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Abstract—Supply chain cyberattacks that exploit insecure
third-party software are a growing concern for the security of
the electric power grid. These attacks seek to deploy malicious
software in grid control devices during the fabrication, shipment,
installation, and maintenance stages, or as part of routine
software updates. Malicious software on grid control devices
may inject bad data or execute bad commands, which can cause
blackouts and damage power equipment. This paper describes
an experimental setup to simulate the software update process
of a commercial power relay as part of a hardware-in-the-loop
simulation for grid supply chain cyber-security assessment. The
laboratory setup was successfully utilized to study three supply
chain cyber-security use cases.

Index Terms—Supply chain cybersecurity, control device soft-
ware update, protection relay

I. INTRODUCTION

Critical infrastructure such as the electric power grid is
operated using complex industrial control systems that involve
servers, communication networks, and field control devices.
Modern field control devices at power substations include,
among others, protection relays, remote terminal units (RTU),
merging units, programmable controllers, and event recorders.
All these devices contain microprocessors executing special-
ized firmware and software that require routine updates. There
is a growing concern in the industry regarding the vulnerability
of such control devices to supply chain cyberattacks, where
malicious software updates may be deployed. For instance, a
single incorrect protection setting can result in the incorrect
tripping of a relay and the disconnection of a transmission
line or a generating unit. Given the frequency of updates and
the large number of control devices, electric utilities usually
cannot analyze or test in depth all software updates. In this
paper, we describe a laboratory setup to simulate software
updates to a power system relay device.

Industrial control systems are witnessing an increase in the
number and sophistication of cyberattacks. In this section,
we briefly present supply chain attack examples. NotPetya
was a 2017 cyberattack against organizations in Ukraine. The
attackers gained access to the accounting company MeDoc
and injected malicious code into their software [1]. NotPetya
then encrypted the boot record and file system of com-
puters it infected, rendering them useless. NotPetya caused
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over ten billion dollars in damages to the electrical grid as
well as other critical infrastructure [2]. Recently, a similar
attack occurred on government institutions through Solar-
Winds’ Orion platform. Orion is an IT infrastructure and data
management/monitoring software used by customers around
the world. Hackers managed to insert malicious code into
SolarWind’s Dynamic Link Library, allowing them to spread
to over 18,000 customers [3]. Post-infection, Orion provided
a backdoor for attackers, effectively acting as spyware on
organizations including the US Treasury and Departments
of Homeland Security and Commerce [4]. Attacks that use
similar third-party software vulnerabilities could occur and
target modern power grid control devices. Our research is
focused on cyber-attack simulation from third-party software
updates on modern power grid devices.

The contributions of this paper are threefold:
• First, a hardware-in-the-loop (HIL) trip response testing

methodology for an over-current relay (SEL 751) is
proposed.

• Second, a method to simulate a software update to an
over-current relay using serial commands in Linux is
discussed.

• Third, two attack approaches using compromised soft-
ware updates on this testing environment are proposed.

The rest of the paper is organized as follows: Section
II discusses background research on supply chain security.
Section III describes the scenario and laboratory setup of
the HIL testing, while Section IV describes the usage of the
individual devices in the setup. Section V provides use cases
for the updates before experimental results are presented in
Section VI. A conclusion is provided in Section VII.

II. BACKGROUND AND THEORETICAL DISCUSSION

A. Literature Review

There are multiple research works describing methods for
testing and simulating power grid device attacks [5]–[15]. In
[5], the authors perform research on attacking circuit breakers
by modifying the firmware on a connected relay controller.
In [6], the authors propose a Hybrid Attack Model that
integrates Markov Chain and Probabilistic Learning Attacker
Dynamic Defender models for simulating bad data injection.



Another paper on modeling bad data injection, [7], models
the attack propagation of such an attack using a Markov
Chain and state estimation. The paper [8] proposes a model
connecting a cyber-attack simulation technique to a power
grid perspective. Other papers describe HIL development for
power grid protection device testing [9]–[13]; however, none
describe simulating hacked updates. Surveys such as [14], [15]
additionally provide insight into the development of testbeds
and testing strategies for power system protection devices. The
papers referenced include protection and control device attack
and defense strategies, however, none of them describe using
an update as a vector to attack such devices.

