Software Compilation
Using FPGA Hardware:
Register Allocation

O

Gr Georgia Institute
. of Technology.




Outline

O

MECO'2023 & CPSIoT’2023, June 6-8, Budva, Montenegro




Outline

Motivation and Introduction

MECO'2023 & CPSIoT’2023, June 6-8, Budva, Montenegro




Motivation and Introduction

O

Traditional Approach Our Approach

Processors Processors
software software
program program
compiler compiler
frontend frontend

FPGA
|
compiler compiler
backend backend
executable executable
file file

MECO'2023 & CPSIoT’2023, June 6-8, Budva, Montenegro



Outline

O

Prior Work and Background

MECO'2023 & CPSIoT’2023, June 6-8, Budva, Montenegro




Prior Work: MECO 2019

O

R _Hea‘rtr_atef.c_ P

Compiler

. Modified to
Heartrate ™\ _ implement PLT

o ~._object file_ redirection
=

Load 7\
-.'odule /

-~ GOT patching ™\ i
~__of shared libs _<_ _ _ — moved to RoT >
In-memory | '
binary
memory
image

GOT entries

MECOQO'2023 & CPSIoT’2023, June 6-8, Budva, Montenegro



Background: Software Compilation

O

Instruction Instruction
Scheduling Scheduling

IR ) (Machine IR) (Machine IR) (Machine IR) (Machine IR)

Instruction Register
Selector Allocation

MECO'2023 & CPSIoT’2023, June 6-8, Budva, Montenegro




Outline

O

MECO'2023 & CPSIoT’2023, June 6-8, Budva, Montenegro




Methodology: Design Flow
O

Processors FPGA
app.cpp
I
Clang
|
app.ll
app.ll app.ll
(with target (with target
instructions) instructions)
AX I
I Bus Register Allocator
|
app-s - app-s
I
gcc
|
app.o

MECO'2023 & CPSIoT’2023, June 6-8, Budva, Montenegro



Methodology: Register Allocation Algorithms

O

Algorithm 1: Allocate Virtual Registers

Input : Instructions 1, Registers R, Liveness ends Algorithm 1 implements a
Omtput; Virtuel register allocations register allocation algorithm
foreach instruction i in I do .
foreach operand op in i not null do based on the liveness
Kb I ROpaldmed ihiem information from Algorithm 2.

for r in R that is available do
if r is not allocated and r then

Allocate op to T
Make r unavailable until ends|op]

break

Algorithm 2: Compute Liveness Information

Algorithm 2 implements Input : Instructions I

. . . Output: Liveness information for instructions in I
register liveness calculation foreach instruction i in I iterating backwards do

using known teChniqueS- foreach operand op in i not null do

if op first instance then
| Mark op last location as i.index

MECO'2023 & CPSIoT’2023, June 6-8, Budva, Montenegro



Outline

O

Experimental Platform and Desig

MECO'2023 & CPSIoT’2023, June 6-8, Budva, Montenegro




Experimental Platform

O

Intel DE-10 Standard Board

WFPGA yiah
. LINE Out et UART to USB
W System MIC In VGA Ethemet USB1

» ARM-based HPS
* Cyclone V FPGA

Audio Codec MicroSD Card
Video Codec
Fa SDRAM

USB BLASTER Il

DC 12V
POWER ON/OFF Cyclone V FPGA
. HSMC Connector
Terasic, “DE-10 standard ADC Connector
user manual,” 2017, last - fj‘;g LGP'O ks
accessed 29 Apr 2023. EBD 2X7 LTC
o o Connector
[Online]. Available: @
User LED

https://ftp.intel.com/Public/
Pub/fpgaup/pub/Intel Mate

rial/Boards/DE10- | I
Standard/DE10_Standard_U Switch x10 DDR3_HPS WARM_RST | HPS User Button

- - 7-Segment Buttonx4  HPS_RST
ser_Manual.pdf Display

MECO'2023 & CPSIoT’2023, June 6-8, Budva, Montenegro



Design Specifics Part 1

MECO'2023 & CPSIoT’2023, June 6-8, Budva, Montenegro




Design Specifics Part 2

» Register Allocation

o Has four extra crucial states to find free physical registers
= S1: whether or not the current virtual register has been mapped to
a physical register
« S2: whether any physical register is available
« S3: which physical register is available next in line
« S4: recording the mapping between the virtual register and the
physical register
o Deals with memory spills

o Frees the physical registers that were allocated to virtual
registers that are no longer live

o Outputs a mapping between all virtual registers used in ged
instructions and their corresponding physical registers

MECO'2023 & CPSIoT’2023, June 6-8, Budva, Montenegro



Outline

O

Experimental Results

MECO'2023 & CPSIoT’2023, June 6-8, Budva, Montenegro




Experiment

o

Use Clang to emit app.ll from app.cpp on a
laptop (note we used ged.c for app.cpp)

Emit instructions in binary-IR format from

app.ll on the laptop to the HPS

Transfer instructions in binary-IR format
from the HPS to the FPGA interfacing
through the AXI bus

