
Hardware-Based Randomized Encoding for Sensor
Authentication in Power Grid SCADA Systems

Kevin Hutto and Santiago Grijalva
School of Electrical and Computer Engineering

Georgia Institute of Technology
Atlanta, Georgia

khutto30@gatech.edu, sgrijalva@ece.gatech.edu

Vincent Mooney
School of Electrical and Computer Engineering

School of Computer Science
Georgia Institute of Technology

Atlanta, Georgia
mooney@ece.gatech.edu

Abstract—Supervisory Control and Data Acquisition (SCADA)
systems are utilized extensively in critical power grid infrastruc-
tures. Modern SCADA systems have been proven to be susceptible
to cyber-security attacks and require improved security primitives
in order to prevent unwanted influence from an adversarial party.
One section of weakness in the SCADA system is the integrity of
field level sensors providing essential data for control decisions at
a master station. In this paper we propose a lightweight hardware
scheme providing inferred authentication for SCADA sensors by
combining an analog to digital converter and a permutation
generator as a single integrated circuit. Through this method we
encode critical sensor data at the time of sensing, so that unencoded
data is never stored in memory, increasing the difficulty of software
attacks. We show through experimentation how our design stops
both software and hardware false data injection attacks occurring
at the field level of SCADA systems.

Index Terms—Hardware Security, Power Grid, False Data In-
jection

I. INTRODUCTION

The power grid and supporting infrastructure contain a collec-
tion of complex distributed control systems. These systems con-
sist mainly of supervisory control and data acquisition (SCADA)
architectures [1]. In recent years numerous high profile cyber-
attacks have occurred in various areas of the SCADA hierarchy,
with some attacks causing blackouts. Many of these attacks
were highly sophisticated, relying on vulnerabilities in multiple
regions of the SCADA systems, such as the Ukraine power grid
hack in 2015 [2].

Certain sections of the power grid may be more vulnerable
than others. For instance, consider a simplified substation such
as shown in Fig. 1. The substation is connected to a remote
wind farm. The wind farm has numerous Intelligent Electronic
Devices (IEDs) and Remote Terminal Units (RTUs) that receive
critical sensor data from the power grid, including voltage,
current, powers, temperatures, etc. However, the IEDs are less
physically secure than traditional units located in a guarded
nuclear power plant, for instance, presenting additional secu-
rity challenges. By gaining physical access to the unmanned
substation room, a capable adversary may be able to replace
sensors or install malware to spoof sensor data vital to the

This work has been partially supported by the U.S. Department of Energy’s
Office of Cybersecurity, Energy Security, and Emergency Response (CESER)
under Cybersecurity for Energy Delivery Systems (CEDS) Agreement Number
DE-CR0000004 to the Georgia Tech Research Corporation.

overall supervisory control. The false data injection attack
has been used in attacks such as the Stuxnet attack, which
reprogrammed programmable logic controllers (PLCs) in order
to mask centrifuge frequencies which exceeded their operating
limits [3]. More generally, a false data injection attack can be
used to influence real-time control power network applications
such as state estimation or automatic generation control [4][5].

Fig. 1. Remote Substation Serviced from an Off-Shore Wind Farm

If an adversary wants to disrupt service from a sensor inter-
faced through an IED, an adversary could attack either through
software or hardware. In a software attack, an adversary who
has gained control of the software stack operating on an RTU
or IED may be able to overwrite the sensor data in a way
that enables a bad command or allows unwanted influence on
power system operation. For a hardware attack, the adversary
can instead replace the source of the data (the sensor itself)
with a false source such as a function generator. Rather than
overwriting the correct data, in this case the adversary directly
provides a source of false information. We introduce a method
to provide protection against both types of attacks.

II. PRIOR WORK

One of the earliest publications of the false data injection
attack for SCADA systems was in [5]. The attack occurs when
a malicious attacker modifies or injects data measurements such
that state estimation techniques do not detect the false data as
bad. Since the introduction of the attack, numerous techniques
have been investigated to prevent a successful employment of the
attack. The defenses developed against this attack deal mostly
with new methods of detection of expected erroneous or bad
data, using techniques such as advanced χ2 tests or through
frequent authentication of the sensor [4][6][7].

