
Software Compilation Using FPGA Hardware:
Register Allocation

Yiming Tan†, Aditya Diwakar∗‡, Jason Jagielo† and Vincent Mooney∗†
†School of Electrical and Computer Engineering, ∗School of Computer Science, ‡School of Mathematics

Georgia Institute of Technology, Atlanta, Georgia, USA
{ytan308, adiwakar8, jjagielo3, mooney}@gatech.edu

Abstract—Malicious attackers are constantly attacking software
compilers and attempting to exploit various security vulnerabili-
ties. By executing carefully chosen machine instructions already
present in the program, an attacker can perform harmful actions
arbitrarily. In this paper, we propose hardware/software codesign
techniques to perform software compilation steps in hardware,
specifically the register allocation step on a Field Programmable
Gate Array (FPGA). Our experiment incorporates two key
features: 1) Advanced RISC Machine (ARM) instruction set
architecture (ISA)-based register allocation algorithms to calculate
variable liveness as well as map virtual registers to physical
registers and 2) the feasibility of executing the register allocation
algorithms on a Cyclone V FPGA. Our experimental results show
the timing efficiency and resource efficiency – while diminishing
security risks – when performing register allocation of the gcd
program on the FPGA.

Keywords—Hardware/Software Codesign, FPGA, Compiler,
Register Allocation, Hardware Security

I. INTRODUCTION

As software becomes increasingly complex and ubiquitous,
security threats are becoming more prevalent and sophisticated.
The majority of cyberattacks today still occur as a result of
exploiting software vulnerabilities. Software-based exploitation
occurs when certain features of a software stack and interface
are exploited [1]. Compiling software is a crucial step in the
software development process but also poses security risks,
especially for so called “just-in-time” compilers. In a method
such as return-oriented programming (ROP), attackers may
alter a program’s control flow by gaining control of the call
stack so that they can cause the program to return to arbitrary
points in the program’s code. In a ROP attack, the attackers
find gadgets within the original program text and cause them
to be executed in sequence to perform a task other than what
was intended [2]. Attackers can also perform harmful actions
arbitrarily by executing carefully chosen machine instructions
already present in the program. Moreover, software compilers
are also at risk to Trojan source attacks in which adversaries
can introduce targeted vulnerabilities into software potentially
without being detected by using control characters to modify
the order of character blocks displayed and enabling comments
and strings to appear to be code and vice versa thereby crafting
code that is interpreted differently by compilers as compared
to by humans [3][4].

To address these security risks, there has been growing
interest in performing compiler steps in hardware, which results
in increased security benefits. These benefits can range from

increasing the complexity of the attack to limiting overall
vulnerabilities.

Our work makes the following contributions to compiling
software in hardware:

1) Implementation of register allocation algorithms based on
ARM ISA that can be executed on an FPGA given input
programs.

2) Hardware/software codesign techniques that use few
memory resources and have comparatively high speed.

The rest of the paper is organized as follows. Section II
provides insight into prior work and motivation to design a
compiler in hardware. Section III provides background on com-
pilation frameworks, back end compilation, register allocation
(the main focus of this paper), and rsYocto, an embedded
Linux distribution customized for Cyclone V FPGAs. Sec-
tion IV discusses the methodology of our customized Binary-
IR ”packet” design, data transmission, algorithms for liveness
analysis, register allocation, and our testing example as well
as post-allocation processes. Section V describes our Intel DE-
10 Standard Board based experimental platform, experimental
flow, and design specifics. Section VI discusses the experi-
mental results from the perspective of timing efficiency and
resource efficiency. Section VII presents broader discussions
of our experimental results while offering future work. Section
VIII presents the conclusions of the paper.

