



#### Cache-related Timing Analysis for Preemptive Multi-tasking Real-Time Systems

#### Yudong Tan, Vincent J. Mooney III

Center for Research in Embedded Systems and Technology School of Electrical and Computer Engineering Georgia Institute of Technology DATE'04 Feb. 2004

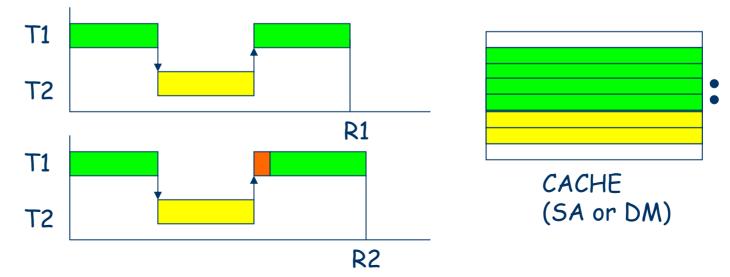
### OUTLINE

- Previous Work
- Problem Statement
- Inter-task cache eviction analysis
- Path Analysis
- WCRT estimation
- Experiment
- Conclusion

# Previous Work

- Cache-related WCET analysis
  - Customized Hardware/Software
    - SMART [Krik]
    - Column Cache
  - Static Analysis
    - ILP, Cinderrela, [Li and Malik]
    - SYMTA, [Wolf and Ernst]
    - Symbolic Analysis Methods, [Wilhem], [Stenstrom]
- WCRT Analysis for Multi-tasking Systems
  - WCRT, [Tindell]
  - Busquests-Mataix's Method
    - Cache Eviction Cost: all cache lines used by the preempting task.
  - Lee's Approach
    - Useful memory blocks

# Problem Statement

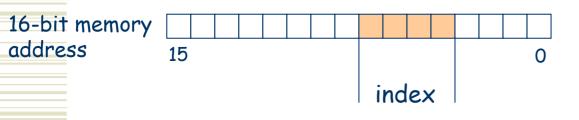

- Assumption
  - Multi-tasking
  - Fixed Priority Scheduling (e.g., RMS)
  - Preemptive
  - L1 Cache (Set Associative)
- Objective
  - WCRT estimate
  - Cache eviction caused by preemptions included
  - Schedulability

# Cache eviction due to preemptions

- Cache lines used by the preempted task are evicted by the preempting task during the preemption. (Inter task cache eviction)
- The evicted cache lines are requested by the preempted again after the preemption (i.e., after the preempted task resumes)

### Inter-task Cache Eviction

- Two Tasks: T1 and T2
- T2 has a higher priority than T1
- Cache reloading cost
  - Two cache lines need to be reloaded by T1 after preemption.
  - The response time of T1 is extended.
  - Only cache lines used by both the preempting and the preempted task need to be considered.




### Inter-task Cache Eviction

- Memory trace (No dynamic data allocation)
- Memory vs. Cache
  - Index of a memory block vs. cache line
  - Only memory blocks with the same index can possibly conflict in the cache.
  - An example

Two Sets of Memory Blocks: M1={0x700; 0x800; 0x710; 0x810; 0x910} M2={0x200; 0x310; 0x410; 0x510}

A 4-way SA cache with 16 sets, each line has 16 bytes.



 CACHE
 IDX

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 <t

#### Inter-task Cache Eviction (Cont.)

- Cache Index Induced Partition (CIIP)
  - Partition a memory block set according to their index
  - Memory blocks in the same partition have the same index.
  - Cache eviction can only happen among memory blocks in the same partition.

An L-way set associative cache with N lines in each set. CIIP of M:

$$M = \{m_0, m_1, ..., m_K\} \qquad \hat{M} = \{\hat{m}_0, \hat{m}_1, ..., \hat{m}_{N-1}\}$$
  
Where,  
$$\hat{m}_i = \{m_j \in M \mid idx(m_j) = i\}$$

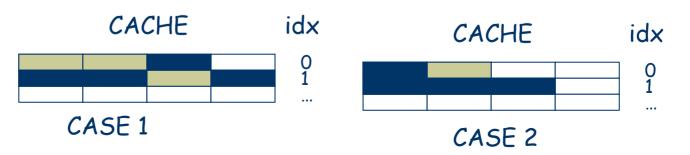
#### Inter-task Cache Eviction (Cont.)