In [8], a circuit was developed to implement a hardware per-
mutation generator which continuously and randomly encodes
values as they are output from an analog-to-digital converter
(ADC). The encoded output values are enciphered and are978-1-6654-7902-8/22/$31.00 ©2022 IEEE

then fed back through an XOR mechanism to provide new
encodings for further values. These new (random) encodings are
temporarily stored as a permutation on the set of possible bit
values (e.g., 4-bit values). The outputs of the ADC are directly
clocked into registers in an encoded format, with no version of
the unencoded values ever existing in any memory storage on
the encoding device. A physically separate device then performs
decoding.

III. PROBLEM STATEMENT AND ATTACK SURFACE

We aim to minimize the attack surface available to an adver-
sary attempting to spoof SCADA field level sensors. Specifically,
we aim to design a sensor architecture that thwarts attempts
by an adversary to deploy a software or hardware false data
injection attack. We model an adversary who gains control of
the software operating on a local device such as an IED. The
adversary additionally has physical access to critical sensors,
such as temperature sensors monitoring components of the
generating units or transformers. We assume the adversary has
no control over any software or hardware in the supervisory
control or master station of the SCADA system. To protect
against this adversary, we propose integrating a sensor with
an encoding circuit to directly output encoded digital values
at the time of sampling. As shown in Fig. 2, this could be
accomplished with a public key cryptographic algorithm [9]. We
aim to minimize and potentially even eliminate any unencoded
data in buffer memory. Without access to unencoded data, false
data injection attacks replacing such data become extraordinarily
difficult if not impossible.

Fig. 2. Generic Model for an Integrated Sensor and Encryption Device

IV. DESIGN METHODOLOGY

In this section we showcase our design implementing Fig. 2.
We then explain how the encoding and decoding components
operate in the SCADA model.

Fig. 3. Target Solution for Utilizing an Integrated Sensor and Encryption Module

A. Overall Design

We integrated ADC and encryption in a sensor as a single
composite circuit as shown in Fig. 3. The ADC is a standard
flash ADC, which outputs to the Randomized Data Encoder
(RDE). The RDE encodes the ADC output in accordance with
a key, which is provided via the key source. The key source
could be on chip from a Physically Unclonable Function (PUF)
or could be provided via the Supervisory Computer located in
the secure area via a True Random Number Generator (TRNG)
[10] [11]. The sensor interfaces to an IED, which in turn
communicates with the Supervisory Computer. The Supervisory
Computer has access to the Randomized Data Decoder (RDD)
to extract the unencoded sensed data.

B. Randomized Data Encoder

Fig. 4. Randomized Data Encoder and Analog to Digital Converter

Fig. 5. Permutation Generator Implementing the Knuth Shuffle Algorithm

The Randomized Data Encoder from Fig. 3 is implemented as
shown in Fig. 4. The circuit is derived from the circuit developed
in [8]. The RDE encodes an analog voltage value Vi ingested
through an n-bit flash ADC. The encoding is conducted by
having the analog sample value act as the select lines for mul-
tiple look-up tables labeled LUTim , collectively LUTi, where
i indicates sequential generations of the values in the look-up
tables and m designates the specific table ({m : 0 ≤ m ≤ 3}
in Fig. 4). Note that the select lines are never clocked in to any
register or other digital storage element (i.e., the select lines only
contain transitory pulses) [8][12]. LUTim holds a permutation
of the set consisting of all 4-bit values (4-bit in Fig. 4). The four
encodings are then concatenated together as a 16-bit value. As
each 16-bit SDi sampled data value is clocked into a register, the
permutations LUTim are updated via the Permutation Generator.