II. PRIOR WORK

Previous work using FPGA hardware to compile software
includes the demonstration of mitigating shared library func-
tion attacks by implementing a hardware root of trust (RoT)
from which to store and retrieve function pointers [5]. This
prior work from MECO 2019 [5] prevents relocation section
overwrites from diverting control flow as they would in an
unprotected binary. This was done by implementing a hardware
RoT to protect symbol tables from malicious modification and
contributing to software libraries to support the storage/retrieval
of symbol table entries to/from the proposed hardware RoT,
providing embedded system developers with a security measure
similar to RelRO without requiring a customized memory
management unit [6]. Finally, our algorithm for register allo-
cation is based on a prior syntax-directed translation technique
using global optimization, local optimization, code generation,
and peephole optimization [7]. We, however, implement this
algorithm in FPGA hardware.

Our paper presents the first work to develop the experiment-
based register allocation algorithm and implement the register
allocator in resource-constrained hardware, specifically on the
Cyclone V FPGA. As a crucial step of back end compilation,
register allocation maps infinite virtual registers to finite physi-
cal registers that are available in a given ISA, seeking to reuse
physical registers and minimize the number of memory loads
and stores needed by a software program. In this paper, we
perform register allocation for a software program using the
Cyclone V FPGA to explore the security benefits of hardware-
based compilation of software programs.

III. BACKGROUND

In this section, we discuss the modular compiler design and a
critical component of back end compilation: register allocation.
Further, we highlight the memory layout constraints for FPGAs
and concerns to be addressed when writing memory-dependent
applications for an FPGA.

A. Compilation

Compilation is the process of converting source code written
in some high level languages such as C or C++ and emitting
target specific instructions. Compilers such as Clang for C
and C++ utilize LLVM intermediate representation (IR) as an
intermediate representation. This exists as a common language
for many high level languages to perform optimizations. The
LLVM project consists of target specifications that allow the
conversion from LLVM IR instructions to target instructions
such as ARM or x86 [8]. This style of compiler consists of
three parts.

1) Front End: Emits IR from source code such as Clang
when using clang -S -emit-llvm.

2) Middle End: Optimizations performed on an IR such as
dead code elimination, constant propagation, etc.

3) Back End: Given some target specifications (i.e. ARM),
emits target assembly given the program in an IR.

This paper focuses on back end compilation and leaves the
middle and front end compilation as future work.

B. Back End Compilation

Back end compilation consists of instruction selection, in-
struction scheduling, and register allocation. While instruction
scheduling is not required for correctness, instruction selection
and register allocation are required.

• Instruction Selection is the conversion of IR instructions
into target instructions such as converting icmp sgt and
br in LLVM IR to b.gt in ARM.

• Instruction Scheduling is the process of finding a reorder-
ing of instructions to optimize for underlying architectures.

• Register Allocation is the focus of this paper and is the
process of converting an IR’s use of unlimited virtual
registers to a fixed number of physical registers while
reducing the need for memory lookups.

C. Register Allocation

There exist various algorithms for register allocation [9].
Many are implemented by the LLVM project in software [8].
This paper covers a two-part algorithm.

1) Liveness (the range during which a variable is being
written to or read from) is computed.

2) Register Allocation assigns a physical register to a virtual
register for the duration of its live range disallowing that
register from being allocated again in this instruction
range.

A naive register allocator can be constructed in a way that
simply forces a memory lookup for each variable used. This is
obviously wasteful, so we implement a register allocator that
tends to utilize as many physical registers as possible.

D. rsYocto

rsYocto is an open source embedded Linux distribution
designed based on the Yocto project, a classic Linux Foundation
collaborative open source project which creates Linux distribu-
tions specifically for embedded software that is independent
of its underlying architecture. Compared to Yocto, rsYocto has
a custom build flow for Intel System-on-Chip (SoC)-FPGAs
specifically to customize for the strong requirements of modern
embedded SoC-FPGA applications [10].

rsYocto implements interfaces between the hard processor
system (HPS) and the FPGA including the advanced eXtensible
interface (AXI) to help users interact with HPS hard-IP, FPGA
soft-IP, and their peripherals.

IV. METHODOLOGY

Our methodology utilizes an Intel DE-10 Standard Board
equipped with a dual core ARM-based microprocessor and an
FPGA which are connected over a high speed interconnect
(AXI) bus all on one chip [11].

