
Late Breaking Results: COPPER: Computation Obfuscation
by Producing Permutations for Encoding Randomly

Kevin Hutto∗ and Vincent Mooneyˆ∗
ˆSchool of Computer Science and ∗School of Electrical and Computer Engineering

Georgia Institute of Technology, Atlanta, Georgia, USA
khutto30@gatech.edu, mooney@ece.gatech.edu

Abstract—Deployed embedded devices face security risks due to
increased ease of physical access to the devices by unauthorized users.
Capable adversaries can intercept a device to recover the data in memory,
including results of performed sensitive computations. Device owners
require data confidentiality on their physically insecure devices. To
satisfy this goal we implement a novel method, COPPER (Computation
Obfuscation by Producing Permutations for Encoding Randomly), to
create data which never exists on the device digitally in plaintext format
and which is subsequently used for computation. In this paper we utilize
COPPER to calculate a moving average computation on encoded data. 1

Index Terms—hardware security, encrypted computations, embedded
systems

I. INTRODUCTION AND ASSUMPTIONS

Remotely deployed devices have an inherent lack of security due to
their physical vulnerability. Adversaries have the capability to remove
a device from service and read the data stored in memory. This
data may contain sensitive information which the user does not want
leaked, and so the owner may encrypt all data on the device. This is
hindering, however, as it may be desired to perform computation on
sensed data while on the device, which is hampered by maintaining
the data in an encrypted format. Homomorphic encryption schemes
have been developed recently which allow computation on encoded
data [1]; however, existing homomorphic encryption solutions require
intensive time-complexity overhead which to date so far precludes
their usage on low-power embedded systems [2].

To perform computations on encoded data in a way distinct from
existing homomorphic encryption schemes, we build upon the work
we introduced in [3] which performs encoded computations with
a fixed, limited number of inputs. This scheme utilizes random
permutations to perform calculations on encoded data. We introduce
in this paper COPPER (Computation Obfuscation by Producing
Permutations for Encoding Randomly), which extends the original
scheme to allow more complex computations. The key contribution
of this work is the introduction of a novel framework to perform an
arbitrary number of computations on encoded data. In this work we
perform the calculation of a moving average filter on a stream of
data, and we intend to expand the work to implement discrete cosine
transforms and more complex finite impulse response filters.

II. ASSUMPTIONS

We are interested in providing encoded computations which allow
a deployed device to compute deterministic time algorithms with
an arbitrary depth. We define depth as the number of distinct
computations (e.g., adding two numbers takes one computation for a
depth of one while adding four numbers takes three computations for
a depth of three). To enact the encoded computations we assume there
exists a secure server with an insecure communication channel to a
deployed device. The deployed device receives sensor data through an
integrated analog-to-digital converter (ADC). The sensor is designed

1This work was supported in part by The US Department of Energy
Office of Cyber-Security, Energy Security and Emergency Response (CESER),
Cybersecurity for Energy Delivery Systems (CEDS) Award to the Georgia
Institute of Technology, # DE-CR0000004.

such that the data is produced directly in an encoded format which
can only be interpreted through usage of a key value. The device will
utilize a series of bitstreams sent from the secure server to conduct
dynamic reconfigurations of onboard logic in order to perform the
computations on encoded data. We assume an adversary can intercept
all communications to and from the deployed device and is able to
monitor all data stored in memory (RAM) on the device but lacks
access to individual registers.

III. PROPOSED ARCHITECTURE

A. Encoding Mechanism

To perform encoded computations COPPER requires two broad
steps: (1) encoding of input data and (2) computation on the encoded
data. To achieve the first step of encoding data we make use of the
circuit shown in Fig. 1. This circuit encodes data received through
an ADC at the time of data conversion without ever producing
unencoded data in memory. The circuit utilizes a 512-bit initial seed,
labeled in Fig. 1 as H0. This seed value is continuously updated via a
SHA-3 module configured to run the SHAKE-256 algorithm such that
a 512-bit input produces a 512-bit output. Each output of the SHA-3
algorithm, labeled Hj , is used to generate a permutation (LUTi) of
4-bit values via a hardware rendition of the Knuth Shuffle (Shuffle
Unit in Fig. 1). Each permutation LUTi performs a bijective mapping
of the two sets of 4-bit possible unencoded input values Si[7 : 4] and
Si[3 : 0].