The Permutation Generator is shown in Fig. 5. The key
component of the Permutation Generator is the Shuffle Unit. The
Shuffle Unit produces new permutations by utilizing a hardware

Fig. 6. New HS0 Synchronization via an On-Chip PUF

implementation of the Knuth shuffle algorithm on four bits
[13]. The Shuffle Index is used to choose which permutation
is produced. There are four Shuffle Indices, which are 64-bit
subsets of the 512-bit value Hash Source (HSj). The 64-bit
Shuffle Indices are selected via the Shuffle Index Sampler. HSj

is produced by applying the 512-bit HSj−1 as the input to a
SHA-3 module [14]. The first HSj , HS0, comes from either
a TRNG located within the secure region, or from an on-chip
PUF. HS0 is known as the initial seed. Either source of HS0

allows the Supervisory Computer to have direct control over
the choice of the new HS0. The known initialization allows the
secure Supervisory Computer in possession of the initial seed,
HS0, to compute all future values of the possible encoding
permutations, LUTi, and thus retrieve the unencoded outputs
(given the encoded outputs have been properly received, e.g.,
over an encrypted channel). The RDE outputs a single encoded
output value, SDi, after each sample which is typically stored
in a register or buffer memory.

C. Key Source

A possible source for HS0 is through the usage of a PUF.
A PUF utilizes physical variations in device manufacturing to
produce unique bitstrings, akin to fingerprints for the device.
Depending on the design of the PUF, numerous different output
bitstrings can be produced based on which “challenge” input
bitstring is given to the PUF. The mapping of various challenges
to “response” outputs creates challenge-response pairs (CRPs).
A PUF is thus used as a key source by utilizing a response as
the value HS0, as shown in Fig. 6. The Supervisory Computer
chooses a challenge from a database of previously recorded
CRPs. The response is the new HS0, and the supervisory
computer will transmit the challenge to the sensor. The sensor
will utilize the challenge to produce the new HS0 from the on-
chip PUF. By utilizing this method, the actual key value HS0

is never transmitted in either plaintext or ciphertext format, and
the risk of key compromise by an adversary is reduced [10].

D. Randomized Data Decoder
The RDD circuit is shown in Fig. 7, which implements

the component labeled “Randomized Data Decoder” in Fig. 3.
This circuit decodes the SDi provided by the RDE circuit
into the expected output of a traditional sensor. The RDD
accomplishes the decoding with a circuit composed of largely
similar components to the RDE circuit introduced in Fig. 4.
The RDD utilizes the same Permutation Generator from Fig. 5
as the RDE circuit. With the RDD’s HS0 seed initialized to
the same value as the RDE’s HS0, the RDD circuit produces
an equivalent LUTim value sequence as the RDE circuit. The
component labeled “Compare” in Fig. 7 is shown in detail in
Fig. 8. The “Compare” block consists of a comparator for each

4-bit value in the LUTim mapping. For a given 4-bit input value,
one of the sixteen comparators will output a logic ‘1’. This
comparator output is used as the input to a priority encoder. Due
to the arrangement of the priority encoder inputs, this structure
recovers the unencoded version of the SDi input. Thus the
original encoding is undone and the RDD circuit outputs the
value which would have been obtained from a standard sensor.

Fig. 7. Randomized Data Decoder

Fig. 8. RDD Circuit Compare Component

E. Sensor Operation

We now will describe the high-level functionality of the RDE
and RDD circuits. As shown in Fig. 3, the RDE and RDD
circuits are interfaced through an IED, with the RDE residing
in a region deemed insecure and the RDD in a region deemed
more secure. Initially the RDE and RDD are synchronized with
a common HS0. The source of HS0 can be stored on chip
in a mechanism such as a PUF or delivered to the RDE via
the supervisory control network external to the RDE, utilizing
standard network security protocols for data transmission. Dur-
ing operation, each HSj provides independent and identically
distributed encoding mappings for the LUTim values. After the
encodings have been used to create an SDi, the SHA-3 module
is used to create HSj+1. No HSj is used to create more than one
of the SDi values. The produced SDis are sent to the interfaced
IED, which then sends the the values to the supervisory control
network for decoding. The supervisory control network decodes
the SDis using an RDD circuit with the same HSj sequence
as the RDE circuit. If required, the supervisory control network
can resynchronize the RDE and RDD circuits by issuing a new
HS0. New HS0 values will always be chosen by the supervisory
control network, and HS0 values will never be re-used.