Securing the supply chain is an important topic for cyber-
security. Surveys on the topic demonstrate the wide variety of
attack methodologies and the lack of a comprehensive defense
against such an approach [16]–[18]. Various supply chain
attacks occurring from 2015 to 2019 are discussed in [19],
of which attacks through compromised updates are common.
Another paper developed a model to simulate supply chain
attacks upon substations [20]. That study only describes a
simulation, whereas a physical device is utilized to achieve
our tests. These papers effectively describe software supply
attacks but do not directly address power grid control devices.

B. Overview of the Research/Experiment

This paper is part of a broad Department of Energy (DOE)
research project at Georgia Tech on supply chain cyber-
security. The purpose of the overall project is to develop
technology capable of defending power grid devices against
such cyber-attacks. Our research team has published a paper
describing a software update process to assist in preventing
malicious software update attacks [21]. A laboratory setup and
scenario had to be developed to test the defense described in
[21]. For this purpose, we have selected the SEL 751, which
is an overcurrent protection relay commonly used to protect
radial and looped distribution systems, as the target for such
an attack. We emphasize that this device is already highly
secure. Our purpose is to describe the mechanism for supply
chain cyber-attack use cases. We have developed a method to
simulate the software update as a modified file.

Additionally, to have the relay function as in the field,
methods to test its trip functionality were developed. A power
system simulator was created for this project, described further
in Section IV. This simulator was integrated with a Raspberry
Pi 3 and Gertboard to create a scaled current connected to the
relay terminals. An Arduino Mega 2560 connected to a laptop
is used to measure the analog trip signal of the relay and send
a notification to the power system simulator.

C. OSIsoft

OSIsoft is a data management software used in this project
to simulate the power system control center. OSIsoft’s Plant
Information (PI) system is used to store the data created from
our power system simulator. Additionally, OSIsoft allows for
an automatic transfer of files over a variety of communication
protocols including those typically used in power system

control such as DNP3, MODBUS, and IPsec. OSIsoft is used
to communicate between the power system simulator, the
current generator, and the trip laptop.

D. SEL 751 Relay

As part of the research, we use the SEL 751, as well as
other commercial devices, to demonstrate software updates on
substation control devices. This relay model has the following
qualities: standard firmware, 1 Amp phase and neutral current
nominal for slot Z, 4 push-buttons, and a 2-line LCD, as well
as an Ethernet and serial port. This layout is the standard base
for most SEL 751 Relays. The SEL 751 relay is capable of
performing directional and non-directional current analysis,
over- and under-frequency analysis as well as synchronism
checks. For our experiments, we are using its overcurrent
analysis capability.

There are three main objectives for including the relay in
our hardware loop. The first is for realistic tripping when
the current at its input exceeds a specified threshold. This
allows for confirmation that a supply chain attack occurred as
well as providing results in the form of physical signals. The
next objective is in providing monitoring information typical
to SCADA systems. In our experiments, information such as
current amplitude and trip signals can be monitored in a similar
way as it would be monitored in the field. Lastly, realistic
updates can be performed on the relay.

III. SCENARIO AND LABORATORY SETUP

A. Scenario

The scenario developed for this experiment involves chang-
ing the maximum phase overcurrent trip threshold of the relay
to control thermal limits. A line with a 150A overcurrent
maximum is to be updated to accommodate a lower thermal
limit. The nominal current flowing through the line is 100A,
thus a new trip threshold of 130A is chosen. The goal of
the supply chain attacker is to change this update to another
value, causing the relay to trip falsely or not at all. This can
be achieved through a man-in-the-middle attack or a lone wolf
with access to the relay update files.

B. Laboratory Setup

The proposed HIL layout is shown in Figure 1, including a
power system simulator (1), a Raspberry Pi 3 and Gertboard
functioning as a current generator (2), a current amplifier (3),
the SEL 751 Relay (4), a computer representing the update
vendor (5), a computer to run the update to the relay (6), an
Arduino Mega 2560 (7), a laptop to measure the trip response
of the Arduino (8) and a DC voltage source (9). These devices
are integrated to create the system that simulates an update on
the SEL 751 relay as if it were in the field, offering a testing
environment for supply chain attacks. Figure 1 also illustrates
the connections among these components.

