RanCompute: Computational Security in Embedded Devices via Random Input and Output Encodings

Georgia School of Electrical and Tech Computer Engineering

KEVIN HUTTO^, SANTIAGO GRIJALVA*, AND VINCENT JOHN MOONEYIII \&
${ }^{\text {\& ASSOCIATE }}$ *PROFESSOR, ^SCHOOLOF ELECTRICALAND COMPUTER ENGINEERING ${ }^{\text {\& ADJUNCT ASSOCIATE PROFESSOR, SCHOOLOF COMPUTER SCIENCE }}$ $\wedge, *,{ }^{\&}$ INSTITUTE FOR INFORMATION SECURITY AND PRIVACY GEORGIA TECH, ATLANTA, GA 30332-0250
presented at MECO'2022 and CPSIoT'2022, Budva, Montenegro

Outline

- Problem Definition
- Approach
- Example Computations
- Results
- Conclusions
- References

Outline

- Problem Definition

- Approach
- Example Computations
- Results
- Conclusions
- References

Problem Definition

- Consider a remote network, such as a network of sensors dispersed over a rural area
- The sensor is one of many in an environment with no physical security
- A capable adversary may capture one or more of the remote sensor(s) and attempt to reverse engineer the logic (including reconfigurable logic) and memory contents through state-of-the-art

Secure
Server techniques [1][2]

- We consider a microchip architecture implementing one of two possible applications
- We aim to hide which of the two possible applications is being performed on the microchip given an adversary with complete white-box access at a specific time of capture

Outline

- Problem Definition
- Approach
- Example Computations
- Results
- Conclusions
- References

Approach

- One aspect which helps to hide the identity of a digital computation is to have truth tables with identical output frequencies
- Output frequency - the number of times (multiplicity) a specific output appears in all possible outputs (including repeat values) resulting from a function $\mathrm{F}_{\mathrm{m}}()$ given a finite input set [3]
- We add a minimum number of encodings to ensure matching output frequencies of two target computations

\mathbf{A}	\mathbf{B}	$\boldsymbol{F}_{1}(\boldsymbol{A}, \boldsymbol{B})$ $=\boldsymbol{A}+\boldsymbol{B}$
o	o	$\mathrm{o}\left(S_{0}^{1}\right)$
o	1	$1\left(S_{1}^{1}\right)$
$\mathbf{1}$	o	$1\left(S_{1}^{1}\right)$
$\mathbf{1}$	1	$2\left(S_{2}^{1}\right)$

\mathbf{A}	\mathbf{B}	$\boldsymbol{F}_{2}(\boldsymbol{A}, \boldsymbol{B})$ $=\boldsymbol{A} * \boldsymbol{B}$
o	o	$\mathrm{o}\left(S_{0}^{2}\right)$
o	1	$\mathrm{o}\left(S_{0}^{2}\right)$
1	o	$\mathrm{o}\left(S_{0}^{2}\right)$
1	1	$1\left(S_{1}^{2}\right)$

\mathbf{A}	\mathbf{B}	$\begin{array}{c}\boldsymbol{F}_{1}(\boldsymbol{A}, \boldsymbol{B}) \\ =\boldsymbol{A}+\boldsymbol{B}\end{array}$
o	o	$\mathrm{oo}\left(S_{0}^{1}\right)$
o	1	$01\left(S_{1}^{1}\right)$
1	o	$01\left(S_{1}^{1}\right)$
1	1	$10\left(S_{2}^{1}\right)$

\mathbf{A}	\mathbf{B}	$\boldsymbol{F}_{2}(\boldsymbol{A}, \boldsymbol{B})$ $=\boldsymbol{A} * \boldsymbol{B}$
o	o	$\mathrm{oo}\left(S_{0 a}^{2}\right)$
o	1	$\mathrm{o} 1\left(S_{0 b}^{2}\right)$
1	o	$01\left(S_{0 b}^{2}\right)$
1	1	$10\left(S_{1}^{2}\right)$

Approach (continued)

\mathbf{A}	\mathbf{B}	$\boldsymbol{F}_{\mathbf{1}}(\boldsymbol{A}, \boldsymbol{B})$ $=\boldsymbol{A}+\boldsymbol{B}$
o	o	$\mathrm{o}\left(S_{0}^{1}\right)$
0	1	$1\left(S_{1}^{1}\right)$
$\mathbf{1}$	o	$1\left(S_{1}^{1}\right)$
$\mathbf{1}$	1	$2\left(S_{2}^{1}\right)$

