
 1

Abstract— Power grids are integral parts of modern daily life and
are increasingly under cyberattack. Common software update
processes for grid control devices rely on only one organization to
provide verification. This paper proposes a multi-signature
software update process to help better secure data acquisition
devices from malicious actions by using standard cryptosystems
such as TLS. A prototype system build on Linux and off-the-shelf
hardware has shown successful update and attack prevention with
our customized multi-party update software.

I. INTRODUCTION

Cybersecurity attacks on power grids have become an
increasingly vexing problem around the world. Power grids are
critical parts of daily life and so need the utmost in protection.

A notable example of weak update security is the attack on
the Ukrainian power grid in 2015 [1]. Attackers were able to
login using stolen credentials and executed an irrevocable
overwrite of the firmware on Moxa UC 7408-LX-Plus data
acquisition devices – which are commonly used in power grid
control systems – rendering the devices inoperable [1]. This
action caused a massive power outage affecting over 200,000
customers [1].

The update of control device software has been identified as
particularly vulnerable to attacks as demonstrated in the
Ukrainian attack. Current software upgrade methods rely on
verifying only one cryptographical signature. Use of only one
authentication method has some flaws, the most notable of
which is that only one organization needs to be compromised
to insert malicious code into devices. This paper proposes a
method to rectify such a vulnerability and increase the
transparency of the code being used in power grid control
systems. The use of propriety devices which do not provide
software access makes it very difficult or impossible to conduct
comprehensive security analysis. This paper utilizes an open-
source, flexible model in response to that challenge to model
critical data acquisition devices in the power grid. While we
recognize that the power grid is a very large and complex
infrastructure and that most of the control devices utilized are
proprietary, the utilization of verifiable software (via provision

of source code whether the code is proprietary or is open
source) to address security issues is gaining momentum in other
industries [9]. Linux is a common kernel to deploy in embedded
systems such as used in Moxa data acquisition systems,
specifically the Moxa UC 7408-LX-Plus [3]. Modeling such
systems is important to develop cybersecurity solutions.

Moxa did not update the software on the UC 7408-LX-PLUS
as it was discontinued as mentioned by US CERT [4]. Many
utilities still use this device, and therefore a new method is
needed to allow the update of legacy devices [4]. This paper
demonstrates a system that improves the creation of secure
updates to enhance the lifespan of mission critical control
devices. A relay is used in this paper to better demonstrate the
practical application of the proposed setup.

II. BACKGROUND

a) Primitives
Many components are part of a cybersecurity system. Some

of the most important are the cryptographic primitives used.
Rivest-Shamir-Adleman (RSA) is a cryptosystem that uses
asymmetric key cryptography [5]. Transport Layer Security
(TLS) is an implementation of cryptosystems that is used to
encrypt data in transit, and in the scenario investigated in this
paper TLS is used as a machine-to-machine method [6].
TLS 1.3 is the latest version, and it is the only version used in
this paper [6]. A Certificate Authority (CA) is critical to
augment the TLS standard, as a CA provides the cryptographic
signature to verify the authenticity of an entity, for instance a
website a person is visiting by vouching for the authenticity of
a cryptographic key used to communicate with the website [6].

b) Gentoo
Gentoo Linux is the operating system used to model the data

acquisition device [8]. We choose Gentoo Linux as the base of
our prototyping system and experiment because it provides
flexibility in creating a model system via its ability to control
the compilation of everything from source on the computer.
Gentoo allows the user to control the features included in
applications via USE flags [8]. Further, Gentoo allows the
complete customization of kernel options. Gentoo introduces
an ebuild system that allows a developer to write a bash type
script that controls how the package is compiled and installed
on the system. Two Gentoo ebuild features that the paper
utilizes extensively are src_unpack and verify_sig [8].

