
Integrated Intra- and Inter-Task Cache Analysis for

Preemptive Multi-tasking Real-Time Systems

Yudong Tan and Vincent Mooney
{ydtan,mooney}@ece.gatech.edu

Center for Research on Embedded Systems and Technology
School of Electrical and Computer Engineering

Georgia Institute of Technology
Atlanta, Georgia, USA

Abstract. In this paper, we propose a timing analysis approach for preemp-
tive multi-tasking real-time systems with caches. The approach focuses on the
cache reload overhead caused by preemptions. The Worst Case Response Time
(WCRT) of each task is estimated by incorporating cache reload overhead. Af-
ter acquiring the WCRT of each task, we can further analyze the schedulability
of the system. Four sets of applications are used to exhibit the performance of
our approach. The experimental results show that our approach can reduce the
estimate of WCRT up to 44% over prior state-of-the-art.

1 Introduction

When designing a real-time system, it is of great importance that the timing of the
system be predictable. While underestimating the execution time of tasks in a real-
time system may cause catastrophic disasters, especially in hard real-time systems,
overestimating the execution time can also lower the utilization of resources such as
processors. However, processors with advanced features such as caching and pipelining
are widely used in real-time systems nowadays. Using processors with these compli-
cated architectures in real-time systems makes timing analysis more difficult.

In this paper, we propose a timing analysis approach for preemptive multi-tasking
real-time systems. The approach focuses on the cache reload overhead caused by pre-
emptions. The Worst Case Response Time (WCRT) of each task is estimated by
incorporating cache reload overhead. After acquiring the WCRT of each task, we can
further analyze the schedulability of the system. Four sets of applications are used
to exhibit the performance of our approach. The experimental results show that our
approach can reduce the estimate of WCRT up to 44% over prior state-of-the-art.

The rest of this paper is organized as follows. Section 2 investigates the previous
work in this field. Section 3 states the problem and defines some terminology used in
the paper. Then, an overview of our approach is given. Sections 4, 5 and 6 elaborate
the details of our approach. Experimental results are presented in Section 7. The last
section concludes the paper.

2 Previous Work

Lots of work has been done to predict the timing properties of real-time systems with
caches. In general, this work can be divided into two categories. First, various methods
are proposed to achieve predictable system behavior by changing some features such as
cache management policies and memory mapping patterns of systems. For example,

2

two different cache partitioning schemes are presented in [3, 4]. Each task can only
use a limited portion of the cache in these two approaches. Compiler optimization and
memory remapping techniques are also used to achieve predictable cache behavior [5,6].
These approaches require either customized hardware support such as a specialized
cache controller and TLB or modifications to the compilers and OS. Furthermore,
utilization of resources such as cache and memory are compromised.

Static analysis is a second category of methods to predict timing properties. Such
methods analyze cache behavior and make restrictive assumptions in order to predict
Worst Case Execution Time (WCET) or Worst Case Response Time (WCRT) of
tasks in real-time systems. Static analysis methods do not require any changes to
the system under consideration. Li and Malik propose a WCET analysis approach by
using an implicit path enumeration method [7]. Their approach requires path analysis
at the granularity of basic blocks. Wolf and Ernst extend the concept of basic blocks to
program segments and develop another framework for timing analysis, SYMTA [8]. The
precision of time estimation is improved in SYMTA since the overestimate of execution
time is reduced. Wilhelm et al. [11,12] propose an abstract interpretation methodology
to predict cache behavior. Stenstrom et al. [13] give another static analysis approach
based on symbolic execution techniques. In both Wilhelm’s and Stenstrom’s approach,
WCET of programs can be analyzed without knowing the exact input data. However,
both of the aforementioned approaches only consider a system with a single task. They
cannot handle multi-tasking systems with preemptions, in which the timing analysis
becomes even more complicated.