• Use CIIP to estimate the upper bound of inter-task cache eviction cost

$$M_{1} = \{m_{10}, m_{11}, \dots, m_{1K_{1}}\} \qquad \hat{M}_{1} = \{\hat{m}_{10}, \hat{m}_{11}, \dots, \hat{m}_{1,N-1}\}$$
$$M_{2} = \{m_{20}, m_{21}, \dots, m_{2K_{2}}\} \qquad \hat{M}_{2} = \{\hat{m}_{20}, \hat{m}_{21}, \dots, \hat{m}_{2,N-1}\}$$

Upper bound of the number of memory blocks that possibly conflict in the cache:

$$S(M_1, M_2) = \sum_{r=0}^{N-1} \min(L, |\hat{m}_{1r}|, |\hat{m}_{2r}|)$$


#### Inter-task Cache Eviction (Cont.)

#### An example

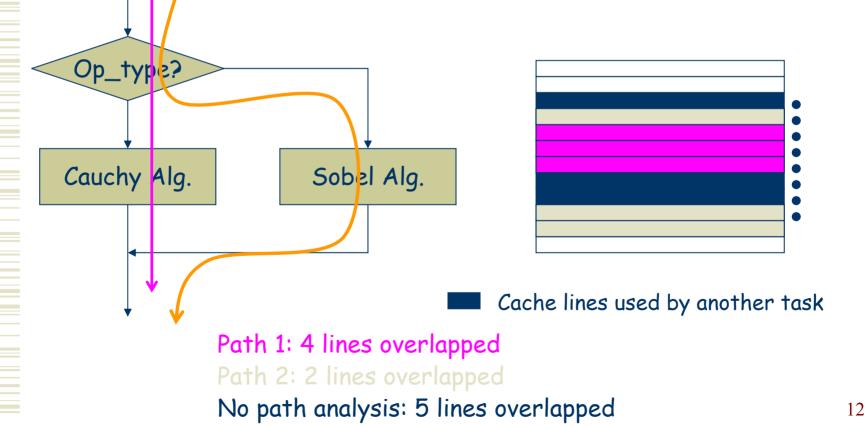
A 4-way SA cache with 16 sets, each line has16 bytes. Two Sets of Memory Blocks:

$$\begin{split} \mathbf{M}_{1} &= \{0x700; 0x800; 0x710; 0x810; 0x910\} \quad \hat{\mathbf{M}}_{1} = \{\hat{m}_{0}, \hat{m}_{1}\} = \{\{0x700; 0x800\}, \{0x710; 0x810; 0x910\}\} \\ \mathbf{M}_{2} &= \{0x200; 0x310; 0x410; 0x510\} \quad \hat{\mathbf{M}}_{2} = \{\hat{m}_{0}, \hat{m}_{1}\} = \{\{0x200\}, \{0x310; 0x410; 0x510\}\} \end{split}$$

 $S(M_1, M_2) = 1 + 3 = 4$  -- Only gives an upper bound



#### Inter-task cache eviction (Cont.)


- Inter-task cache eviction cost
  - Fixed cache miss penalty
  - Two tasks T1 and T2, T2 has a higher priority than T1.
  - Memory trace M1 and M2

$$C_{pre}(T_1, T_2) = S(M_1, M_2) \times C_{miss}$$

### Path Analysis

A real application may have multiple feasible paths.

An example: An Edge Detection application with two algorithms.



# Path Analysis (Cont.)

• Two tasks:  $T_i \quad T_j$   $M_i$  The set of all memory blocks that can possibly be accessed by  $T_i$ .  $T_j$  has multiple paths,  $Pa_i^k$ .  $M_i^k$  The set of memory blocks accessed by  $T_j$  when it runs along path  $Pa_i^k$ 

Cost of a path in  $T_i$ 

$$C(Pa_{j}^{k}) = S(M_{i}, M_{j}^{k}) = \sum_{r=0}^{N-1} \min(L, |\hat{m}_{i}|, |\hat{m}_{j}^{k}|)$$

The problem is converted to find the longest path in  $T_j$  ,  $Pa_{longest}$  Currently, we search all possible paths in  $T_j$ 

# Path analysis (Cont.)

- We apply path analysis to the preempted task.
  - Two tasks  $T_i$   $T_j$
  - $T_i$  has a higher priority than  $T_j$

The cache reload overhead caused by  $T_i$  preempting  $T_j$ 

$$C_{pre}(T_j, T_i) = C(Pa_{longest}) \times C_{miss}$$

# WCRT Analysis

- WCRT Analysis without cache
  - $T_i$  All tasks in the system.