This operation of the RDE and RDD circuitry provides
inferred authentication of the sensor to the supervisory computer.
If the sensor is replaced or the value HS0 is altered, the
supervisory computer will see data which appears random. The
server may then assume the data is due to a malfunction in
the sensor, or due to a adversarial attack. Either reaction will
disregard the sensor’s data.

V. SECURITY

In this section we explore how the developed RDE circuit
provides inferred authentication and integrity in an environment
with an attack surface as described in Section III.

A. Approach to Show Security

We will show how an adversary fails to perform a false data
injection attack. We start by providing our own red-team analysis
as the most ideal attack scenario wherein an adversary has a
super ability to temporarily manipulate the sensor environment
(specifically, control the temperature exactly). We show that
with sensor environment manipulation, the adversary has an
exponentially small chance of successfully performing the false
data injection attack. We follow by claiming an adversary
without the ability to manipulate the sensor environment must
also fail in any attack attempt.

B. Attack Model

An adversary attempts to provide a false data stream from an
IED or RTU that is seen as correct from the point of view of the
supervisory levels of control in the SCADA system. We assume
that an adversary has compromised portions of the network and
can examine the entire stream of SDi outputs.

Now we will explain an attack attempt by an adversary. The
goal of the attack is to reduce the search space required to
determine the sequence of HSj values (and hence the encodings
performed by LUTim) on the device. Discovering these values
will allow the adversary to forge false encoded data such that
decoded values appear as correct values to the SCADA network.

For demonstration of security, we model a powerful adversary
who can influence any parameter (i.e., the temperature of a bulk
power transformer) for a limited number of samples such that
the exact voltage encoded by the ADC is known. The adversary
subsequently receives the SDi outputs via network intrusion.
Due to the functionality of the RDE, the adversary receives
one SDi value correlating to a single HSj , and then HSj is
overwritten by HSj+1. The limited sequence of SDi values
corresponding to known input voltages is the only information
available to the adversary. SDi values from different HSj

values are independent due to the functionality of the SHA-3
cryptographic hash function.

To test for the correctness of an assumed HSj from the
untested candidate values for HSj , the adversary randomly
chooses a candidate potential HSj (PHSj). For each PHSj

value a stream of values {PHSj+1, PHSj+2, etc.} is cal-
culated. The adversary then uses a separate standalone RDE
circuit to encode the known stream of input values using
{PHSj , PHSj+1, ..., PHSj+n}. If the stream of reproduced
encoded outputs {SDi, SDi+1, ..., SDi+(2n+1)} produced from
starting point PHSj match the actual SDi values output for
some number of consecutive trials, then an adversary can
reasonably assume PHSj is equal to HSj . For n SDi values
tested, a sequence of encodings from an incorrect PHSj values
will match the true SDi sequence with probability (1

16)
n. We

will now will explore the level of security the device has against
the adversary who has successfully conducted this attack to

Fig. 9. LUTim mapping determination through input to output inspection.

determine the location of a single element in a series of LUTim

values.
In order to reduce the number of PHSj values required for

testing, the adversary attempts to prune known incorrect values.
The adversary has a collection of unencoded inputs correlating to
encoded outputs. With this the adversary can determine a single
address location for one element in the set of values stored in
LUTim . As an example, in Fig. 9, the adversary causes a voltage
correlating to an input of 0x012F, and the current LUTim
mappings output 0xA473. The adversary now knows that any
permutation which does not result in the mapping of 0x012F
to 0x1473 is incorrect, without needing to test the sequence of
PHSj values. With the limited LUTim permutation knowledge,
the Knuth shuffle algorithm used to produce the permutation
can be used in reverse to determine candidate PHSj values
correlating to the {0, 1, 2, F} to {A, 4, 7, 3} mapping. The
adversary will now test the chosen PHSj values against the
output SDi values as previously described. The authors know
of no method to determine more LUTim mapping values than
this using our attack surface assumptions, which would allow the
pruning of more PHSj values. In other words, one sixteenth of
the 256-bit PHSj input to the shuffle units can be determined
without explicit testing, but no more than this.