The power system simulator will run a power flow of an
example system using standard equations [22], storing values
such as current and voltage in a PI System database. The
Gertboard and Raspberry Pi 3 are connected to the same



Figure 1: Summary of device connections in system hardware loop
The various devices used in the creation of the HIL laboratory

setup and their connections are shown above.

network as the power system simulator, and receive the current
magnitude from its database periodically through the OSIsoft
interface. They then produce the required current, which is
scaled up through a current amplifier. The current amplifier
connects to the SEL 751 relay through Z01, and Z02 is
connected to the ground of the current amplifier.

The relay connections are as follows. The update computer
is connected to the relay through the front serial port. From
there, the relay update program described in Section IV-C
can run to update the relay. Terminals Z01 and Z02 are
connected to the current amplifier output and its ground. The
output terminal A07 is connected to the Arduino while input
terminals A08 and A09 are connected to a 1V and 4V source
respectively.

The Arduino reads the voltage output of A07 and determines
whether a trip is occurring on the relay. The trip laptop is
connected to the Arduino through a USB connection. It reads
the digital output from the Arduino and creates an Excel file,
which is then sent to the power system simulator. The power
system simulator will read this file and trip the line protected
by the relay under test if required.

IV. MODELING AND SOFTWARE UPDATE PROCESS

To test the relay, four main aspects need to be controlled:
the power system simulator, the current sent to the relay, the
update file, and the relay trip output.

A. Power System Simulator (Device 1)

To create a realistic study for the relay, a power system
simulator was developed. The simulator models the physics
of our example power system including the line flows, load
demand, and control devices as determined by a power flow
solution. The simulator allows for changes in the loads and
generation and connection and disconnection of transmission
lines. The simulation also allows for the implementation of
a time series power flow solution driven by varying load
profiles. Objects that correspond to the control system such

as measurements, relays, RTUs, and communication channels
are also part of the simulator. When the physical relay trips, the
signal is recovered through the OSIsoft data acquisition. The
simulator evaluates the signal and determines the breakers of a
transmission line have been opened. The power flow solution
then incorporates this change (e.g. the impact of the attack) and
provides results in the manner of system conditions, including
possible loss of load.

B. Current Supply (Devices 2 and 3)

The relay requires a current signal scaled from the power
system simulator to properly replicate field operation. Com-
monly, a signal generator is used to create this current source.
Instead, we developed a low-cost and flexible alternative using
a Raspberry Pi 3 and Gertboard. The Raspberry Pi functions
as a computer while the Gertboard acts as an I/O device.
Combined, they act as Device 2. First, the Raspberry Pi
receives an excel file containing the scaled output current from
the power system simulator through OSIsoft. Next, it produces
a voltage waveform scaled from the current maximum of the
circuit to the voltage maximum.

To assist in the production of a clear signal for the relay, a
current amplifier (Device 3) was built. The amplifier was cre-
ated from an NPN bipolar junction transistor (BJT) connected
to a series of resistors on a breadboard. A power supply of
5.65V is connected in series to the resistors and the collector
input while the signal generator is attached to the BJT’s base.
The Z01 and Z02 terminals of the relay are serially connected
to the emitter and its resistors. Through the use of the current
amplifier, the output is scaled between 0 and 175mA. The
relay will measure this current as if it were connected to a
transformer that has a ratio of 1000:1. This allows us to work
in a scaled version of the scenario described in Section III-A.

C. Software Update Methodology (Devices 5 and 6)

The team did not have access to previous software updates
to the SEL 751 relay. Serial commands are utilized to simulate
updates for the relay as the alternative. Both serial commands
and software updates connect to a device and alter its func-
tionality. However, while software updates may completely
change the software of the device, serial commands only
change settings on the layout, not its internal logic. Because of
this, serial commands are far less likely to cause damage to the
relay during our testing than a full software update. The 50P1P
setting is selected as the candidate to be changed to simulate
an attack on the relay. The relay will trip if the maximum
phase current measured exceeds the number specified by this
setting.

There are two aspects of the update code, a text file
containing the serial commands and a Rust code that sends
the commands from the text file to the relay. In doing so, the
command text file can be treated as an update, and attacked
in a similar method to a supply chain attack during the
transfer from the vendor to the relay update computer. The
read and update code is written in Rust due to it having



good memory safety checking and being a high-level object-
orientated programming language. This code connects to the
front serial port on the relay and prints the serial commands
to it. The commands in the text file are shown in Table I.