The behavior of a multi-tasking system is affected greatly by the scheduling algo-
rithm used in the system. In this paper, we assume that a fixed priority scheduling
algorithm such as Rate Monotonic Scheduling (RMS) [14, 15] is used. We further as-
sume a single processor with a unified (instruction plus data) set associative L1 cache
and secondary memory (the secondary memory can be either on- or off-chip). However,
the same method in our approach can be used to analyze timing properties in systems
with more than two levels of memory hierarchy. Multiple processor systems may in-
volve cache coherence problems which are beyond the scope of this paper. In order to
analyze the schedulability of a system, we estimate the WCRT [16] of each task in the
system. In preemptive multi-tasking systems, cache eviction among tasks may extend
the response times of tasks. Busquests-Mataix et al. propose an approach to analyze
cache-related WCRT in a multi-tasking system [17]. They conservatively assume that
all cache lines used by the preempting task need to be reloaded by the preempted
task when the preempted task is resumed. Tomiyama et al. give an approach to cal-
culate Cache Related Preemption Delay (CRPD) by using ILP [10]. However, they
only consider direct mapped instruction cache. Lee et al. propose another approach
for cache analysis when preemptions occur [18, 19]. This approach counts the number
of “useful” memory blocks by performing path analysis on the preempted task. They
do not take the program structure of the preempting task into consideration. Also, the
number of preemption scenarios used in their approach is exponential with the num-
ber of tasks. Negi et al. [9] refine the approach of Lee et al. in [18] by applying path
analysis. However, inter-task cache eviction is not considered. Also, WCRT analysis is
not mentioned in [9].

We propose an approach for inter-task cache eviction analysis in [1, 2]. This ap-
proach assumes that all cache lines used by the preempted task and evicted by the

3

preempting task will be reloaded after the preemption. But, as presented in [18], only
those cache lines used by “useful” memory blocks of the preempted task need to be
reloaded.

Both the approach we present in [1, 2] and the approach of Lee et al. in [18] have
their pros and cons. However, these two methods are complementary. In this paper,
we focus on enhancing our approach in [1, 2] by incorporating “useful” memory block
analysis in the work of Lee et al. The new approach gives the most accurate WCRT
method known to date for a multi-tasking single-processor system using set-associative
or direct mapped unified caches. In Section 7 we will show examples where we achieve
results up to 44% better than the approach of Lee et al.

3 Overview

In this section, we first state the problem formally. Some terminology is defined for
clarity. Then, we give an overview of the approach proposed in this paper.

3.1 Problem Statement

In this paper, we target uniprocessor multi-tasking preemptive real-time systems with
caches. A Fixed Priority Scheduling (FPS) algorithm such as the Rate Monotonic
Algorithm (RMA) is used in the system. Suppose that the system contains n tasks
represented with T0, T1, ..., Tn−1. Each task Ti has a fixed priority pi. We assume
that the tasks are sorted in the descending order of their priorities so that we have
p0 < p1 < ... < pn−1. If pa < pb, Ta has a higher priority than Tb. Tasks are executed
periodically. Each task Ti has a fixed period Pi. Ti arrives at the beginning of its
period and must be completed by the end of its period. The Worst Case Execution
Time (WCET) of task Ti is denoted with Ci. Ci can be estimated with existing analysis
tools such as Cinderella [7] and SYMTA [8]. We use SYMTA to derive Ci. We use Ti,j

to represent the jth run of Task Ti. The WCET of a task is the execution time of
the task in the worst case, assuming there are no preemptions or interruptions. In
a preemptive multi-tasking system, WCET alone cannot reflect the schedulability of
tasks in the system because of the existence of preemptions. Thus, our goal is to
provide an approach to estimate the Worst Case Response Time (WCRT), which is
defined as below, for every task in the system.
Definition 1. Worst Case Response Time (WCRT): WCRT is the time taken by a task
from its arrival to its completion of computations in the worst case. The WCRT of
task Ti is denoted by Ri. �

In a multi-tasking preemptive system, a task with a low priority may be preempted
by a task with a higher priority. During a preemption, the preempting task may evict
some cache lines used by the preempted task. When the preempted task resumes and
accesses an evicted cache line, the preempted task has to reload the cache line from
memory. This cache reload overhead caused by inter-task cache evictions increases the
response time of the preempted task.

Example 1. We have three tasks T0, T1 and T2. T0 is an Inverse Discrete Cosine Transform
(IDCT) extracted from an MPEG2 decoder. T0 is invoked every 4.5ms. T1 is an Adap-
tive Differential Pulse Code Modulation Decoder (ADPCMD). T2 is an ADPCM Coder
(ADPCMC). ADPCMC and ADPCMD are taken from MediaBench [23]. ADPCMC has
a period of 50ms. ADPCMD has a period of 10ms. RMS is used for scheduling. T0 has
the highest priority and T2 has the lowest priority. Figure 1 shows this example. In this