C. Level of Security

In Section V-B we introduced a powerful attack by an
adversary to reduce the search space required for determining
the in-use HSj . Now we will identify how much this attack has
reduced the search space from a full brute force search of 512
bits. As discussed in Section IV-B, the addresses of the elements
in LUTim are determined by the Knuth shuffle algorithm. The
algorithm is deterministic and can be modeled as taking an index
as input and outputting a specific permutation. The algorithm
allows all possible permutations of a set. For a given set with
k elements, there are k! permutations. With knowledge of the
address of one element, as found in Section V-B, there are k−1
unknown element locations and (k − 1)! possible permutations
for the remaining unknown element locations. Each possible
permutation has a unique shuffle index subset associated with
it. With four LUTim components in the architecture shown in
Fig. 4, a single unencoded input value to encoded SDi mapping
contains four unknown LUTim permutations. More generally,
with m LUTims holding permutations on sets of k elements,
the total permutations possible, and thus the total number of
shuffle indices possible for a given encoding subset determined
by the adversary’s attack is given by the following:

P (k,m) = ((k − 1)!)m (1)

Each possible LUTim encoding correlates to multiple possible
shuffle index subsets, however. Thus far we have made the
assumption that each permutation correlates to a single HSj

subset. In our design, though, 64 bits of the HSj are used to
select from the 16! ≈ 248 permutations. Each permutation held
in LUTim has a possible 264

∼248 ≈ 216 corresponding indices.
Referring to the 256-bit shuffle index as ls, the number of indices
per permutation is given by:

I(k,m, ls) =
2

ls
m

k!
(2)

Hypothetical pruning techniques do not apply for disregarding
similar indices for a given permutation (i.e., assume a technique
exists to allow ignoring the additional possible indices from
Equation 2). This is because two identical permutations held in
LUTim with different indices will have different future values
LUTi+1m due to the properties of the SHA-3 cryptographic hash
function.

Combining Equations 1 and 2 we obtain the following:

P (k,m, ls) = (
2

ls
m

k!
((k − 1)!))m (3)

The structure of the RDE utilizes only half of the HSj

values for each sample. The unused half does not affect
the current encoding, but will cause different future values
{PHSj , PHSj+1, ..., PHSj+n} and must be accounted for.
With the length of HSj as lh we obtain the following overall
equation:

P (k,m, ls, lh) = (
2

ls
m

k!
((k − 1)!))m × 2(lh−ls) (4)

With the shown RDE circuit, we encode four 4-bit values
at a time, giving a value for k of 24 = 16 and m = 4. We
additionally have the values lh = 512 and ls = 256. Utilizing
these values we obtain the total number of possible values of
HSj for a given sequence of two SDi outputs as follows:

P (k,m, ls, lh) = (
2

256
4

16!
((16− 1)!))4 × 2(512−256) = 2496 (5)

The number of possible HSj values for a known specific
voltage to SDi encoding is exactly 2496 with our RDE circuit
parameters. This large search space for a brute force attempt to
determine which HSj sequence matches to known encodings
is beyond an adversary’s capabilities. This search space can be
confirmed by alternatively noting that the attack to determine
encodings has removed permutation uncertainty from 1

16 of the
index, for half of the total length of HSj . With a 512-bit HSj ,
removing 1/16 of the bits from half of the total length results in
496 bits of uncertainty (512

16∗2 = 16, and 512− 16 = 496.) This
provides a level of security harder than determining a collision
for a SHA-3 512-bit hash output and easier than determining a
pre-image.