Table I: Summary of serial command text file for changing the 50P1P
value

Sequence Code Execution

1 ACC Gain access level one
2 OTTER Default password for level one
3 2AC Gain access level two
4 TAIL Default password for level two
5 SET 50 P1P Target the 50P1P value for change
6 0.13 Change the 50P1P value to 0.13A
7 ... Keep the other settings the same
8 Y Confirm changes
9 Y Begin update

10 STA R Restart the relay
11 Y Confirm restarting the relay

Another update that one could perform to change the
maximum overcurrent trip threshold is changing the active
settings group. In the SEL 751 relay, there are collections
of settings called settings groups. Four settings groups can
be edited. Only one group is active at a time, so having two
groups with different 50P1P values changing which one is
the active setting group produces an update similar to directly
changing the 50P1P value. The text file for such an update
would look as in Table II.

Table II: Summary of serial command text file for changing the active
settings group.

Sequence Code Execution

1 ACC Gain access level one
2 OTTER Default password for first level
3 2AC Gain access level two
4 TAIL Default password for second level
5 Group n Change active settings group to group n
6 Y Confirm and begin update
7 STA R Restart the relay
8 Y Confirm restarting the relay

The Rust update code is installed on the update computer
(Device 6). Using a network connection, the serial command
text file is sent to the update computer from the vendor
computer (Device 5) whereupon the Rust code runs, updating
the relay via its front serial port.

D. Receiving the Trip Signal (Devices 7, 8, and 9)

The last action to close the hardware loop involves measur-
ing the trip signal from the relay. A DC voltage source and
an Arduino MEGA 2560 connected to a laptop were used to
fulfill this requirement.

The SEL 751 relay has a programmable single pole double
throw output contact called OUT103, see Figure 2. Before
testing, this output was programmed to switch during a phase
overcurrent trip. On OUT103 there are two terminal inputs,
A08 and A09, and one terminal output, A07. While there is
no relay trip, A07 is connected to A08. When a trip occurs,
the coil is de-energized and connects A09 and A07 instead.

Figure 2: Switch layout of OUT103 used to measure trip response
The Arduino, connected to A07, will read 1V when the relay is

under normal operation and 4V when the relay is tripping.

By connecting an Arduino Mega 2560 (Device 7) to A07
and applying different voltages to the other two inputs, the
Arduino will detect a change in voltage when a trip occurs.
The DC voltage source (Device 9) provides this difference.
Specifically, A08 is attached to 1V, and A09 is connected
to 4V. The Arduino constantly measures its analog input and
records the voltage. If the recorded voltage is below 2V the
relay is not tripping, if it is equal to or above 2V then the relay
is tripping. The Arduino will print 1 if the relay is tripping
and 0 if not.

The laptop connected to the Arduino (Device 8) will then
send the trip command back to the simulator. A terminal
emulator, PuTTY, is used to record the output values from the
Arduino onto a .log file. The .log file is converted to an Excel
file before using OSIsoft to send the file to the power system
simulator. Included in the file is the output of the Arduino as
well as a timestamp of when the file was sent. When the power
system simulator receives a value of 1 from the trip laptop it
opens the simulated line until a command is sent to reclose
the line or the simulator is reset. Until this occurs, even if it
receives a value of 0 from the trip laptop, no changes will
occur.

V. EXPERIMENTAL USE CASES

Using the base scenario described in III-A, three use cases
are created and summarized below.

Figure 3: Three relay update use cases: normal, false trip, and never-
trip
The normal update changes the trip threshold to a reasonable value

of 130A while the hacked updates change the trip thresholds to
excessively low (false trip) and excessively high (never trip) values.



1) Case 1: Regular/Normal Operation: For normal opera-
tion, the new 50P1P value should be changed to 0.13A. This
change provides a lower trip threshold than the original, while
also being above the nominal current. The update is completed
following the steps described in Section IV-C. When using the
group update method, two groups should be created. Group
one is the first setting of the relay, with 50P1P equal to 0.15A.
The second group is the new setting, 50P1P equal to 0.13A.