Open-Source Architecture for Multi-Party Update
Verification for Data Acquisition Devices

 Vincent Mooney
School of Electrical and Computer Engineering

 School of Computer Science
Georgia Institute of Technology

Atlanta, Georgia, USA
mooney@ece.gatech.edu

Benjamin Newberg and Santiago Grijalva
School of Electrical and Computer Engineering

Georgia Institute of Technology
Atlanta, Georgia, USA

bnewberg@gatech.edu, sgrijalva@ece.gatech.edu

This work has been partially supported by the U.S. Department of
Energy’s Office of Cybersecurity, Energy Security, and Emergency
Response (CESER) under Cybersecurity for Energy Delivery
Systems (CEDS) Agreement Number DE-CR0000004 to the Georgia
Tech Research Corporation

 2

Verify_sig is a specialized class that allows signature
verification on the source tarball [8]. Using Gentoo allows great
flexibility in designing a setup that can model virtually any
software stack based on Linux in use in current power grids of
today. This paper combines default Gentoo behavior with
additions to better verify the authenticity of the source tarball
downloaded before compilation. The default Gentoo behavior
is to verify the source tarball against a hash that was created
during the maintainer’s upload of the ebuild. This model trusts
the maintainer and that the source tarball was not malicious
when the maintainer created the ebuild. The method presented
here ensures that more people must sign off on the source
tarball due to two detached signatures being needed, which
improves security from a single point of failure as shown in the
default Gentoo model.

c) OS Components
Modern operating systems are often broken into two different

components: the kernel space and userland. The kernel space is
at the lowest level and most trusted part of the operating system
and handles hardware access, process management, along with
other low-level tasks. Userland is where the desktop and
applications that users interact with daily reside.

d) Containers
 Container technology is lighter weight than a virtual machine
because a container still runs on the host machine’s kernel, but
the userland stack is separate from the host [7]. Container
technology is used to separate services for easier and more
secure management; using containers follows best practices in
modern data centers and reduces dependency conflicts. Many
current server farms in the cloud use containers.

TABLE I
SOFTWARE PACKAGES

Software Description

Podman Container Management Software [7]
Moby Container Management Software [20]

Nomad Workload orchestrator [13]
Consul Service mesh communication coordinator [14]
Vault Management of the certificate authority [10]
Ceph Storage backend that creates storage clusters [16]

Hockeypuck Key server [18]
GitLab Git server [21]
Traefik Reverse proxy [15]
Chrony Network time protocol server [11]

CoreDNS DNS Server [19]
Gemato Gentoo manifest creator/verifier [17]
Portage Gentoo package manager [22]

Containers also make it easier to update software by allowing

the update of the entire software stack by deploying a new
container in place of the old one as persistent data is stored
outside the container, which allows a container to be ephemeral.
Container updating, however, is not the focus of this paper as it
already is a well-discussed topic in software engineering. We
choose Podman, a project of Red Hat, as the container
management software for only the storage drivers [7]. Moby,

another container manage-ment solution, is used for any service
deployed by Nomad, due to compatibility issues with Nomad
and Podman [20].

e) Software Used
Table I displays the software packages used. A service mesh

as mentioned in the table, which is a way for applications to
share information with each other, is managed by Consul.

III. ATTACK SCENARIO

In the attack scenario we use in this paper, a lone wolf
attacker has access to the power grid control system. The
attacker is a low-level engineer that can change firmware
source code before it is installed on a device or launch an attack
similar to the (assumed key steps of the) Ukrainian attack as
seen in Figure 1. The attacker may use ssh to carry out the attack
along with sftp to move the files that contain the exploit onto
the Vendor server cluster. The low-level insider has these
engineering permissions in order to carry out the duties of the
position held in the company.

Figure 1. Diagram of a possible attack.

IV. PROPOSED MITIGATION: MULTI-PARTY UPDATE

A proposed mitigation implements a multi-party update
verification process based on Gentoo Linux (or any other
similarly provisioned software). Figure 2 shows our proposed
multi-party verification based on the concept of multiple
organizations providing cryptographic verification of the
integrity and authenticity of the update.

Figure 2. Diagram of update method.

Specifically, Fig. 2 shows a confirming organization, the

electric Utility, and an updating organization called Vendor.
Multi-party update verification allows multiple companies to
verify the provenance and authenticity of an update before it is
applied to a machine. This method is different from other

Utility Vendor

Memory

Parallel to Serial
Converter

4

Substation

Power Device
Controller
Software

3

22

1

5

Updater
Software

Updating
Organization

Confirming
Organization

 3

methods because currently most updates only utilize a single
signature check.