Fig. 1. COPPER Encoding Circuitry

B. Computational Framework

The encoding scheme we introduced in Section III-A allows the
server which knows the device’s key H0 to derive all future encoding
mappings (LUTi). As the server knows the potential encodings for
each value, the server can create logic tables which will allow the
device to perform a look-up using multiple encoding values to obtain
an encoded computation result. This is shown in Fig. 2. In Fig. 2
step (a), the server pre-computes the plaintext computation results of
a simple addition and replaces the inputs A and B with A’ and B’,
which are derived as the known encodings which will occur from
the key H0. Next, in step (b) a list of unique values is created and
permuted. This permuted list of values is used in step (c) as the
look up value for the device, the result of the encoding computation,



Fig. 2. Producing Computation and Decode Tables to Allow a Single
Computation. Encoded Data is Marked as x’.

and the permuted list is used in step (d) as the input to a table
the server will utilize to decode the results of the computation. The
Computation Table from step (c) will be transmitted to the device to
perform computation, and the Decode Table produced in step (d) will
be utilized by the server. The computation shown in Fig. 2 uses a
depth of only one operation. To perform multiple operations without
loss of data, the naive approach will lengthen the table exponentially
with each step as the cumulative bit-width of the input increases
with each additional input value. To allow an arbitrary depth of
computations, we perform a lossy computation by reducing the bit-
length of the output to match the length of the input. The server can
then produce Computation Tables which the device will logically
chain together, with one table input derived as the output of the
previous Computation Table.

An example of how we convert the original tables to lossy
Computation and Decode Tables is shown in Fig. 3. Tables (a) and
(c) from Fig. 3 are tables (c) and (d) from Fig. 2 respectively. The
Computation Table and Decode Table are converted in conjunction.
For the Computation Table, we require the output bit-size to be
the same size as the input. In the example in Fig. 3, this requires
converting the 2-bit outputs of table (a) to 1-bit outputs. This is
accomplished by assigning a group of outputs numerically close
together (according to the Decode Table output value mapping) the
same number. In Fig. 3 the encoded outputs ‘2’ and ‘3’ in table
(a), correlating to unencoded values ‘0’ and ‘1’, are both changed
to the 1-bit value ‘1’ in table (b). Likewise, the encoded outputs ‘1’
and ‘0’ in table (a), correlating to unencoded values ‘1’ and ‘2’, are
reassigned to an encoded value of ‘0’ in table (b). In the Decode
Table to accommodate the grouping of these values the unencoded
outputs becomes the average of the grouping of each output. This
results in decoding to either ‘0.5’ or ‘1.5’ for 1-bit addition. The new
output values are then utilized as one input to the next generation of
Computation and Decode tables. This process can repeat for arbitrary
depth of computation.

The scheme as described so far can lead to large inaccuracies
as compared to standard floating point computations. An alternative
solution can be accomplished via the assumption that the actual value
space needed is much smaller than the allowed value space. For
instance, if a particular 16-bit ADC output stream contains sensor
values which can always be represented by only 10-bits, then the
steps performed in (b) and (d) of Fig. 3 can minimize bit usage by
eliminating numbers outside of the expected value space rather than
averaging all numbers in a group indiscriminately.

Fig. 3. Transforming Original Tables to Allow Arbitrary Depth of Computa-
tion. Encoded Data is Marked as x’ and Lossy Data as x∗.

TABLE I
MOVING AVERAGE COMPUTATION ACCURACY

Computation Depth Avg. Inaccuracy (%) Max Inaccuracy (%)
3 20.4 543.7
10 6.2 110.7
20 3.1 87.0
50 1.2 23.3

Overall 7.7 191.21

Inaccuracies in the encoded computation scheme COPPER as compared
to floating point computations. Each computation depth option was
performed for 10,000 input sequences.

IV. EXPERIMENTATION AND RESULTS

To showcase the proposed encoded computation scheme COPPER,
the server and device were implemented in Python 3.10. As validation
of the usefulness of the computational framework, moving average
filters with varying window sizes were calculated on inputs of random
data. The accuracy results of the COPPER computations are shown
in Table I. The scheme results in generally low inaccuracies when
compared to floating point computations as a golden standard, though
very large inaccuracies can occur for individual computations.

V. CONCLUSION AND FUTURE WORK

In this work we have performed computation on an encoded input
stream of arbitrary depth in software, calculating a moving average on
a stream on data. The computation is conducted such that unencoded
data is never present on the device performing computation. Future
work will transfer the software implementation into VHDL hardware
simulations and explore limiting the inaccuracy of computations as
well as explore the applicability of the scheme to more complex
computations and various uniform data sets. Furthermore, additional
investigation must be conducted to ensure the security validations
made in [3] are maintained.

REFERENCES

[1] C. Gentry, “A fully homomorphic encryption scheme,” Ph.D. disser-
tation, Stanford University, 2009, crypto.stanford.edu/craig.

[2] A. Acar, H. Aksu, A. S. Uluagac, and M. Conti, “A survey on
homomorphic encryption schemes: Theory and implementation,”
ACM Comput. Surv., vol. 51, no. 4, Jul 2018. [Online]. Available:
https://doi.org/10.1145/3214303

[3] K. Hutto, S. Grijalva, and V. Mooney, “Rancompute: Computa-
tional security in embedded devices via random input and output
encodings,” in 2022 11th Mediterranean Conference on Embedded
Computing (MECO), 2022, pp. 1–8.