Our approach to FPGA register allocation takes as input
LLVM IR output from Clang when passed in a test program
in source code. This LLVM IR is converted into a fixed-
length binary format, similar to a packet used for internet
communications, for compilation on the FPGA.

The LLVM IR packet is transmitted to the FPGA using the
aforementioned AXI bus to transmit the packet between the
microprocessor and FPGA memory. The FPGA analyzes this
binary encoding to produce liveness information and finally
emit register allocations.

These emitted register allocations are subsequently replaced
in the binary format and sent back to the ARM microprocessor
over the AXI bus for execution. For larger programs consisting
of multiple compilations, linking could be done on the mi-
croprocessor. This compilation flow from source to binary is
detailed visually in Figure 1.

A. Binary Format

To avoid sending string-based programs to the FPGA for
analysis, we design a “Binary-IR” format. This format rep-
resents the set of instructions with full granularity needed
to compute liveness information and register allocation. Each

Fig. 1. Visual representation of the methodology from source code to object
file with intermediate software compilation steps completed through an FPGA.

instruction consists of 48 bytes of information such as opcode,
targets/destinations (if a control flow instruction), and register/-
constant operands.

B. Transmission

By utilizing the AXI bus between the processor and the
FPGA (Figure 1), the binary-encoded instructions are trans-
mitted to the FPGA for analysis, utilizing a set of tools based
on the rsYocto Project.

Specifically, instructions are written into and read from the
FPGA memory over the AXI bus using Linux commands
executing on the ARM microprocessor. Due to limitations
during testing, each instruction of 48 bytes was transmitted
to the FPGA memory. This was completed for each instruction
by utilizing a Bash script that executes write and read bridge
commands to write and validate instructions in FPGA memory.

C. FPGA Analysis

When instructions are received by the FPGA, a two part
finite state machine (FSM) begins liveness analysis and register
allocation. The implementation of this was first completed in
C++ for software parity and subsequently converted to System
Verilog to be synthesized to the FPGA.

1) Register Allocation: The register allocation algorithm is
as follows:

Algorithm 1: Allocate Virtual Registers
Input : Instructions I , Registers R, Liveness ends
Output: Virtual register allocations
foreach instruction i in I do

foreach operand op in i not null do
if op is not allocated then

for r in R that is available do
if r is not allocated and r then

Allocate op to r
Make r unavailable until ends[op]
break

The pseudocode in Algorithm 1 completes register allocation
by iterating through each instruction and finding a register
to allocate if the operand has not yet been allocated. This
algorithm returns a set of allocations mapping virtual registers
to physical registers.

Note that Algorithm 1 refers to information in an ends
mapping which is an array of liveness values. This is the
information computed during the prior step of liveness analysis.

The pseudocode as described utilizes a set of abstractions that
exist in the software world, but typically are not immediately
available in the hardware world. Hence, both the software and
hardware implementations of this pseudocode are written as a
state machine performing a single read or write per state. For
loops are unrolled into states with states corresponding to loop
condition checking, loop internals, and loop breaking.

2) Liveness Algorithm: Similar to Register Allocation as
discussed in the previous section (Section IV-C1), the liveness
algorithm was implemented in hardware as well. The algorithm
for determining liveness consists of doing a backwards pass
on instructions and keeping track of the last used or written
location of an operand given any basic block.

The liveness algorithm is implemented as follows:

Algorithm 2: Compute Liveness Information
Input : Instructions I
Output: Liveness information for instructions in I
foreach instruction i in I iterating backwards do

foreach operand op in i not null do
if op first instance then

Mark op last location as i.index

In a similar fashion to register allocation, this algorithm is
also written in System Verilog as an FSM with loops unrolled
into relevant states.

D. Linking and Miscellaneous

Once the register allocations have been made on-board, the
completed allocations are available in the FPGA memory for
access using the ARM microprocessor interfacing through the
AXI bus. This information is then read and combined with the

original program to perform register replacement, and gcc is
used to convert from assembly to binary.