\mathbf{A}	\mathbf{B}	$\boldsymbol{F}_{2}(\boldsymbol{A}, \boldsymbol{B})$ $=\boldsymbol{A} * \boldsymbol{B}$
o	o	$\mathrm{o}\left(S_{0}^{2}\right)$
O	1	$\mathrm{o}\left(S_{0}^{2}\right)$
1	o	$\mathrm{o}\left(S_{0}^{2}\right)$
1	1	$1\left(S_{1}^{2}\right)$

$S_{0}^{1}=$ Symbol representing zero for function F_{1}
$S_{0 a}^{2}=$ Symbol representing zero for function F_{2}, version a
$S_{0 b}^{2}=$ Symbol representing zero for function F_{2}, version b

\mathbf{A}	\mathbf{B}	$\boldsymbol{F}_{\mathbf{1}}(\boldsymbol{A}, \boldsymbol{B})$ $=\boldsymbol{A}+\boldsymbol{B}$
$\mathbf{0}$	0	$00\left(S_{0}^{1}\right)$
$\mathbf{0}$	$\mathbf{1}$	$01\left(S_{1}^{1}\right)$
$\mathbf{1}$	0	$01\left(S_{1}^{1}\right)$
$\mathbf{1}$	$\mathbf{1}$	$10\left(S_{2}^{1}\right)$

\mathbf{A}	\mathbf{B}	$\boldsymbol{F}_{\mathbf{2}}(\boldsymbol{A}, \boldsymbol{B})$ $=\boldsymbol{A} * \boldsymbol{B}$
$\mathbf{0}$	$\mathbf{0}$	$00\left(S_{0 a}^{2}\right)$
$\mathbf{0}$	$\mathbf{1}$	$01\left(S_{0 b}^{2}\right)$
$\mathbf{1}$	$\mathbf{0}$	$01\left(S_{0 b}^{2}\right)$
$\mathbf{1}$	$\mathbf{1}$	$10\left(S_{1}^{2}\right)$

Approach (continued 2)

A	B	$\begin{aligned} & F_{1}(A, B) \\ & =A+B \end{aligned}$	A	B	$\begin{aligned} & F_{1}(A, B) \\ & =A+B \end{aligned}$	A	B	$\begin{aligned} & F_{1}(A, B), \\ & =A+B \end{aligned}$
o	o	oo (S_{0}^{1})	0	o	S_{0}^{1}	o	o	$10\left(S_{0}^{1}\right)$
o	1	$01\left(S_{1}^{1}\right)$	o	1	S_{1}^{1}	0	1	$11\left(S_{1}^{1}\right)$
1	0	$01\left(S_{1}^{1}\right)$	1	0	S_{1}^{1}	1	0	$11\left(S_{1}^{1}\right)$
1	1	$10\left(S_{2}^{1}\right)$	1	1	S_{2}^{1}	1	1	oo (S_{2}^{1})

Encode Operation Outputs

Combine Inputs and Outputs

\mathbf{A}	\mathbf{B}	$\boldsymbol{F}_{2}(\boldsymbol{A}, \boldsymbol{B})$ $=\boldsymbol{A} * \boldsymbol{B}$
o	o	$\mathrm{o}\left(S_{0}^{2}\right)$
o	1	$\mathrm{o}\left(S_{0}^{2}\right)$
$\mathbf{1}$	o	$\mathrm{o}\left(S_{0}^{2}\right)$
1	1	$1\left(S_{1}^{2}\right)$

(a) Standard Unsigned Binary Operations

\mathbf{A}	\mathbf{B}	$\boldsymbol{F}_{2}(\boldsymbol{A}, \boldsymbol{B})$ $=\boldsymbol{A} * \boldsymbol{B}$
o	o	$S_{0 a}^{2}$
o	$\mathbf{1}$	$S_{0 b}^{2}$
$\mathbf{1}$	o	$S_{0 b}^{2}$
$\mathbf{1}$	$\mathbf{1}$	S_{1}^{2}

(b) Outputs Assigned Symbols to Match Frequencies

\mathbf{A}	\mathbf{B}	$\boldsymbol{F}_{2}(\boldsymbol{A}, \boldsymbol{B})$ $=\boldsymbol{A} * \boldsymbol{B}$
0	0	$10\left(S_{0 a}^{2}\right)$
0	1	$11\left(S_{0 b}^{2}\right)$
1	0	$11\left(S_{0 b}^{2}\right)$
1	1	$00\left(S_{1}^{2}\right)$

(c) Output Symbols Replaced With New BitRepresentations

Approach (continued 3)