4

T2,1

T1,1

T2,1

T1,2

T2,1 T2,1 T2,1

T0,1

T1,2

T0,2 T0,3

R2

T0,1 T0,2

R2

T1,1 T1,2

T2,1

T1,2

T0,3

(A). WCRT of T2 without considering cache eviction

Direct preemption Indirect preemption

(B). WCRT of T2 with considering cache eviction

Preemption−related cache reload overhead

Fig. 1. Example of WCRT

example, three tasks arrive at time instant 0. However, T2 is not executed until there are
no instances of T0 or T1 ready to run. During the execution of T2, it could be preempted
by T0 or T1, which is shown in Figure 1. The response time of T2 is the time from 0 to
the time when T2 is completed. We need to estimate the response time of such a task in
the worst case. If we do not consider inter-task cache evictions, the WCRT of T2 is shown
in Figure 1(A). However, because of inter-task cache evictions, the preempted task has
to reload some cache lines after preemption which imposes an overhead on the WCRT of
the preempted task. Figure 1(B) shows this issue. Obviously, due to cache evictions, the
WCRT of T2 is increased, as shown in Figure 1(B). �

Inter-task cache eviction(s) caused by preemption(s) affect the WCRT of a task.
As shown in Example 1, there are two types of preemption, direct preemption and
indirect preemption. For example, T2 can be preempted directly by T0 or T1 because
T2 has the lowest priority. On the other hand, when T2 is preempted by T1 and T1 is
running, T1 can be preempted further by T0 because T1 has a lower priority than T0.
Although T2 is not directly preempted by T0, T0 may bring a cache reload overhead to
the execution time of T1, which also extends the response time of T2. Thus, we need
to consider both indirect and direct preemptions caused by T0 when estimating the
WCRT of T2. Figure 1 illustrates both direct and indirect preemptions.

This paper aims to incorporate inter-cache eviction cost in WCRT analysis by
combining the approach of Lee et al. and the approach we presented in [1].

We perform path analysis on the preempted task and the preempting task in order
to analyze the cache access pattern of the preempted task. The path analysis is based
on a Control Flow Graph (CFG). A CFG is represented with a graph G = (V, E), where
V = {v1, v2, ..., vm} is the set of nodes and E = {e1, e2, ..., en} is the set of edges of
the graph G. Each edge ei = (vk, vj) represents the control dependence between two
nodes, vk and vj . Each node vi in a CFG represents a Single Feasible Path Program
Segment (SFP-PrS) [8].

Definition 2. Single Feasible Path Program Segment (SFP-PrS): SFP-PrS is defined
as a hierarchical program segment with exactly one path [8]. �

3.2 Overall Approach

Intuitively, we know that the cache lines causing reload overhead after preemptions
need to satisfy two conditions.

Condition 1. These cache lines are used by both the preempted and the preempting
task.

Condition 2. The memory blocks mapped to these cache lines are accessed by the
preempted task before the preemption and are also required by the preempted task
after the preemption (i.e., when the preempted task is resumed).

5

Condition 1 implies that memory blocks accessed by the preempting task conflict
in the cache with memory blocks accessed by the preempted task. Thus, some of the
memory blocks loaded to the cache by the preempted task before the preemption are
evicted from the cache by the preempting task during the preemption. This cache evic-
tion involves memory access patterns of both the preempted task and the preempting
task. Thus, we call this type of cache eviction an inter-task cache eviction.

Condition 2 reveals that memory blocks causing cache reload overhead must have
been present in the cache prior to the preemption. Furthermore, these memory blocks
must be accessed again by the preempted task after the preemption, thus requiring
reload to the cache. These memory blocks are called “useful memory blocks” in the
work of Lee et al. [18, 19]. We can use the algorithm of Lee et al. in [18] to find the
maximum set of these useful memory blocks. The maximum set of useful memory
blocks of the preempted task is derived from the program structure and the memory
blocks accessed by the preempted task. In summary, we call this type of analysis
intra-task cache eviction analysis.

Based on the two facts above, we can give an overview of our approach presented
in this paper. Our approach has four steps.

First, we derive the memory trace of each task with the simulation method as used
in SYMTA [8]. Here, we assume that there are no dynamic data allocations in tasks
and addresses of all the data structures are fixed (e.g., any use of pointers does not
result in unpredictable memory accesses). Second, we perform intra-task cache access
analysis on the preempted task to find the maximum set of useful memory blocks
accessed by the preempted task. Only the memory blocks in this set can possibly
cause cache reload delay. Third, we use the maximum set of useful memory blocks of
the preempted task to perform inter-task cache eviction analysis with the preempting
tasks (i.e., all the tasks that have higher priorities than the preempted task). A low
priority task might be preempted more than once by a higher priority task, depending
on the period of the low priority task as compared to the period of the high priority
task. As proposed in [1], path analysis is applied to the preempting task in order
to tighten the estimate of cache reload overhead in this step. From the third step,
we obtain an estimate of the number of cache lines that need to be reloaded after
preemption. Then, we can calculate the cache reload overhead. In the fourth step, we
preform WCRT analysis for all tasks based on the results from the third step.