Additionally, since an object file is created by gcc, addi-
tional linking can be done. Hence, single functions can be back
end compiled on the FPGA and combined with a larger program
in software through linking.

An integral test case for this paper is the gcd algorithm that
computes the maximal number d for two numbers a and b such
that d | a and d | b (i.e., d evenly divides a and d evenly divides
b where to divide evenly means to divide with remainder zero).

Listing 1. gcd.c
i n t gcd (i n t a , i n t b) {

i f (b == 0) {
re turn a ;

} e l s e {
re turn gcd (b , a % b) ;

}
}

After this program is compiled, gcd.o can be additionally
linked to other programs, for example, a main program that
calls gcd with parameters a, b and prints the result. This can
be done by forwarding the signature of gcd to the consuming
program using a header file, as the definition would be provided
during the linking process (from the gcd.o yielded from the
aforementioned process). Hence, code bases can be compiled
in a hybrid fashion with critical functions compiled in hardware
and linked together.

V. EXPERIMENTAL PLATFORM

A. The DE-10 Standard Development Kit

The DE-10 standard development kit is a hardware de-
sign platform built around the Intel SoC FPGA. Intel’s SoC
integrates an ARM-based HPS consisting of a processor,
peripherals and memory interfaces tied seamlessly on chip
with the FPGA fabric using a high-bandwidth interconnect
backbone [12].

1) Intel DE-10 Standard Board: The board used for proto-
typing the back end of the compiler is an Intel DE-10 Standard
Board.

2) ARM-based HPS: The main component of the HPS on
the board is a 925MHz dual-core ARM Cortex-A9 MPCore
processor.

3) Cyclone V FPGA: The FPGA used on the board is
the Cyclone V SoC 5CSXFC6D6F31C6N device, which has
110K programmable logic elements, 166,036 registers, and
5761 Kbits embedded memory (i.e., BRAM) [13].

4) Quartus: To use the board, we use Quartus to compile
and synthesize the hardware description language (HDL) code.
We program the FPGA using the output SRAM object file (.sof)
or binary file (.rbf) generated by Quartus.

B. Experimental Flow

The flow of our experiment is as follows:
1) a laptop with Clang and Binary-IR parser to generate

gcd Binary-IR from gcd.c.

2) HPS with a serial connection to a laptop and the under-
lying connection to an SD card with rsYocto boot code
on the card, enabling transferring of gcd Binary-IR from
the laptop to the HPS and Linux command execution to
interact with the HPS, FPGA, or both.

3) AXI interface to the HPS and to the FPGA, enabling
the writes of gcd Binary-IR to the memory units on the
FPGA and reads of gcd ARM assembly back shown in
the serial console.

C. Design Specifics

To transfer gcd Binary-IR to the memory unit on the FPGA,
we first create an AXI interface using Qsys, the platform
designer in Quartus. The AXI interface has both FPGA-to-
HPS and HPS-to-FPGA widths set to 64 bits and a lightweight
HPS-to-FPGA interface with a width of 32 bits to reduce
traffic and data transfer time. We also instantiate memory slave
components on the FPGA to connect the register allocation
logic components with the AXI bus in the form of Parallel
Input/Output (PIO) ports or Avalon Memory-Mapped (Avalon-
MM) Slave interface, a custom interface for HPS and FPGA
communication. This additionally enables the communication
to the Block Random Access Memory (BRAM) on the FPGA.
After the design flow is successfully set up in Qsys, a binary
file (.rbf) is generated by Quartus. We then load this binary file
onto the FPGA to enable the processor to read from and write to
the FPGA memory units. To automate the interactions between
the FPGA memory units and processors, we also have a script
to continuously fill in the gcd Binary-IR to FPGA memory
units. In this way, we send the gcd Binary-IR successfully
from the processor through the AXI bus to the FPGA and store
the Binary-IR code in the FPGA memory unit.