In the first step (e.g., see the “1” circle in Figure 2), the
multiple organizations involved (Fig. 2 has two such
organizations) agree to update a device in the power grid. A first
organization (e.g., an organization responsible for overall
software update management such as Vendor in Figure 2) signs
the source code and binary and then sends the signed update
source code and binary to the next organization involved in
supervising the update process. This second organization could
– before either applying the update to their machines or their
customer’s machines – utilize software engineering methods to
verify the binary matches the source code and/or the source
code contains no malicious additions.

The step 2 circles in Figure 2 show both organizations (Utility
and Vendor) sending signed updates to the energy device, e.g.,
a data acquisition device. Note that only one organization (the
“Updating Organization” in Fig. 2) needs to send the full
firmware update encrypted and signed; the rest of the entities
involved (e.g., the “Confirming Organization” in Figure 2) may
send signed cryptographic hash values to verify the complete
firmware update.

 Specifically, in step 3 in Fig. 2, the updater software (which
cannot be altered in our model) regenerates the hash value of
the firmware or software binary to be updated: only if the
encrypted and signed hash values from all entities (Fig. 2 shows
two entities, a Utility and a Vendor) match does the update
proceed. If there are any errors, e.g., the signatures do not match
or the hash values are not equal, an error message is generated
and the update is not applied.

Step 4 in Figure 2 updates the controller software of the data
acquisition device if all hash and signature checks pass. Step 5
shows the data acquisition device communicating with a power
device in the grid.

Our proposed mitigation raises the cost of an attack because
now instead of needing to break one network, an attacker would
need to breach two networks in order to successfully carry out
the attack, i.e., in our example the primary action required is to
steal appropriate private keys in each network. In Fig. 1 and
Fig. 2 the keys used are RSA 4096-bit keys, and the exchange
of the keys is done via USB drives between the devices. The
keys could also be preloaded at the factory or delivered through
a keyserver. The ebuild script is written to include an extra
security check (using the RSA keys) in the src_unpack section.
This extra check is in addition to the enablement of Gentoo’s
verify_sig USE flag. If either of these checks fail, then the build
process will be aborted. The Utility is air gapped to simulate the
most secure type of system and prevent any interface from
outside networks since it is not connected to the outside
internet.

V. PROTOTYPE SYSTEM

In order to model the above attack scenario and its proposed
mitigation, a Dell desktop with Gentoo, henceforth called
Utility device, is used along with a Dell laptop, henceforth
called Vendor server cluster, acting as the server cluster that
Utility uses. The desktop models a data acquisition device that

is connected to Ethernet. The laptop is running four virtual
machines to simulate the cluster. To route between these
subnets, an Ubiquiti EdgeRouter 12 is utilized with IPv4
addressing as seen in Figure 3. Also, the connection between
the Utility device, Vendor server cluster, and router is Ethernet.

Figure 3. Diagram of a network and assigned subnets to

each organization.

Container technology (see Section 2) is utilized by the

Vendor to run the different services needed to carry out the
experiment.

Figure 4. Server cluster layout. Dashed line is the incoming
outside connections accessible from the 10.0.1.3 address. The
solid lines represent the internal connections made either by

the services used, cluster only ssh connections, or Consul
Connect in the 192.168.122.0/24 subnet.

The Vendor server cluster is used to create a four virtual

machine server cluster as shown in Figure 4. The first virtual
machine is called central-services, and it runs in a virtual
machine the servers for Consul, Nomad, and Vault along with
Podman containers for the storage backend, Ceph. Node1 and
Node2 are two other virtual machines that run Consul and
Nomad as nodes onto which jobs can deploy. Node1 and Node
2 also run Podman with Ceph to create a 60GB storage pool.
The final virtual machine is called ingress-gateway, and it
maintains the Domain Name Service (DNS) server to advertise
the domains created for this experiment with the IP for ingress-
gateway, the Network Time Protocol (NTP) server for the
Utility device, and the Traefik reverse proxy to terminate the
TLS connections and route each request to the appropriate
services. The domains created, but only valid within the
experiment subnets, are the following: (i) registry.gmlab, the
container registry storage; (ii) git.gmlab, the self-hosted GitLab

Node2

Central-
Services

Node1

Ingress-
Gateway

 4

location; (iii) keys.gmlab, Hockeypuck key server; and, finally,
(iv) serving.gmlab, which serves the static content of the source
tarball and detached signatures as needed during the ebuild
process. Each of these domains provides a way to access the
needed service inside the cluster.

