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Problem Statement
•A remote substation may be physically 
insecure

•An adversary may replace the sensor 
module with a fake device generating 
erroneous data

•Erroneous data in the supervisory control 
center could lead to power outages from 
unneeded protective actions through a false 
data injection attack [1]
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Problem Statement
•Goal: Design a lightweight sensor module 
which cannot be functionally replicated or 
replaced by an adversary without automatic 
notice from the control center

•Sensor module should protect against both 
physical replacement and tampering of the 
post-sensed data
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Target Architecture
•Analog to digital conversion and 
data encoding are conducted on 
the same chip

•Encoding is a function of a loadable 
key

•The ADC directly outputs encoded 
data based on a key known to a 
control center
• No registered unencoded data 

exists in the sensor
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Encoder Implementation
•Takes in an analog value and produces a 16-bit encoded output, without storing an unencoded 
version in any buffer memory

•Derived from prior work in [3]
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Permutation Generator
Consists of four “Shuffle Units” generating 
independent permutations on the set of 4-
bit values

◦ Permutation generated via Knuth shuffle 
algorithm realized in hardware[4]

Each permutation is derived from an index 
provided by the output of a hardware SHA-
3 module

The initial input to SHA-3, HS0, acts as an 
ephemeral symmetric key
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Control CenterSubstation Region

•The control center contains a 
data decoder capable of 
interpreting the encoded data 
produced at the substation

•Control center must have the 
matching corresponding key, 
𝐻𝑆0, used in the substation 



Decode Circuit

•Unencodes the randomized data

•Utilizes the same Permutation 
Generator as the encoding 
circuit

•Unencoded value retrieved via a 
comparison network
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Decode Compare Circuit

•Four compare circuits (one for each 
𝐿𝑈𝑇𝑖𝑚

) inverse the encoding performed 
by the encoding circuit

•Each compare circuit operates in 
parallel
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Security Analysis – Attack Model
•Adversary wishes to perform a false data injection attack [ref]
• Requires believable (i.e., not random appearing) data after overwriting the original data, or the control 

center will reject the data as bad

•Adversary has one chance to inject false data before drawing attention
• Assume continued erroneous data packets are investigated and the source discovered

•To guarantee intended malicious outputs, the adversary must know a stream of future encodings 
(the 𝐿𝑈𝑇𝑖𝑚

mappings)

• The adversary could alternatively learn the current internal hash value 𝐻𝑆𝑗
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Security Analysis – Attack Model
•Adversary (i.e., a lone wolf insider) has access 
to stream of encoded outputs

•Adversary can precisely know a number of 
unencoded inputs (i.e., bulk power transformer 
temperature)
• Possibly they monitor the target with an 

unencoded sensor

•Thus, adversary has a number of unencoded 
inputs to encoded outputs

•With the known input to output mapping 
subsets, the adversary attempts to determine 
future complete mappings to perform the false 
data injection attack
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Attack Model Cont.
•With the discovered mapping subsets, the adversary 
attempts to determine future complete mappings

•The known input to output mappings allow the 
adversary to determine one location in each of the 
four 𝐿𝑈𝑇𝑖𝑗

 values

•The adversary knows any hash value input to the 
shuffle circuitry which does not result in the 
discovered partial mapping must be wrong

•How far does this partial known mapping lead to a 
reduced search space?
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Security Analysis
𝑙ℎ= length of hash input, 512 bits

𝑙𝑠 = length of hash subset used for permutation, 256 bits

𝑚 = number of LUT modules, 4

𝑘 = elements permuted, 16
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Security Analysis
•Knuth Shuffle Algorithm is reversible
• Given a known arrangement of set elements and a know output, it can be easily determined what index 

was used in the algorithm 

•With only a partial knowledge of the shuffle output, a subset of possible indices can be 
disregarded

•For a given set with 𝑘 elements, there are 𝑘! permutations. With knowledge of the address of 
one element there are 𝑘 − 1 unknown element locations and (𝑘 − 1)! possible permutations 
for the remaining unknown element locations

26



Security Analysis
•64 bits of the 𝐻𝑆𝑗 are used to select from the 16! permutations. Each permutation held in 𝐿𝑈𝑇𝑖𝑚

 
has a possible 2^64 / 16! = ~2^16 corresponding indices

• 𝐼 𝑘, 𝑚, 𝑙𝑠 =
2

𝑙𝑠
𝑚

𝑘!

•The shuffle unit only uses half of the bits of 𝐻𝑆𝑗, unused bits must be accounted for as they 
affect the follow-on values 𝐻𝑆𝑗+1

•After pruning, total number of possible indices to test is:

• 𝑃 𝑘, 𝑚, 𝑙𝑠, 𝑙ℎ =
2

𝑙𝑠
𝑚

𝑘!
 ∗ 𝑘 − 1 !𝑚  ∗ 2𝑙ℎ− 𝑙𝑠

• 𝑃 16, 4, 256, 512 =  2496 possible 𝐻𝑆𝑗  after pruning
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Security Analysis
•Each of the 2496 possible 𝐻𝑆𝑗 values will provide a permutation mapping to the known 4 
locations in the 4 LUTs

•Only one of these possible 𝐻𝑆𝑗 values matches the actual internal value

•If the wrong 𝐻𝑆𝑗 value is used, the follow on values 𝐿𝑈𝑇𝑖+1𝑚
 will not match the actual 

Randomized Data Encoder mappings, and the central server will see bad data when decoding
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Experimental Setup

Sensor

Supervisory 
Computer

LM95172 
Sensor

Randomized Data 
Decoder

(Cyclone V FPGA)

Control CenterSubstation Region

Field Level 
Computer 

(Arduino Uno)

Randomized Data 
Encoder

(Cyclone V FPGA)

LM95172 
Sensor

Field Level 
Computer (Arduino)

Cyclone V FPGA 
(DE-10 Standard)

30



Experiments Conducted
Generated multiple data streams:

◦ 1. Temperature Sensor -> Encoder -> Decoder

◦ 2. Temperature Sensor -> Encoder

◦ 3. Temperature Sensor -> Decoder

◦ 4. Temperature Sensor -> Encoder -> Decoder (mismatched HS0)

Performed 𝜒2 test on data streams
◦ Correct data indicated for data stream 1

◦ Significant bad data for data streams 2, 3, and 4
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Synthesis Results
•Synthesis conducted targeting the Cyclone 
V 5CSXFC6D6F31C6 on the TerAsic DE-10 
Standard Development Kit

•Utilized Quartus Prime 20.1.1

•Practical bottleneck in sampling rate was 
due to temperature sensor limitations
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