Place instructions in binary-IR format in
the FPGA via hardcoding in the System
Verilog files for register allocation
Register allocation algorithms in System
Verilog which read the binary-IR
instructions and 1[;erform physical register
replacement on the FPGA

Generate the assembly file app.s from

instructions with physical registers on the
FPGA

Manually read app.s from the FPGA
Use gcc to generate app.o on the laptop
Link the executable app.o on the laptop

O

Processors

app.cpp

Clang

|

app.ll

|

app.ll

FPGA

app.ll

(with target
instructions)

AXI| Bus

A J

(with target
instructions)

Register Allocator

l

A

app.s

gece

app.o

app.s




Experiment

O

Processors

app.cpp
I

Clang

l

app.ll

app.ll app.ll
(with target » (with target
instructions) instructions)

Register Allocator

|
app.s

MECO'2023 & CPSIoT’2023, June 6-8, Budva, Montenegro



Experiment

O

Processors

app.cpp
I

l

app.ll

app.ll app.ll
(with target » (with target
instructions) instructions)

Register Allocator

|
app.s

MECO'2023 & CPSIoT’2023, June 6-8, Budva, Montenegro



Experiment

O

1. Use Clang to emit agp Al from app.cpp on a

MECO'2023 & CPSIoT’2023, June 6-8, Budva, Montenegro

laptop (note we used ged.c for app.cpp) Processors FPGA
2. Emit instructions in binary-IR format from
app.ll on the laptop to the HPS
3. Transfer instructions in binary-IR format ARp-SPR
from the HPS to the FPGA interfacing |
through the AXI bus C"T‘g
4- app.ll
app.ll app.ll
(with target *| (with target
instructions) instructions)
|
AXI Bus Register cator
|
app.s |« app.s
|
gec
|
app.o




Experiment

O

1. Use Clang to emit agp Al from app.cpp on a
laptop (note we used ged.c for app.cpp) Processors FPGA

2. Emit instructions in binary-IR format from
app.ll on the laptop to the HPS

3. Transfer instructions in binary-IR format ARp-SPR
from the HPS to the FPGA interfacing |
through the AXI bus C'al"g
4. Place instructions in binary-IR format in "
the FPGA via hardcoding in the System i
Verilog files for register allocation ]
5- app.ll app.ll
(with target (with target
instructions) instructions)

AXI Bus

A
)
©
b
w

app.s

gece

app.o

MECO'2023 & CPSIoT’2023, June 6-8, Budva, Montenegro




Experiment

O

Use Clang to emit app.ll from app.cpp on a
laptop (note we used ged.c for app.cpp) Processors

Emit instructions in binary-IR format from
app.ll on the laptop to the HPS

FPGA

app.ll

Transfer instructions in binary-IR format ARRERR
from the HPS to the FPGA interfacing |
through the AXI bus c'al”g
Place instructions in binary-IR format in |
the FPGA via hardcoding in the System il
Verilog files for register allocation |
Register allocation algorithms in System app.|l
Verilog which read the binary-IR (with target
instructions and 1[;erform physical register Instroctions)
replacement on the FPGA

AXI| Bus

(with target
instructions)

egister Allocato

l

Nepps”

A

app.s

gece

app.o




Experiment

o

Use Clang to emit app.ll from app.cpp on a
laptop (note we used ged.c for app.cpp)

Emit instructions in binary-IR format from

app.ll on the laptop to the HPS

Transfer instructions in binary-IR format
from the HPS to the FPGA interfacing
through the AXI bus

Place instructions in binary-IR format in
the FPGA via hardcoding in the System
Verilog files for register allocation

Register allocation algorithms in System
Verilog which read the binary-IR
instructions and 1[;erform physical register
replacement on the FPGA

Generate the assembly file app.s from
instructions with physical registers on the
FPGA

O

Processors

app.cpp

Clang

|

app.ll

|

app.ll

FPGA

app.ll

(with target
instructions)

AXI| Bus

L

(with target
instructions)

Register Allocator

A

app.s

gece

app.o




Experiment

o

O

Use Clang to emit app.ll from app.cpp on a
laptop (note we used ged.c for app.cpp) Processors FPGA
Emit instructions in binary-IR format from
app.ll on the laptop to the HPS
Transfer instructions in binary-IR format ARRERR
from the HPS to the FPGA interfacing |
through the AXI bus c'al”g
Place instructions in binary-IR format in "
the FPGA via hardcoding in the System i
Verilog files for register allocation |
Register allocation algorithms in System app.|l app.ll
Verilog which read the binary-IR (with target > (with target
instructions and 1[;erform physical register Instrelctignay insifuctions)
replacement on the FPGA AXIBus | | N\
Generate the assembly file app.s from seer | o
instructions with physical registers on the app.s |« app.s
FPGA : :
Manually read app.s from the FPGA glI:c

app.o




Experiment

o

Use Clang to emit app.ll from app.cpp on a
laptop (note we used ged.c for app.cpp)

Emit instructions in binary-IR format from

app.ll on the laptop to the HPS

Transfer instructions in binary-IR format
from the HPS to the FPGA interfacing
through the AXI bus

