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Traditional Approach Our Approach
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Methodology: Design Flow
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Methodology: Register Allocation Algorithms
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Algorithm 2 implements 
register liveness calculation 
using known techniques.

Algorithm 1 implements a 
register allocation algorithm 
based on the liveness 
information from Algorithm 2.
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Experimental Platform

Intel DE-10 Standard Board

 ARM-based HPS

 Cyclone V FPGA
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Terasic, “DE-10 standard 
user manual,” 2017, last 
accessed 29 Apr 2023. 
[Online]. Available: 
https://ftp.intel.com/Public/
Pub/fpgaup/pub/Intel_Mate
rial/Boards/DE10-
Standard/DE10_Standard_U
ser_Manual.pdf



Design Specifics Part 1

 Data Transfer: AXI bus

 Register Liveness
 Three enumerated data types

 Eleven states finite state machine

 Takes in gcd instructions

 Extracts opcode and registers

 Iterates through each gcd instruction to find where each 
virtual register ends

 Outputs live range for each virtual register
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Design Specifics Part 2

 Register Allocation
 Has four extra crucial states to find free physical registers 

 S1: whether or not the current virtual register has been mapped to 
a physical register

 S2: whether any physical register is available
 S3: which physical register is available next in line
 S4: recording the mapping between the virtual register and the 

physical register

 Deals with memory spills
 Frees the physical registers that were allocated to virtual 

registers that are no longer live
 Outputs a mapping between all virtual registers used in gcd

instructions and their corresponding physical registers
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Experiment
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1. Use Clang to emit app.ll from app.cpp on a 
laptop (note we used gcd.c for app.cpp)

2. Emit instructions in binary-IR format from 
app.ll on the laptop to the HPS

3. Transfer instructions in binary-IR format 
from the HPS to the FPGA interfacing 
through the AXI bus

4. Place instructions in binary-IR format in 
the FPGA via hardcoding in the System 
Verilog files for register allocation

5. Register allocation algorithms in System 
Verilog which read the binary-IR 
instructions and perform physical register 
replacement on the FPGA

6. Generate the assembly file app.s from 
instructions with physical registers on the 
FPGA

7. Manually read app.s from the FPGA
8. Use gcc to generate app.o on the laptop
9. Link the executable app.o on the laptop 
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Experimental Result Tables I and II
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Table I shows 
the resource 
utilization on 
the FPGA is 
efficient.

Table II shows the 
time Quartus takes to 
generate FPGA 
bitstreams.



Experimental Result Tables III and IV

MECO'2023 & CPSIoT’2023, June 6-8, Budva, Montenegro 

Table III shows 
the average 
execution time at 
50 MHz of gcd
over different 
inputs. 

Table III does not 
include AXI bus 
communication time. 
Table IV is needed to 
estimate HPS to FPGA 
and FPGA to HPS 
communication 
overhead.
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Discussion
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 FPGA register allocation fully 
functional with gcd hardcoded in 
System Verilog
 No aspect of our methodology is specific to 

any particular FPGA platform

 Data transfer not integrated

 LLVM software compilation flow 
fully functional including final 
generation of executable assembly 
code (gcd.o)



Future Work in Red
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1. Use Clang to emit app.ll from app.cpp
on the HPS of the board

2. Emit instructions in binary-IR format 
from app.ll on the HPS

3. Transfer instructions in binary-IR 
format from the HPS to the FPGA 
BRAM interfacing through the AXI bus

4. Register allocation algorithms in System 
Verilog which read the binary-IR 
instructions and perform physical 
register replacement on the FPGA

5. Generate the assembly file app.s from 
instructions with physical registers on 
the FPGA

6. Send app.s from the FPGA to the HPS 
7. Use gcc to generate app.o on the HPS
8. Link then execute app.o on the HPS 
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Conclusions 

 Have shown a proof-of-concept demonstration of how to 
compile software on an FPGA which cannot be attacked at 
run-time (i.e., the FPGA used is not dynamically re-
configurable). 

 Implemented the backend register allocation step in System 
Verilog and have compiled a gcd program to ARM 
assembly. 
 Frontend software compilation in FPGA is left as future work

 This research aims to enable full just-in-time compilation 
on an FPGA at run-time which is protected from 
cyberattack by implementation in hardware. 
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