(b) Encode Operation Outputs

\mathbf{A}	\mathbf{B}	$\boldsymbol{F}_{1}(\boldsymbol{A}, \boldsymbol{B})$ $=\boldsymbol{A}+\boldsymbol{B}$
0	0	$00\left(S_{0}^{1}\right)$
0	1	$01\left(S_{1}^{1}\right)$
1	0	$01\left(S_{1}^{1}\right)$
1	1	$10\left(S_{2}^{1}\right)$

\mathbf{A}	\mathbf{B}	$\boldsymbol{F}_{\mathbf{1}}(\boldsymbol{A}, \boldsymbol{B})$ $=\boldsymbol{A}+\boldsymbol{B}$
O	o	S_{0}^{1}
o	$\mathbf{1}$	S_{1}^{1}
$\mathbf{1}$	o	S_{1}^{1}
$\mathbf{1}$	$\mathbf{1}$	S_{2}^{1}

\rightarrow| \mathbf{A} | \mathbf{B} | $\boldsymbol{F}_{1}(\boldsymbol{A}, \boldsymbol{B})$
 $=\boldsymbol{A}+\boldsymbol{B}$ |
| :---: | :---: | :---: |
| 0 | 0 | $10\left(S_{0}^{1}\right)$ |
| 0 | 1 | $11\left(S_{1}^{1}\right)$ |
| 1 | 0 | $11\left(S_{1}^{1}\right)$ |
| 1 | 1 | $00\left(S_{2}^{1}\right)$ |

\mathbf{A}	\mathbf{B}	$\boldsymbol{F}_{2}(\boldsymbol{A}, \boldsymbol{B})$ $=\boldsymbol{A} * \boldsymbol{B}$
0	o	$\mathrm{o}\left(S_{0}^{2}\right)$
0	1	$\mathrm{o}\left(S_{0}^{2}\right)$
1	o	$\mathrm{o}\left(S_{0}^{2}\right)$
1	1	$1\left(S_{1}^{2}\right)$

(a) Standard Unsigned Binary Operations

\mathbf{A}	\mathbf{B}	$\boldsymbol{F}_{2}(\boldsymbol{A}, \boldsymbol{B})$ $=\boldsymbol{A} * \boldsymbol{B}$
O	o	$S_{0 a}^{2}$
O	$\mathbf{1}$	$S_{0 b}^{2}$
$\mathbf{1}$	$\mathbf{0}$	$S_{0 b}^{2}$
$\mathbf{1}$	$\mathbf{1}$	S_{1}^{2}

\mathbf{A}	\mathbf{B}	$\boldsymbol{F}_{2}(\boldsymbol{A}, \boldsymbol{B})$ $=\boldsymbol{A} * \boldsymbol{B}$
O	o	$10\left(S_{0 a}^{2}\right)$
O	1	$11\left(S_{0 b}^{2}\right)$
$\mathbf{1}$	o	$11\left(S_{0 b}^{2}\right)$
$\mathbf{1}$	1	oo $\left(S_{1}^{2}\right)$

(b) Outputs Assigned Symbols
to Match Frequencies
(c) Output Symbols Replaced With New Bit-Representations

Approach (continued 4)

(a) Randomize Input Data

\mathbf{A}	\mathbf{B}	$\boldsymbol{F}_{1}(\boldsymbol{A}, \boldsymbol{B})$ $=\boldsymbol{A}+\boldsymbol{B}$
o	o	$\mathrm{o}\left(S_{0}^{1}\right)$
o	1	$1\left(S_{1}^{1}\right)$
1	o	$1\left(S_{1}^{1}\right)$
1	1	$2\left(S_{2}^{1}\right)$

\mathbf{A}	\mathbf{B}	$\boldsymbol{F}_{2}(\boldsymbol{A}, \boldsymbol{B})$ $=\boldsymbol{A} * \boldsymbol{B}$
o	o	$\mathrm{o}\left(S_{0}^{2}\right)$
o	1	$\mathrm{o}\left(S_{0}^{2}\right)$
1	o	$\mathrm{o}\left(S_{0}^{2}\right)$
1	1	$1\left(S_{1}^{2}\right)$

\mathbf{A}	\mathbf{B}	$\boldsymbol{F}_{1}(\boldsymbol{A}, \boldsymbol{B})$ $=\boldsymbol{A}+\boldsymbol{B}$
$\mathbf{1}$	o	$\mathrm{oo}\left(S_{0}^{1}\right)$
1	1	$01\left(S_{1}^{1}\right)$
o	o	$01\left(S_{1}^{1}\right)$
o	1	$10\left(S_{2}^{1}\right)$

