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Motivation and Introduction
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Prior Work: MECO 2019
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Background: Software Compilation
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Methodology: Design Flow
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Methodology: Register Allocation Algorithms
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Algorithm 1: Allocate Virtual Registers

Input : Instructions 1, Registers R, Liveness ends Algorithm 1 implements a
Omtput; Virtuel register allocations register allocation algorithm
foreach instruction i in I do .
foreach operand op in i not null do based on the liveness
Kb I ROpaldmed ihiem information from Algorithm 2.

for r in R that is available do
if r is not allocated and r then

Allocate op to T
Make r unavailable until ends|op]

break

Algorithm 2: Compute Liveness Information

Algorithm 2 implements Input : Instructions I

. . . Output: Liveness information for instructions in I
register liveness calculation foreach instruction i in I iterating backwards do

using known teChniqueS- foreach operand op in i not null do

if op first instance then
| Mark op last location as i.index
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Experimental Platform
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Design Specifics Part 2

» Register Allocation

o Has four extra crucial states to find free physical registers
= S1: whether or not the current virtual register has been mapped to
a physical register
« S2: whether any physical register is available
« S3: which physical register is available next in line
« S4: recording the mapping between the virtual register and the
physical register
o Deals with memory spills

o Frees the physical registers that were allocated to virtual
registers that are no longer live

o Outputs a mapping between all virtual registers used in ged
instructions and their corresponding physical registers
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Experiment
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Experimental Result Tables I and 11

O

Table I shows TABLE 1
RESOURCE UTILIZATION ON CYCLONE V FPGA
the resource

utilization on Processes Resources Utilization | Utilization%
the FPGA is Register Liveness Logic (in ALMs) 184 0.44
efficient. Registers 342 0.41
Register Allocation | Logic (in ALMs) 796 1.89
Registers 1249 1.49
Table II shows the TABLE II
time Quartus takes to SYSTEM VERILOG COMPILATION TIME OF
REGISTER ALLOCATION ALGORITHMS
generate FPGA
bitstreams. Processes Total Time
Register Liveness on FPGA 78 s
Register Allocation on FPGA 117 s
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Experimental Result Tables III and IV
Table III shows TABLE III
the average AVERAGE EXECUTION TIME OF REGISTER ALLOCATION ALGORITHMS
execution time at
50 MHz of ng Processes Time
diff t Register Liveness on FPGA 10.34 ps
pver HIDEEAEIDT Register Allocation on FPGA 8.74 us
Imputs.
Table III does not
include AXI bus TABLE IV
communication time. AVERAGE EXECUTION TIME ON AXI BuUsS
Table IV is needed to Process Time
estimate HPS to FPGA AXI Write and Read BRAM of 1 Word 23 us
and FPGA to HPS AXI Wr.ite and Read BRAM of 10 Words 114 ps
S AXI Write and Read BRAM of 100 Words | 857.1 us
communication
overhead.
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Discussion
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FPGA

AXI Bus

\ 4

Register Allocator

app.ll
(with target
instructions)

|
l

. . Processors
» FPGA register allocation fully
functional with ged hardcoded in —
System Verilog i
o No aspect of our methodology is specific to C'alng
any particular FPGA platform app.
» Data transfer not integrated |
» LLVM software compilation flow apll
fully functional including final instructions)
generation of executable assembly
code (gcd.o) o
|
gec
|
app.o
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» Have shown a proof-of-concept demonstration of how to
compile software on an FPGA which cannot be attacked at
run-time (i.e., the FPGA used is not dynamically re-
configurable).

» Implemented the backend register allocation step in System
Verilog and have compiled a ged program to ARM

assembly.
Frontend software compilation in FPGA is left as future work

» This research aims to enable full just-in-time compilation

on an FPGA at run-time which is protected from
cyberattack by implementation in hardware.
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