 Three HashiCorp products are used to create, administer, and
secure the server cluster that runs the services needed. The
products are used under their free and open-source terms. The
products are the following: Vault, Nomad, and Consul. When
discussing these applications, server means the virtual machine
controlling what the worker nodes and what the clients are
doing.

Vault is an application that allows the management of
certificates, access tokens, and other security functions [10].
Consul allows for service mesh communication coordina-
tion [14]. Nomad is for job orchestration across the nodes to
determine where a service is going to run [13].

Nomad is a workload orchestrator that can deploy jobs across
multiple nodes, thus helping to reduce the complexity of
deciding where each job should be run and improving
redundancy as multiple copies can be ran at once. However, this
experiment is running on limited RAM and so only one copy of
each application is deployed. Nomad describes a job as
something that encompasses multiple task groups, where each
task is a container or other application desired to be run on a
server cluster. Groups help organize tasks based on whether
tasks need to be on the same server or not.

Consul helps manage service meshes to ensure services
inside it can connect to each other. Consul is used to route for
instance the key server to its database master as best practices
dictate for microservices. Consul Connect, a feature of Consul,
is also used to register each service with Traefik for routing
from the outside into the cluster. Also, Consul Connect creates
a sidecar proxy using Envoy for each service which leaves the
routing between services being managed by Consul, which
further simplified networking operations. Consul runs on all the
virtual machines to manage the networking.

 The services deployed via Nomad are the Hockeypuck key
server, a GitLab instance, Ceph controller for Nomad, Ceph
nodes for Nomad, a static web content server to serve the source
tarball and its detached signatures, and a private Docker
container registry to handle any custom images that must be
made and deployed. The Alpine Linux userland tag, if an option
from Docker Hub, is always chosen. Custom images are created
for the static web content served via the Apache web server
container, so that the need for persistent storage is eliminated
and the Hockeypuck server container is custom created from
Hockeypuck’s source to better work in the experiment
environment and run on Alpine.

Ceph controller is used to control the integration of Ceph and
Nomad. The Ceph nodes are present on all Nomad nodes to
handle connecting the containers back into the Ceph backend.

The git repository for ebuilds is hosted on GitLab as it is the
best way to push ebuild updates out to the data acquisition
device. GitLab is chosen due to its community edition being
MIT licensed, and an easier way to setup a git server with a nice
GUI and many features to use to manage the ebuild repository

for the ebuild used in this experiment and provide the server
from which to sync the ebuild. Because git is used, the top
commit signature is checked during the cloning process by
portage on Gentoo.

Hockeypuck is an open-source project that can be used to
store key material for the signing applications and monitor key
revocation status, which is why it is needed [18]. Gentoo uses
the key server to check key revocation status when verifying
the commit signature on the ebuild git repository or manifest to
notice if the ebuild info was tampered by unauthorized users
either on the server or in transit.

Traefik is used as the reverse proxy to provide a consistent
entry point for all the services no matter on which nodes they
are deployed [15]. Traefik also handles TLS termination, which
eliminates the need to manage TLS certificates separate for
each service, thus simplifying operation.

Chrony is selected as the NTP server due to it being the
default of Red Hat Enterprise Linux, which models a more
realistic corporate network [11].

CoreDNS is chosen for the DNS server as it provided a
simple configuration via Corefiles and is a light statically
compiled Go binary [19].

Nomad job descriptions are created that described how to run
the container server, the key server, and GitLab. The job
descriptions also created sidecar proxies to connect the service
into Consul. Figure 4 displays the layout of the service cluster.
The jobs are deployed onto Node1 and Node2 by Nomad
through its allocation algorithm. It is not necessary to know
which of the nodes contains the services as Consul knows how
to route requests to each service and Traefik routes based on
Consul’s knowledge.

To show both a solution to ensure reliability and to deal with
the way workload orchestration is done by Nomad, where the
job may change nodes each time it is run so static storage on a
single node is not possible, Ceph is chosen as a storage backend
because it copies the data across multiple nodes and allows
integration with Nomad in order for the data to be accessed
from any of the worker nodes [16]. Ceph is an open-source
project under the Ceph Foundation under the Linux Foundation,
and it is used to create clusters of nodes to use as storage for
many applications, but in this paper used to be the persistent
storage for the container registry, GitLab instance and
Hockeypuck key server.