We then implement register liveness and register allocation
algorithms in System Verilog, taking in the gcd instructions
from FPGA memory unit and emitting register allocations. In
order to work smoothly with gcd ARM assembly, we imple-
ment three enumerated data types, respectively, as follows: one
for instruction opcode, one for register types (physical register,
virtual register, or stack space), and one for the various states
of the state machines. Meanwhile, we also define an instruction
struct including all important fields of each assembly instruc-
tion, such as opcode, source registers, destination register, etc.
Register liveness takes in gcd instructions, extracts the opcode,
destination register, two source registers and iterates through
each gcd instruction to find where each virtual register ends.
This iterative process is done in an 11-state FSM with (i) three
states to check whether destination and either of the two source
registers exist; (ii) three states to extract register number if
the destination register, or either source registers are virtual
registers; and (iii) additional states to iterate through and write
the liveness information for each virtual register to the FPGA
memory unit. At last, the register liveness algorithm yields live
ranges for each virtual register, stored in another unit of FPGA
memory, which is then read and used by the register allocation
algorithm.

Register allocation takes in the gcd instructions as well
as the live information for each virtual register derived from
the register liveness algorithm, the previous stage, to produce
the mapping between virtual registers and physical registers.
Allocation adds on to the FSM from register liveness for
handling the allocation specifics with regard to the destination
register, source register 1, and source register 2 respectively.
Register allocation has four extra crucial states to find free
physical registers in order to assign them to virtual registers: i)
one state for checking if the current virtual register has already
been mapped to a physical register; ii) one state for checking
if any physical register is available; iii) one state for checking
which physical register is available specifically next in line; and
iv) one state for recording the mapping between the current
virtual register and the available physical register.

Since there are only 13 general purpose physical registers
available in the ARM ISA, if the input program at some point
uses up all 13 physical registers, through iterations in the four
states mentioned above, we can map the current virtual register
to a memory location instead of a physical register, so that we
can spill the value held by the current virtual register to memory
(as stack space). Moreover, register allocation algorithm also
has the functionality to free the physical registers that were
allocated to virtual registers that are no longer live. Therefore,
our algorithm can largely minimize the physical register usage,
reduce latency, and increase program efficiency. The output of
this FSM is a mapping between all virtual registers used in
the gcd instructions and their corresponding physical registers,
stored in the memory unit on the FPGA.

After we obtain the gcd assembly output with physical
registers, we convert the gcd assembly to binary using gcc
and perform additional linking as necessary.

Finally, the gcd.o is executed on HPS, where the output is
sent through the serial interface to the computer serial console,
concluding the experiment.

VI. EXPERIMENTAL RESULTS

Our register allocator is able to successfully 1) analyze
register liveness information, 2) allocate a minimal number
of physical registers for the gcd program on the FPGA, and
3) complete various examples of the gcd program based on
different user inputs. The instructions of the gcd program
range from stores, loads, addition, subtraction, branches, etc,
and our testing examples cover the longest control flow path
over the gcd program. All the measurements shown in this
section are based on testing examples of the gcd program
which goes through a long and significant control flow path, in
other words, using all of the basic blocks in our algorithm.
Through thorough testing, the correctness of our algorithm
proves the feasibility of FPGA-based software compilers and
more importantly under the condition of low hardware resource
utilization and comparatively low latency.

Table I summarizes the resource utilization when performing
register allocation of a gcd example at a 50 MHz clock rate
on the FPGA. We observe < 0.5% of resource utilization for
register liveness analysis and < 2% of resource utilization for

TABLE I
RESOURCE UTILIZATION ON CYCLONE V FPGA

Processes Resources Utilization Utilization%
Register Liveness Logic (in ALMs) 184 0.44

Registers 342 0.41
Register Allocation Logic (in ALMs) 796 1.89

Registers 1249 1.49

register allocation algorithm in terms of both logic and registers.
This shows our proposed algorithm and its implementation in
System Verilog is extremely resource-efficient, enabling further
applications of the register allocator on resource-constrained
devices.