 $C_i$  WCET of  $T_i$   $P_i$  Period of  $T_i$  hp(i) The set of tasks with higher priorities than  $T_i$  $R_i$  Response time of  $T_i$ 

$$R_i = C_i + \sum_{j \in hp(i)} \left[ \frac{R_i}{P_j} \right] \times C_j$$

# WCRT Analysis (Cont.)

- WCRT with Cache
  - Iterative calculation

$$R_{i}^{0} = C_{i};$$

$$R_{i}^{1} = C_{i} + \sum_{j \in hp(i)} \left[ \frac{R_{i}^{0}}{P_{j}} \right] \times (C_{j} + C_{pre}(T_{i}, T_{j}) + 2C_{cs});$$

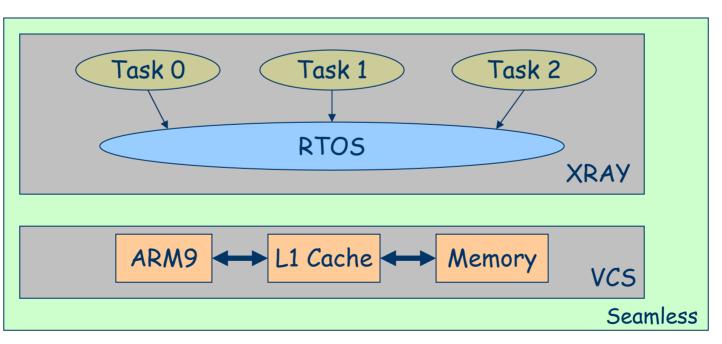
$$R_{i}^{k} = C_{i} + \sum_{j \in hp(i)} \left[ \frac{R_{i}^{k-1}}{P_{j}} \right] \times (C_{j} + C_{pre}(T_{i}, T_{j}) + 2C_{cs});$$

Twice Context Switch: one for preemption and one for resuming

## Schedulability

- The tasks are schedulable if:
  - The iteration above converges.
  - The WCRT of all tasks are less than their periods.

# Experiment


- A mobile robot application with three tasks
  - Edge Detection (ED)
  - Mobile Robot control (MR)
  - OFDM for communication

| Task               | WCET(us) | Period(us) | Priority |
|--------------------|----------|------------|----------|
| $T_1(\text{OFDM})$ | 2830     | 40,000     | 4        |
| $T_2(ED)$          | 1392     | 6,500      | 3        |
| $T_3(MR)$          | 830      | 3,500      | 2        |

Table 1. Tasks

#### Experiment

- Simulation Architecture
  - ARM9TDMI
  - 32KB 4-way set associative cache (256 lines in each way)
  - Atalanta RTOS developed at Georgia Tech
  - Seamless CVE for simulation



# Experiment

- Three approaches
  - App1 (Busquests-Mataix's method): All cache lines used by preempting tasks are reloaded for a preemption.
  - App2 (no path analysis): Only lines in the intersection set of lines used by the preempting task and the preempted task are reloaded for a preemption. Inter-task cache eviction method proposed in this paper is used here.
  - App3: Path analysis for the preempted task is added to Approach2.
- Three types of preemption
  - MR preempted by ED
  - MR preempted by OFDM
  - ED preempted by OFDM

# **Experiment Results**

• Estimate of the number of cache lines to be reloaded

|            | App. 1 | App. 2 | App. 3 |
|------------|--------|--------|--------|
| OFDM by MR | 245    | 134    | 111    |
| OFDM by ED | 254    | 172    | 135    |
| ED by MR   | 245    | 82     | 77     |

Table 2. Number of cache lines to be reloaded

### **Experiment Results**

#### WCRT estimates

| $C_{miss}(cycles)$ | Task | App. 1 | App. 2 | App. 3 | ART  |
|--------------------|------|--------|--------|--------|------|
|                    | OFDM | 9847   | 9350   | 9207   | 6113 |
| 10                 | ED   | 2567   | 2404   | 2399   | 2382 |
|                    | OFDM | 12510  | 10096  | 9810   | 6211 |
| 20                 | ED   | 2812   | 2486   | 2476   | 2400 |
|                    | OFDM | 23501  | 12174  | 10413  | 6255 |
| 30                 | ED   | 3057   | 2568   | 2553   | 2426 |
|                    | OFDM | 45216  | 16700  | 12390  | 6362 |
| 40                 | ED   | 3302   | 2650   | 2630   | 2525 |

#### Table 3. Comparison of WCRT estimate

#### Improvement of App3 over App1:

|      | Cache Penalty (cycles) |       |       |       |
|------|------------------------|-------|-------|-------|
| Task | 10                     | 20    | 30    | 40    |
| OFDM | 6.5%                   | 21.6% | 55.7% | 73%   |
| ED   | 6.5%                   | 11.9% | 16.5% | 20.4% |

Table 4. Comparison of results

### Conclusions

- Inter-task cache eviction affects greatly WCRT estimates of tasks in a preemptive multi-tasking system.
- Applying path analysis can reduce the WCRT estimates further.

### Future Work

- Consider integrating intra-task cache eviction analysis (Lee's work) in our approach.
- More than two level memory hierarchy.