Our own Certificate Authority (CA) is developed and then
deployed to the different machines via a USB drive or secure
file transfer protocol (SFTP). Another option is the preloading
of certificates from the factory. The crucial step of building our
own certificate authority is needed to ensure that we maintain
our own CA root of trust and give us greater flexibility in
managing our network. The CA is needed to ensure TLS con-
nections used for the container registry, the GitLab instance, the
key server, and the static content server. The data acquisition
device in the Utility will be the device receiving the update.

Portage, the Gentoo package manager, manages the update
process and uses the ebuild script from the git repository and
source tarball served by the Apache web server on the Vendor
server cluster. RSA keys are utilized for the signature checking

 5

to validate the validity of both the ebuild and the source tarballs.
Two components are needed for a successful installation: (i) the
ebuild to describe dependencies, compilation, and installation
process along with (ii) the source tarball that actually contains
the program’s source to be compiled. Two detached signatures
are also shipped with the source tarball. The source tarball is
validated by both the Vendor and the Utility signatures before
being installed. The ebuild is verified by both the Vendor and
Utility’s signature. The verification happens through two
existing verification methods but combined in a novel way for
git repositories. Standard Gentoo security has an optional check
for the top commit for a git repository to be signed by a trusted
developer. However, this method has two major flaws. The first
is a lone wolf could be that developer and thus compromise the
ebuild and corresponding manifests, and so now the attacker
would have the ability to install any software on the machine
during installation instead of the expected software. The second
flaw is that if a trusted developer commits to the repository,
then this trusted developer has to be assured that all previous
commits are not malicious, which is a daunting task. The
method used in this paper eliminates the first flaw while
providing strong mitigations for the second flaw that can be
used in addition to other methods to detect malicious code
changes or security issues in software. The method used in this
paper still uses the git signature, and in this experiment that is
the Utility. The method also takes from Gentoo’s rsync security
mechanism of verifying all the hashes of the manifest files
through a signed top level manifest file by implementing that in
a git repository, which is non-standard Gentoo feature relating
to a git repository. The Gentoo software component that carries
it out is called gemato [17]. Gemato is also used to create the
signed manifest. The first step to creating the manifest tree is to
run the ebuild manifest command which creates manifests in
each application ebuild’s folder containing the hashes of the
ebuilds and any data that is downloaded like the source tarball
for instance. Gemato takes these manifests and creates a
manifest tree that contains hashes of manifests in lower folders,
so the manifest at the top of the repository just has the hashes
of the manifests in the next folder. Only the top manifest is
signed. This setup reduces the burden of management while
indirectly protecting all the data with cryptographical security.
This manifest is signed by the Vendor. These two methods
combine increase the complexity of the attack by now two
different verification methods being used and two signatures. It
also increases the number of eyes on (people looking at) the
code as the Utility must now review the ebuilds before
committing them to their repository to be pushed out to their
devices. This extra layer of security is extraordinarily important
because the compromise of the ebuild hosting server makes any
other checks moot due to the ebuild containing the source
tarball checks in the first place along with the accompanying
manifest files containing the hashes of the source tarball and
associated detached signatures.

The Utility device has no containers in this operation, and the
applications needed are shown in Figure 5. Git is used by
portage to download the ebuild repository as it is hosted on the
GitLab server mentioned earlier. The exchange of both the

source tarball, its detached signatures, and ebuild is done via
TLS, which is also be verified by CAs, which further enhances
the authenticity, confidentiality, and integrity of the
information. The src_unpack step uses verify_sig functions to
verify both the Vendor and Utility’s signature. Figure 5 depicts
the IP address and main software used on the Utility device.

Figure 5. Software layout at the Utility.

A high-level overview of where each step happens is
displayed in Figure 6.

Figure 6. Basic experimental setup.

VI. EXPERIMENT

We test our prototype system by using twelve different
update scenarios to test the various aspects. A picture of the
experimental setup is shown in Figure 7.

Each experiment is run after changing the git repository as
needed or redeploying the web server with the changed source
tarball or/and detached signatures. Table 2 illustrates the
experiment and what part is changed for each experiment and
the results.