TABLE II
SYSTEM VERILOG COMPILATION TIME OF

REGISTER ALLOCATION ALGORITHMS

Processes Total Time
Register Liveness on FPGA 78 s
Register Allocation on FPGA 117 s

The average compilation time of the register allocation in
System Verilog is illustrated in Table II. Total hardware syn-
thesis time refers to the time of the following steps in Quartus:
Analysis and Synthesis, Fitter, Assembler, Timing Analyzer,
and EDA Netlist Writer. As a necessary step for the FPGA,
Fitter occupies a significant portion of the Quartus compilation
process for System Verilog and takes a significant amount of
time.

TABLE III
AVERAGE EXECUTION TIME OF REGISTER ALLOCATION ALGORITHMS

Processes Time
Register Liveness on FPGA 10.34 µs
Register Allocation on FPGA 8.74 µs

We also measure the average execution time of the regis-
ter allocation algorithms based on testing an example going
through the longest control flow path of the gcd program.
Results in Table III show the average execution time of register
liveness and register allocation algorithms: 10.34µs and 8.74µs
respectively.

TABLE IV
AVERAGE EXECUTION TIME ON AXI BUS

Process Time
AXI Write and Read BRAM of 1 Word 23 µs
AXI Write and Read BRAM of 10 Words 114 µs
AXI Write and Read BRAM of 100 Words 857.1 µs

More importantly, as an indispensable part of the execution
time measurement, we measure the time for data transmission
between the HPS and the FPGA through the AXI bus and
directly to or from the BRAM through the Avalon-MM
interface in Table IV, ranging from the data size of 1 word, 10
words, to 100 words.

Algorithm 3: Write to / Read from BRAM through
AXI Bus
Input : Address A, DataWrite Dw
Output: DataRead Dr
foreach data d in Dw and address a in A do

Write d to a

foreach address a in A do
Read data from a
Collect the read data in one set Dr

foreach data d in Dw do
Perform arithmetic and/or logic operation on d
Repeat write and read (the first two loops)

In our measurement, we continuously write data to BRAM
on the FPGA through the AXI bus and read it from the
HPS. We also experiment on performing arithmetic and logic
operations with the data transferred before writing to other
BRAM locations.

VII. DISCUSSION AND FUTURE WORK

Through our experiment, we demonstrate that the register
allocation steps can be fully performed in hardware on the Intel
DE-10 Standard Board.

Although our experiment is based on the Cyclone V FPGA,
it can also be emulated on all the other FPGAs, including
Xilinx FPGAs. Since both the register allocation algorithms
and our hardware/software codesign techniques are FPGA man-
ufacturing agnostic, FPGA choice will not significantly affect
the correctness of our experiment, the results of compilation,
the timing or resource efficiency of the execution.

However, the execution time and resource utilization may
vary as the architecture, functional units, numbers of config-
urable logic blocks and sizes of BRAMs may vary between
different FPGAs. Therefore, with more powerful FPGAs, for
example the Xilinx Virtex UltraScale+ FPGA VCU 118 FPGA,
which features 2,586K system logic cells and 345.9 mega-bits
BRAM, we would expect to see a reduced execution time as
well as an advanced hardware environment supporting larger
scale and more complicated programs.

Our planned future work includes automating the register
allocation process fully on the Intel DE-10 Standard Board.
The automation includes the following: 1) use Clang to emit
app.ll from app.cpp on the HPS of the board, 2) emit
instructions in binary-IR format from app.ll on the HPS,
3) transfer instructions in binary-IR format from the HPS to
the FPGA interfacing through the AXI bus, 4) register allo-
cation algorithms in System Verilog which read the binary-IR
instructions and perform physical register replacement on the
FPGA, 5) generate the assembly file app.s from instructions
with physical registers on the FPGA, 6) send app.s from
the FPGA to the HPS, 7) use gcc to generate app.o on
the HPS, and 8) link then execute app.o on the HPS. The
automation of these eight steps will provide a fully functional
register allocator only using the Intel DE-10 Standard Board
with both software and hardware embedded. Moreover, this
work can also be generalized to support the register allocation

for all software programs (in addition to the gcd program in
the experiment).