Due to the properties of the cryptographic hash function used,
SHA-3, there are no known correlations between the hash input
and hash output. The authors know of no method to carry
forward the discovered 32 bits from one generation of HSj

to the next HSj+1. The discovery process for determining any
HSj appears independent of the discovery process for future

Fig. 10. Tested RDE Implementation

Fig. 11. Physical RDE Implementation

values. Only with a fully correct HSj is any knowledge gained
of HSj+1, HSj+2, ..., HSj+n. We believe the circuit provides
a level of security at least as strong as SHA-3 [14].

VI. TEST METHODOLOGY

For our tests we have utilized a temperature sensor as the
target application. We emphasize that the proposed technique
is valid for any type of analog measurement, such as voltages,
currents, or power measurements derived from power instru-
ment transformers. Both the encoding and decoding circuits are
implemented via VHDL on separate FPGAs. The implemented
test architecture is shown in Fig. 10 and Fig. 11. The tests
utilize the LM95172 commercial temperature sensor and the
Intel Cyclone V SoC [15][16]. For this proof of concept the
LM95172 transmits the 16-bit temperature recording to the
Cyclone V via SPI for encoding. To simulate a software or
hardware replacement of the sensor data, we bypass the RDE
circuit and pass unencoded data through the RDD circuit.

For simulation, ModelSim - Intel FPGA Edition 10.5b revi-
sion 2016.10 was utilized. For synthesis a solution targeted to the
Cyclone V 5CSXFC6D6F31C6 on the TerAsic DE-10 Standard
Development Kit was developed. All synthesis was conducted
in Quartus Prime 20.1.1 Build 720. We utilized the mid-range
SHA-3 core module provided by [17].

A. Operating and Synthesis Results

The RDE circuit was run ten times on 20,000 data samples
with different HS0 starting values, for a total of 200,000
samples. The temperatures measured were ambient room tem-
peratures, and the temperature was changed for each test. Each
of the produced SDi samples were then decoded through a
synchronized RDD circuit. The RDD circuit maintained syn-
chronization such that all outputs decoded to the correct plaintext
values. The plaintext outputs were verified by comparison to
unencoded temperature recordings obtained in parallel with the

SDi values. We additionally verified the RDD output showed no
suspected bad data via a χ2 test [6]. The χ2 tests were conducted
with a confidence level P of 0.01.

To simulate a software or hardware attack, the unencoded
temperatures recorded in parallel were passed through the RDD
circuit. This RDD operation decoded data which was never
encoded originally, simulating a replacement of the sensor by
a device with no encoding functionality. An additional χ2 test
was performed on this decoded output with extensive bad data
resulting from bypassing the RDE circuit. A further attack was
simulated by attempting to decode one set of 20,000 SDis with
an RDD circuit set to the HS0 value used for a test at a different
background temperature, simulating an attempt to replace the
sensor with a guessed HS0 value. The decodings obtained from
this test produced extensive bad data from a χ2 test as expected.

FPGA resource utilization metrics and throughput are shown
in Table I. We provide the utilization results for both the RDE
and RDD circuits, as well as for the permutation generator and
shuffle unit sub-components. The circuit is implemented on the
low-cost Cyclone V FPGA, and larger FPGAs could easily run
multiple instances of the RDD circuit in parallel. The majority
of the logic and register utilization for both the RDE and RDD
circuit is due to the SHA-3 module, though DSP blocks are used
by both the RDE and RDD circuit as part of the permutation
generator [13]. In actual testing throughput limitations were due
to the limits in rate of conversion in the commercial temperature
sensor itself [15].

TABLE I
FPGA UTILIZATION FOR THE RDE AND RDD CIRCUIT

Circuit (A) (B) (C) (D)
RDE Circuit 4044 3694 44 >180
RDD Circuit 4088 3461 44 >200

Permutation Gen. 1346 0 44 >200
Single Shuffle Unit 418 0 11 >200

TABLE II
(A) LOGIC (ALM) BLOCKS. (B) REGISTERS. (C) DSP BLOCKS. (D)

MAXIMUM FREQUENCY (MHZ).

VII. FUTURE WORK

The sensor developed in this paper relies upon a flash ADC
style architecture. Future work would explore other ADC styles
such as a ∆Σ ADC or successive approximation ADC. Future
work additionally exists in integration with a PUF and deploy-
ment with power IEDs in a real SCADA system.

