclusions

 Have shown a proof-of-concept demonstration of how to
compile software on an FPGA which cannot be attacked at
run-time (i.e., the FPGA used is not dynamically re-
configurable).

 Implemented the backend register allocation step in System
Verilog and have compiled a gcd program to ARM
assembly.
 Frontend software compilation in FPGA is left as future work

 This research aims to enable full just-in-time compilation
on an FPGA at run-time which is protected from
cyberattack by implementation in hardware.

MECO'2023 & CPSIoT’2023, June 6-8, Budva, Montenegro

THANK YOU

Q&A

MECO'2023 & CPSIoT’2023, June 6-8, Budva, Montenegro