In addition to register allocation, we also plan to implement a
fully functional compiler back end on the Intel DE-10 Standard
Board, including instruction selection, instruction scheduling
and register allocation to extend and further optimize our
current work in terms of resource and timing efficiency.

For more impact, middle and front end compilation can also
be performed in hardware, specifically on the FPGA, in order to
introduce a fully functional hardware compiler on the FPGA to
further secure the compilation process from malicious attackers.

VIII. CONCLUSIONS

In conclusion, we have shown a proof-of-concept demonstra-
tion of how to compile software on an FPGA which cannot be
attacked at run-time (i.e., the FPGA used is not dynamically re-
configurable). Specifically, we have implemented the back end
register allocation step in System Verilog and have compiled a
gcd program to ARM assembly. This research aims to enable
full just-in-time compilation on an FPGA at run-time which is
protected from cyberattack by implementation in hardware.

REFERENCES

[1] J. Jang-Jaccard and S. Nepal, “A survey of emerging threats in cyber-
security,” Journal of Computer and System Sciences, vol. 80, no. 5, pp.
973–993, 2014.

[2] N. Carlini and D. Wagner, “ROP is still dangerous: Breaking modern
defenses,” in Proceedings of the 23rd USENIX Conference on Security
Symposium, Aug. 2014, p. 385–399.

[3] J. Coker, “Most computer code compilers vulnerable to
novel attacks,” 2021, last accessed 29 Apr 2023. [Online].
Available: https://www.infosecurity-magazine.com/news/computer-code-
compilers-attacks/

[4] N. Boucher and R. J. Anderson, “Trojan source: Invisible vulnerabilities,”
Computing Research Repository (CoRR), vol. abs/2111.00169, 2021.
[Online]. Available: https://arxiv.org/abs/2111.00169

[5] G. Lopez, M. Foreman, A. Daftardar, P. Coppock, Z. Tolaymat, and V. J.
Mooney, “Hardware root-of-trust based integrity for shared library func-
tion pointers in embedded systems,” in 8th Mediterranean Conference on
Embedded Computing (MECO), 2019, pp. 1–6.

[6] P. H. Coppock, M. K. Yacoub, B. L. Qin, A. J. Daftardar, Z. Tolaymat,
and V. J. Mooney, “Hardware root-of-trust-based integrity for shared
library function pointers in embedded systems,” Microprocessors and
Microsystems, vol. 79, p. 103270, 2020.

[7] K. Keutzer and W. Wolf, “Anatomy of a hardware compiler,” SIGPLAN
Not., vol. 23, no. 7, p. 95–104, Jun 1988. [Online]. Available:
https://doi.org/10.1145/960116.54000

[8] C. Lattner and V. Adve, “LLVM: A Compilation Framework for Lifelong
Program Analysis & Transformation,” in Proceedings of International
Symposium on Code Generation and Optimization, Mar 2004, pp. 75–
86.

[9] K. D. Cooper and L. Torczon, “Chapter 13 - register allocation,” in
Engineering a Compiler (Third Edition), K. D. Cooper and L. Torczon,
Eds. Philadelphia: Morgan Kaufmann, 2023, pp. 663–712.

[10] R. Sebastian, “rsyocto,” 2021, last accessed 29 Apr 2023. [Online].
Available: https://github.com/robseb/rsyocto

[11] Terasic, “De-10 standard user manual,” 2017,
last accessed 29 Apr 2023. [Online]. Available:
https://ftp.intel.com/Public/Pub/fpgaup/pub/Intel Material/Boards/DE10-
Standard/DE10 Standard User Manual.pdf

[12] J. Fan, “Terasic de10-standard development kit,” 2019,
last accessed 29 Apr 2023. [Online]. Available:
https://www.rocketboards.org/foswiki/Documentation/DE10Standard

[13] Intel, “Cyclone v device overview,” 2018, last accessed 29 Apr 2023.
[Online]. Available: https://www.intel.com/programmable/technical-
pdfs/683694.pdf