Man-in-the-middle (MITM) is a tactic where the attacker
intercepts the communication before two parties and changes
information or impersonates the other party.

The first scenario is a normal scenario where all the security
checks pass, and the update succeeds on the Utility terminal.

The next two scenarios test scenarios where either the
Utility’s signature or the Vendor’s signature is missing on the
source tarball. The installation fails at the downloading step as
the detached signatures are missing.

The 4th scenario tests CA validation. The attacker creates a
fake CA and tries to push an update. Portage on the data
acquisition device fails because the ebuild will not even
download due to an https connection failure.

 6

The 5th scenario tests an ebuild with an unknown Manifest
signature. The result is failure during validation of the ebuild
when portage downloads it.

In the 6th scenario, an ebuild with no Manifest signature is
pushed to git, but portage warns the user of that fact.

In the 7th scenario, an ebuild with an unknown git signature
is tested, but fails due to the signature not being known.

In the 8th scenario, an ebuild with a missing git (i.e., Utility)
signature is tested, but failed due to the missing signature. The
5th through 8th scenarios both ended with the bad ebuilds being
deleted off the system once the script notices that the signatures
are not trusted.

In the 9th scenario, the Utility’s signature is good, but where
Vendor should be is an unknown signature. It fails at checking
the signature hash and size.

 The 10th scenario is the reverse of the 9th scenario, where
Vendor is a good signature, but where Utility’s signature should
be is an unknown signature, so it still fails at the same place.

The 11th scenario is an attacker trying to launch a man in the
middle attack by impersonating the Utility server cluster, which
fails because the attacker will not have the CA private key, so
the attacker will not be able to impersonate the server.

Figure 8. Twelfth Scenario Layout.

 The 12th scenario is the most dangerous, where the attacker
steals the CA’s private key, and then forges a certificate. The
attacker uses that to setup the attacker in the middle as shown

in Figure 8. This attacker still fails as the tampered ebuild
during the hash check of the downloaded files, because the
attacker does not have access to any of the other signing
infrastructure. The assumption is that the attacker cannot carry
out a buffer overflow or other type of software attack during the
malicious TLS negotiation phase or hashing functions of the
proposed update solution. These scenario checks both
demonstrate the proposed features of this paper and prove that
the mitigations achieve the stated goals.

VII. DISCUSSION AND CONCLUSION

This paper proposes a solution to deal with a critical
problem in modern infrastructure, which is cybersecurity on
aging and vulnerable industrial control devices. To validate that
the solution works as proposed, twelve scenarios is used in
experiments to test the different facets of the solution and to
demonstrate each part provides a layer of security that if broken
another layer stops the attack. A multi-layered approach to
security is needed as at least one layer may be broken as seen
on a more regular basis with many companies across a range of
industries having to deal with cyberattacks.

Because Gentoo can have the source tarball separated from
the ebuild as demonstrated in this paper, two separate websites
are needed to have two-signature protection. While this setup
raises complexity, it can increase security by, along with two
signatures, having the sources of data being in two separate
networks. However, the servers are on the same subnet in this
paper because of lack of time. By separating out the signatures
among different organizations, it raises the bar to attack
multiple organizations in a coordinated manner, which is far
more complicated for an attacker and thus helps to better secure
the grid. We also propose a modeling technique which should
help to expand cybersecurity research as it provides a flexible

Figure 7. Photo of hardware used in experiment.

 7

method for practically any researcher to build models of
intelligent energy devices and test new cybersecurity
techniques using commodity software and open-source tooling.
Further, commonly used cloud orchestration technology was
demonstrated, which shows how cloud technology can be used
to help secure power grids.