Place instructions in binary-IR format in
the FPGA via hardcoding in the System
Verilog files for register allocation
Register allocation algorithms in System
Verilog which read the binary-IR
instructions and 1[;erform physical register
replacement on the FPGA

Generate the assembly file app.s from

instructions with physical registers on the
FPGA

Manually read app.s from the FPGA
Use gcc to generate app.o on the laptop

O

Processors

app.cpp

Clang

|

app.ll

|

app.ll

FPGA

app.ll

(with target
instructions)

AXI| Bus

A J

(with target
instructions)

Register Allocator

l

app.s




Experiment

o

Use Clang to emit app.ll from app.cpp on a
laptop (note we used ged.c for app.cpp)

Emit instructions in binary-IR format from

app.ll on the laptop to the HPS

Transfer instructions in binary-IR format
from the HPS to the FPGA interfacing
through the AXI bus

Place instructions in binary-IR format in
the FPGA via hardcoding in the System
Verilog files for register allocation
Register allocation algorithms in System
Verilog which read the binary-IR
instructions and 1[;erform physical register
replacement on the FPGA

Generate the assembly file app.s from

instructions with physical registers on the
FPGA

Manually read app.s from the FPGA
Use gcc to generate app.o on the laptop
Link the executable app.o on the laptop

O

Processors

app.cpp

Clang

|

app.ll

|

app.ll

FPGA

app.ll

(with target
instructions)

AXI| Bus

A J

(with target
instructions)

Register Allocator

l

app.s




Experimental Result Tables I and 11

O

Table I shows TABLE 1
RESOURCE UTILIZATION ON CYCLONE V FPGA
the resource

utilization on Processes Resources Utilization | Utilization%
the FPGA is Register Liveness Logic (in ALMs) 184 0.44
efficient. Registers 342 0.41
Register Allocation | Logic (in ALMs) 796 1.89
Registers 1249 1.49
Table II shows the TABLE II
time Quartus takes to SYSTEM VERILOG COMPILATION TIME OF
REGISTER ALLOCATION ALGORITHMS
generate FPGA
bitstreams. Processes Total Time
Register Liveness on FPGA 78 s
Register Allocation on FPGA 117 s

MECO'2023 & CPSIoT’2023, June 6-8, Budva, Montenegro



[ )
Experimental Result Tables III and IV
Table III shows TABLE III
the average AVERAGE EXECUTION TIME OF REGISTER ALLOCATION ALGORITHMS
execution time at
50 MHz of ng Processes Time
diff t Register Liveness on FPGA 10.34 ps
pver HIDEEAEIDT Register Allocation on FPGA 8.74 us
Imputs.
Table III does not
include AXI bus TABLE IV
communication time. AVERAGE EXECUTION TIME ON AXI BuUsS
Table IV is needed to Process Time
estimate HPS to FPGA AXI Write and Read BRAM of 1 Word 23 us
and FPGA to HPS AXI Wr.ite and Read BRAM of 10 Words 114 ps
S AXI Write and Read BRAM of 100 Words | 857.1 us
communication
overhead.

MECO'2023 & CPSIoT’2023, June 6-8, Budva, Montenegro



Outline

O

Discussion and Future Wor

MECO'2023 & CPSIoT’2023, June 6-8, Budva, Montenegro




Discussion

O

FPGA

AXI Bus

\ 4

Register Allocator

app.ll
(with target
instructions)

|
l

. . Processors
» FPGA register allocation fully
functional with ged hardcoded in —
System Verilog i
o No aspect of our methodology is specific to C'alng
any particular FPGA platform app.
» Data transfer not integrated |
» LLVM software compilation flow apll
fully functional including final instructions)
generation of executable assembly
code (gcd.o) o
|
gec
|
app.o

MECO'2023 & CPSIoT’2023, June 6-8, Budva, Montenegro

app.s




Future Work in Red

O

Use Clang to emit app.ll from app.cpp

on the HPS of the board Processors FPGA
Emit instructions in binary-IR format

from app.ll on the HPS app.cpp

Transfer instructions in binary-IR . |

format from the HPS to the FPGA I

BRAM interfacing through the AXI bus app

Register allocation algorithms in System |

Verilog which read the binary-IR - -
instructions and perform physical with sarget o] (with sarget
register replacement on the FPGA instructions) instructions)
Generate the assembly file app.s from AXIBus | o ister L..ocm,
instructions with physical registers on l

the FPGA app.s [ app.s

Send app.s from the FPGA to the HPS |

gece

Use gcc to generate app.o on the HPS |
Link then execute app.o on the HPS Appo




Outline

O

Conclusions

MECO'2023 & CPSIoT’2023, June 6-8, Budva, Montenegro




» Have shown a proof-of-concept demonstration of how to
compile software on an FPGA which cannot be attacked at
run-time (i.e., the FPGA used is not dynamically re-
configurable).

» Implemented the backend register allocation step in System
Verilog and have compiled a ged program to ARM

assembly.
Frontend software compilation in FPGA is left as future work

» This research aims to enable full just-in-time compilation

on an FPGA at run-time which is protected from
cyberattack by implementation in hardware.



THANK YOU

MECO'2023 & CPSIoT’2023, June 6-8, Budva, Montenegro