VIII. SUMMARY

In this paper we have presented an architecture integrating
an ADC with a deterministic hardware encoding method to
provide enhanced security against false data injection attacks
in SCADA systems. The lightweight method provides security
more difficult than determining a collision for a SHA-3 512-
bit hash. By providing inferred authentication via a public-key
style of encryption, the RDE and RDD circuits can provide
enhanced protection against both hardware and software false
data injection style attacks. This additional security is particu-
larly beneficial in vulnerable remote sensors which are parts of
critical infrastructure. With continuing cyber-attacks occurring
in critical sectors such as the power grid, it is vital to continue

research into preventing potential attacks. The proposed method
can provide enhanced security to power grid devices through
hardware encoding.

REFERENCES

[1] M. S. Thomas and J. D. McDonald, Power system SCADA and
smart grids, 2015.

[2] G. Liang, S. R. Weller, J. Zhao, F. Luo, and Z. Y. Dong, “The 2015
Ukraine blackout: Implications for false data injection attacks,”
IEEE transactions on power systems, vol. 32, no. 4, pp. 3317–
3318, 2017.

[3] J. P. Farwell and R. Rohozinski, “Stuxnet and the future of
cyber war,” Survival, vol. 53, no. 1, pp. 23–40, 2011. [Online].
Available: https://doi.org/10.1080/00396338.2011.555586

[4] R. Deng, G. Xiao, R. Lu, H. Liang, and A. V. Vasilakos, “False
data injection on state estimation in power systems—attacks,
impacts, and defense: A survey,” IEEE transactions on industrial
informatics, vol. 13, no. 2, pp. 411–423, 2017.

[5] Y. Liu, P. Ning, and M. Reiter, “False data injection attacks against
state estimation in electric power grids,” in Proceedings of the
16th ACM conference on computer and communications security,
ser. CCS ’09. ACM, 2009, pp. 21–32.

[6] R. A. Donnelly, Statistics, third edition, first american ed., 2016.
[7] A. O. Gomez Rivera, E. M. White, and D. K. Tosh, “Robust au-

thentication and data flow integrity for p2p scada infrastructures,”
in 2021 IEEE 46th Conference on Local Computer Networks
(LCN), 2021, pp. 557–564.

[8] K. Hutto and V. Mooney III, “Sensing with random encoding for
enhanced security in embedded systems,” Mediterranean Confer-
ence on Embedded Computing (MECO), vol. 10, pp. 809–814,
2021.

[9] J. Katz and Y. Lindell, Introduction to modern cryptography.
CRC Press/Taylor & Francis, 2015.

[10] R. Maes, Physically Unclonable Functions Constructions, Prop-
erties and Applications, 1st ed., 2013.

[11] M. Turan, E. Barker, J. Kelsey, K. McKay, M. Baish, and
M. Boyle, “Nist special publication 800-90b: Recommendation
for the entropy sources used for random bit generation,” US
Department of Commerce, National Institute of Standards and
Technology: Gaithersburg, MD, USA, 2018.

[12] A. S. Sedra, K. Smith, and A. Chandorkar, “Microelectronic
circuits: Theory and applications,” pp. 1014–1017, 2013.

[13] D. E. Knuth, The Art of Computer Programming. Volume 2,
Seminumerical Algorithms, 3rd ed., 1997.

[14] M. Dworkin, “Sha-3 standard: Permutation-based hash and
extendable-output functions,” 2015-08-04 2015.

[15] National Semiconductor, “13-bit to 16-bit 200°c digital temp
sensor with 3-wire interface,” LM95172 Datasheet, December 16,
2009.

[16] Intel, “Cyclone v device datasheet,” CV-51002, November 27,
2019.

[17] G. Bertoni, J. Daemen, S. Hoffert, M. Peeters, G. Van Assche,
and R. Van Keer, “Keccak in vhdl,” Team Keccak, 01 2021.
[Online]. Available: https://keccak.team/hardware.html