\mathbf{A}	\mathbf{B}	$\boldsymbol{F}_{2}(\boldsymbol{A}, \boldsymbol{B})$ $=\boldsymbol{A} * \boldsymbol{B}$
$\mathbf{1}$	o	$\mathrm{oo}\left(S_{0 a}^{2}\right)$
1	1	$01\left(S_{0 b}^{2}\right)$
o	o	$01\left(S_{0 b}^{2}\right)$
o	1	$10\left(S_{1}^{2}\right)$

(b) Encode Operation Outputs

\mathbf{A}	\mathbf{B}	$\boldsymbol{F}_{1}(\boldsymbol{A}, \boldsymbol{B})$ $=\boldsymbol{A}+\boldsymbol{B}$
o	o	$\mathrm{o}\left(S_{0}^{1}\right)$
o	1	$1\left(S_{1}^{1}\right)$
1	o	$1\left(S_{1}^{1}\right)$
$\mathbf{1}$	$\mathbf{1}$	$2\left(S_{2}^{1}\right)$

\mathbf{A}	\mathbf{B}	$\boldsymbol{F}_{2}(\boldsymbol{A}, \boldsymbol{B})$ $=\boldsymbol{A} * \boldsymbol{B}$
o	o	$\mathrm{o}\left(S_{0}^{2}\right)$
o	1	$\mathrm{o}\left(S_{0}^{2}\right)$
1	o	$\mathrm{o}\left(S_{0}^{2}\right)$
1	1	$1\left(S_{1}^{2}\right)$

\mathbf{A}	\mathbf{B}	$\boldsymbol{F}_{1}(\boldsymbol{A}, \boldsymbol{B})$ $=\boldsymbol{A}+\boldsymbol{B}$
o	o	$10\left(S_{0}^{1}\right)$
o	1	$11\left(S_{1}^{1}\right)$
1	o	$11\left(S_{1}^{1}\right)$
1	1	$\mathrm{oo}\left(S_{2}^{1}\right)$

\mathbf{A}	\mathbf{B}	$\boldsymbol{F}_{2}(\boldsymbol{A}, \boldsymbol{B})$ $=\boldsymbol{A} * \boldsymbol{B}$
o	o	$10\left(S_{0 a}^{2}\right)$
o	1	$11\left(S_{0 b}^{2}\right)$
1	o	$11\left(S_{0 b}^{2}\right)$
1	1	$\mathrm{oo}\left(S_{1}^{2}\right)$

Approach (continued 5)

(a) Randomize Input Data

(b) Encode Operation Outputs
(c) Combine Inputs and Outputs

\mathbf{A}	\mathbf{B}	$\boldsymbol{F}_{1}(\boldsymbol{A}, \boldsymbol{B})$ $=\boldsymbol{A}+\boldsymbol{B}$
o	o	$\mathrm{o}\left(S_{0}^{1}\right)$
o	1	$1\left(S_{1}^{1}\right)$
1	o	$1\left(S_{1}^{1}\right)$
1	1	$2\left(S_{2}^{1}\right)$

\mathbf{A}	\mathbf{B}	$\boldsymbol{F}_{2}(\boldsymbol{A}, \boldsymbol{B})$ $=\boldsymbol{A} * \boldsymbol{B}$
o	o	$\mathrm{o}\left(S_{0}^{2}\right)$
o	1	$\mathrm{o}\left(S_{0}^{2}\right)$
$\mathbf{1}$	o	$\mathrm{o}\left(S_{0}^{2}\right)$
$\mathbf{1}$	1	$1\left(S_{1}^{2}\right)$

\mathbf{A}	\mathbf{B}	$\boldsymbol{F}_{1}(\boldsymbol{A}, \boldsymbol{B})$ $=\boldsymbol{A}+\boldsymbol{B}$
1	0	$10\left(S_{0}^{1}\right)$
1	1	$11\left(S_{1}^{1}\right)$
0	0	$11\left(S_{1}^{1}\right)$
o	1	$00\left(S_{2}^{1}\right)$

\mathbf{A}	\mathbf{B}	$\boldsymbol{F}_{2}(\boldsymbol{A}, \boldsymbol{B})$ $=\boldsymbol{A} * \boldsymbol{B}$
1	o	$10\left(S_{0 a}^{2}\right)$
1	1	$11\left(S_{0 b}^{2}\right)$
o	o	$11\left(S_{0 b}^{2}\right)$
o	1	$\mathrm{oo}\left(S_{1}^{2}\right)$

Approach (continued 5)

- Look-Up Table (LUT) result for each of the operations with randomized inputs and randomized outputs equalized for frequency