REFERENCES
[1] J. Styczyinski, N. Beach-Westmoreland, “When the Lights Went
Out: A Comprehensive Review of the 2015 Attacks on the Ukrainian
Critical Infrastructure”, Booz Allen Hamilton, McLean, Virginia,
USA, 2019.
[2] UC-7400 Hardware User’s Manual, 6th ed., Moxa Inc., Brea, CA,
92823, 2009.
[3] UC-7408 Series, Moxa Inc., Brea, CA, 92823, 2010.
[4] “ICS Advisory (ICSA-16-152-01): Moxa UC 7408-LX-Plus
Firmware Overwrite Vulnerability.” U.S. CISA.
https://us-cert.cisa.gov/ics/advisories/ICSA-16-152-01 (accessed
Nov. 20, 2021).
[5] A. Menezes, P. Oorschot and S. Vanstone, Handbook of Applied
Cryptography, 5th Edition, CRC Press, 1996.
[6] The Transport Layer Security (TLS) Protocol Version 1.3, IETF
RFC 8446, Internet Engineering Task Force, 2018.
[7] S. McCarty. “A Practical Introduction to Container Terminology.”
Red Hat Developer. https://developers. redhat.com/
blog/2018/02/22/container-terminology-practical-introduction
(accessed Nov. 22, 2021).

[8] “Gentoo Linux.” Gentoo Authors. https://www.gentoo.org/
(accessed Nov. 27, 2021).

[9] Intuit Developer Team. “Security benefits of open source
software.” Intuit Developer. https://blogs.intuit.com/blog/
2020/10/13/security-benefits-of-open-source-software/ (accessed
Nov. 27,2021).
[10] “Vault.” HashiCorp. https://www.vaultproject.io/ (accessed Jan.
13, 2022).
[11] “Chapter 30. Using Chrony.” Red Hat Customer Portal.
https://access.redhat.com/documentation/en-
us/red_hat_enterprise_linux/8/html/configuring_basic_system_settin
gs/using-chrony_configuring-basic-system-settings (accessed Nov.
27,2021).
[12] “Apache HTTP Server Project.” Apache Software Foundation.
https://httpd.apache.org/ (accessed Nov.27, 2021).
[13] “Nomad.” HashiCorp. https://www.nomadproject.io/ (accessed
Jan. 13, 2022).
[14] “Consul.” HashiCorp. https://www.consul.io/ (accessed Jan. 13,
2022).
[15] “Traefik Proxy.” Traefiklabs. https://www.traefik.io /traefik
(accessed Jan. 13, 2022).
[16] “Ceph.” RedHat. https://www.ceph.io/ (accessed Jan. 13, 2022).
[17] “Gemato.” GitHub. https://github.com/mgorny/gemato (accessed
Jan. 13, 2022).
[18] “Hockeypuck.” Casey Marshall. https://hockeypuck.io (accessed
Jan. 13, 2022).
[19] “CoreDNS.” Linux Foundation. https://coredns.io (accessed Jan.
13, 2022).
[20] “Mobyproject.” Moby Project. https://mobyproject.org (accessed
Jan. 15, 2022).
[21] “GitLab.” GitLab. https://about.gitlab.com/ (accessed Jan. 15,
2022).
[22] “Portage.” Gentoo Linux Wiki.
https://wiki.gentoo.org/wiki/Portage (accessed Jan. 15, 2022).

TABLE II: Experiment Setup and Results

Experi
ment

Utility
Signature

Vendor
Signature

Certificate
Authority

ebuild
Manifest
Signature
(Vendor)

ebuild Git
Signature
(Utility)

MITM Result (at which point did it fail)

1st Correct Correct Correct Correct Correct Not tried Update installed successfully
2nd Missing Correct Correct Correct Correct Not tried Fails to download detached signature

3rd Correct Missing Correct Correct Correct Not tried
Fails to download detached

signature

4th Tampered Tampered Fake by attacker Correct Correct Tried
Warning of unknown CA so nothing

downloaded

5th Correct Correct Correct Unknown Correct Not tried
Warned no signature, and then
deleted the downloaded copy

6th Correct Correct Correct Missing Correct Not tried
Warned signature missing, and then

deleted the downloaded copy

7th Correct Correct Correct Correct Unknown Not tried
Warned signature not valid, and then

deleted the downloaded copy

8th Correct Correct Correct Correct Missing Not tried
Warned no signature present, and
then deleted the downloaded copy

9th Correct Unknown Correct Correct Correct Not tried
Manifest flags the signature as

incorrect checksum value of file

10th Unknown Correct Correct Correct Correct Not tried
Manifest flags the signature as

incorrect checksum

11th Tampered Tampered Removed Correct Correct Tried
Fails since SSL connection cannot

succeed

12th Tampered Tampered

Forged
certificate using

real CA's
signing key

Correct Correct Tried Fails at hash check for source