2) Case 2: False Trip Hacked Operation: To cause the
relay to trip falsely, we lower the 50P1P value below the
nominal current. This modification is achieved by changing
line six in the update file in Section IV-C to a lower value.
In our research, we set the false trip threshold to the mini-
mum achievable, 50mA. To create a malicious update using
the group method, two groups are required. As for case 1,
the 50P1P value for the first settings group should be the
original value, 0.15A. The second settings group should be
the incorrect update, 0.05A.

3) Case 3: Never Trip Hacked Operation: Creating the
never trip hacked software update is similar to the previous
use case. By increasing the 50P1P value to above what the
current generator can output, the relay never recognizes the
need to trip. The maximum threshold the 50P1P value can
achieve is 20A. To perform this hack, we follow the same
directions as the previous use case but use 20A instead of
0.05A for the hacked 50P1P value.

VI. EXPERIMENTAL RESULTS

In this section, we discuss the results of the updates upon the
relay. The current values created in the power system simulator
are compared under the different use cases.

A. Testing Protocol

When testing the relay, the following process occurs. First,
the connections between the devices are confirmed, see Section
III and Figure 1. Figure 4 shows the devices, excluding the
computers, in the lab. This step includes ensuring the relay
wires are attached to their proper outputs as well as that
the current generator, the Arduino laptop, and the power
system simulator are connected to the same network. Then the
Arduino begins recording the trip output of the relay. Next,
the devices on the network begin transferring information.
This information includes the current values from the power
system simulator sent to the current generator and the trip
report from the Arduino laptop to the power system simulator.
Lastly, when a software update is to be applied, the update
computer will first receive the update command text file from
the vendor computer. The update computer will then use this
file to perform the update to the relay, be it the correct or
hacked variant. When the update is received by the relay, it
will reset. This visual cue is used to confirm the update is
completed correctly.

When performing our experiments on the various updates,
consistency in the power system simulator is important. This
means using the same load profile for normal and hacked
updates. For the false trip pair, the current amplitude should

Figure 4: Device setup in the lab
The various devices used in the hardware loop are shown as they

were setup in the lab.

not be greater than 130A. In comparison, the never-trip pair
should have values included that are greater than 130A. This
approach provides a direct comparison between normal and
malicious updates. In addition, the updates are performed
before the fifth data acquisition scan completes. In each data
scan, the current generator receives the next magnitude from
the power system simulator after about fifteen seconds.

B. False Trip Results

Figure 5 shows the results of the normal and the hacked
update. Once the update occurs, the relay immediately trips as
expected. The power simulator in turn opens the line, causing
the remaining values to have no current. False trips such as
the one created in this case result in a disruption to customer
power. Additionally, when such a line is disconnected the
attached busses must regain the power from elsewhere, either
from additional generation from themselves or other lines.
These actions may result in the generator at the bus being
unable to support other buses or the other lines being unable to
withstand the new flow and having to open, possibly resulting
in cascading blackouts. If transmission lines are affected, the
influence of this attack is more pronounced.
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Figure 5: Normal and false trip update over the same waveform
The normal update shown in blue should never trip during this

period while the hacked update, installed before the fifth data scan,
tripped unnecessarily.



C. Never Trip Results

In Figure 6, another series of currents were applied to
the relay. As demonstrated in the figure, where the correct
application tripped at the correct time, the malicious update
inappropriately caused the relay to never trip. Such an attack
upon a real line would result in it being unprotected from
faults, damaging the line.
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Figure 6: Normal and never-trip update over the same waveform
The never-trip update was installed prior to the fifth data scan.
Under normal operations, the relay tripped upon reaching the

sixteenth data scan while the hacked operation did not.

VII. CONCLUSION

In this paper, a HIL testing environment was developed to
perform malicious software updates to an overcurrent relay.
The creation of such a strategy to simulate an update is unique
and crucial for assessing supply chain attacks on control
devices. By utilizing serial commands in a separate text file,
an adversary can test supply chain attacks on a relay without
harming the device. The two attack use cases show different
options for simulating a supply chain update attack. This
laboratory setup and testing process were successfully utilized
to perform cybersecurity analysis and provide a useful and
flexible approach to simulate power grid supply chain cyber-
security use cases.
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