\mathbf{A}	\mathbf{B}	$\boldsymbol{F}_{1}(\boldsymbol{A}, \boldsymbol{B})$ $=\boldsymbol{A}+\boldsymbol{B}$
0	0	$11\left(S_{1}^{1}\right)$
0	1	$00\left(S_{2}^{1}\right)$
1	0	$10\left(S_{0}^{1}\right)$
1	1	$11\left(S_{1}^{1}\right)$

\mathbf{A}	\mathbf{B}	$\boldsymbol{F}_{2}(\boldsymbol{A}, \boldsymbol{B})$ $=\boldsymbol{A} * \boldsymbol{B}$
0	0	$11\left(S_{0 b}^{2}\right)$
0	1	$00\left(S_{1}^{2}\right)$
1	0	$10\left(S_{0 a}^{2}\right)$
1	1	$11\left(S_{0 b}^{2}\right)$

Method of Input Encoding

Input Encoding [4]

Randomized Data Circuit

Performing Computations

Outline

- Problem definition
- Approach
- Example Computations
- Results
- Conclusions
- References

Example Computations

Canny Edge Detection

Two Pass Variance

Operation

Output (M)

Example Computations

Canny Edge Detection (Two 3-bit Input Operation)		
(a) Unencoded Output (G)	(b) f_{i}^{1}	(c) $f_{i}^{1} \cup f_{i j}^{1}$
0	4	2,2
1	8	8
1.5	4	4
2	16	$1,2,6,7$
3	20	$1,3,3,6,7$
3.5	8	8
4	4	4

- Output frequencies for the operations with two 3-bit Inputs for Canny Edge Detection and Two-Pass Variance
- Resulting output frequencies:

Two-Pass Variance (Two 3-bit Input Operation)		
(a) Unencoded Output (M)	(b) f_{i}^{2}	(c) $f_{i}^{2} \cup f_{i j}^{2}$
0	1	1
0.25	2	2
0.5	3	3
0.75	6	6
1	7	7
1.25	8	8
1.5	10	$2,4,4$
1.75	8	8
2	7	7
2.25	6	6
2.5	3	3
2.75	2	2
3	1	1

- Note that the total number of outputs is 64

Outline

- Problem definition
- Approach
- Example Computations
- Results
- Conclusions
- References

Results

- For each developed RanCompute application, we tested 10,000 iterations
- All simulations showed expected functionality, with the output of each RanCompute application equaling the expected encoding

FGPA UTILIZATION OF RANCOMPUTE

Application	Slice LUTs	Slice Regs	Bonded IOB	Max Freq.
(a)	2	3	10	450 MHz
(b)	6	5	14	450 MHz
(c)	5	1	18	380 MHz
(d)	8	4	15	450 MHz
(e)	13	1	22	380 MHz
(f)	120	7	26	380 MHz

(a) Two 2-bit input logic functions (add, multiply)
(b) Two 3-bit input logic functions (add, multiply)
(c) Two 4-bit input logic functions (add, multiply)
(d) 2-bit Edge Detection / Variance
(e) 3-bit Edge Detection / Variance
(f) 4-bit Edge Detection / Variance

Outline

- Problem definition
- Approach
- Example Computations
- Results
- Conclusions
- References

Conclusions

- In this paper we introduced a novel methodology to perform computations which are indistinguishable from each other from the point of view of an adversary with reverse engineering capabilities.
- We believe this is an important first step in the development of a framework for a general purpose method to perform indistinguishable computations on a microchip.

Outline

- Problem definition
- Approach
- Example Computations
- Results
- Conclusions
- References

References

[1] "Technical Capabilities," 2021. [Online.] Available: https://www.techinsights.com/technical-capabilities [2] A. Duncan et al., "FPGA Bitstream Security: A Day in the Life," 2019 IEEE International Test Conference (ITC '19), 2019, pp. 1-10.
[3] W. D. Blizard et al., "Multiset Theory," Notre Dame Journal of Formal Logic," Vol. 30, No. 1, pp. 36-66, 1989. [4] K. Hutto and V. Mooney, "Sensing with Random Encoding for Enhanced Security in Embedded Systems," 2021 10 th Mediterranean Conference on Embedded Computing (MECO '21), Vol. 10, pp. 809-814, 7 June 2021. [5]-[16] Please see the paper for these references.

THANK YOU

Q\&A

Kevin Hutto
 khutto3o@gatech.edu

Santiago Grijalva
sgrijalva@ece.gatech.edu

Vincent Mooney
mooney@ece.gatech.edu