4 Intra-task cache access analysis

According to Condition 2 in Section 3.2, the memory blocks of the preempted task
that can possibly cause cache reload overhead must be present in the cache before the
preemption and must be accessed by the preempted task again after the preemption.
Lee et al. give an approach to calculate the maximum set of such memory blocks.

A set-associative cache is defined by three parameters: the number of cache sets,
the number of cache lines in a set (i.e., the number of ways) and the number of
bytes/words per cache line. A direct mapped cache can be viewed as a special set
associative cache which has only one way. We assume that the sets in a cache are
indexed sequentially, starting from 0. All the cache lines in a cache set have the same
index. A cache set with an index of i is represented with cs(i). Accordingly, a memory
address is divided into three parts: the tag, the index and the offset. We use idx(a)
to denote the index of a memory address a. When a memory block with an address

6

of a is loaded to a set associative cache, it can only occupy a cache line with an index
of idx(a). In this paper, we assume that the LRU algorithm is used for cache line
replacement. However, our approach can also be applied with minor modifications to
caches with other replacement algorithms. For example, if a Round-Robin algorithm
is used for cache line replacement, we only need to slightly change the intra-task cache
eviction algorithm used in the approach of Lee et al. The inter-task cache eviction
analysis algorithm can be applied to all cache line replacement policies.

As we mentioned in Section 3.1, a task can be represented with a CFG. Each node
in a CFG is an SFP-PrS. A task can be preempted at any point, which is called an
execution point. When a preemption happens, a task can be viewed as two parts, one
part before the preemption and the other part after preemption. The pre-preemption
part of the preempted task loaded memory blocks to the cache. Some of these memory
blocks might be accessed again by the post-preemption part of the preempted task.
These memory blocks are called useful memory blocks. Only useful memory blocks of
the preempted task can possibly cause cache reload after preemptions.

For a formal description, we use the notation of reaching memory blocks (RMB) and
living memory blocks (LMB) as defined in [18]. The set of reaching memory blocks of a
cache set cs(i) at an execution point s of a task is denoted by RMBi

s. RMBi
s contains

all possible memory blocks that may reside in cache set cs(i) when the task reaches
execution point s. Suppose a cache set has L cache lines (i.e., a L-way set associative
cache). If a memory block can reside in cs(i), this memory block must have an index of
i. Moreover, in order to be contained in RMBi

s, this memory block is one of the last L

distinct references to the cache set cs(i) when the task runs along some execution path
reaching execution point s. Otherwise, this memory would have been evicted from the
cache by other memory blocks. Similarly, the set of living memory blocks of cache set
cs(i) at execution point s, denoted by LMBi

s, contains all possible memory blocks
that may be one of the first L distinct references to cache set cs(i) after execution
point s.

In [18], Lee et al. demonstrate that the intersection of RMBi
s and LMBi

s can be
used to find a superset of the set of memory blocks in the preempted task that may
cause cache line reload(s) due to preemption. The details of their algorithm can be
found in [18, 19]. Of course, whether those memory blocks will really cause cache line
reloading still depends on the actual path the preempted task takes and the cache
lines used by the preempting task.

5 Inter-task cache eviction analysis

In [1, 2], we propose an approach to calculate the intersection of cache lines that are
used by both the preempted task and the preempting task. In that paper, we assume
that all memory blocks used by the preempted task when the preempted task runs
along the longest path are useful. However, the results from the approach of Lee et
al. show that this is not always true. In this paper, we focus on incorporating Lee’s
intra-task cache access analysis with the approach in [1, 2] in order to give a tighter
estimate of cache-related preemption delay in multi-tasking preemptive systems.

As stated in Condition 1, the cache lines that may need to be reloaded must
be accessed by both the preempted and preempting task. This implies that we need
to calculate the intersection of cache lines used by the memory blocks found in the
approach of Lee et al. and the memory blocks accessed by the preempting task.

7

Memory blocks that are mapped to different cache sets will never conflict in the
cache. In other words, only memory blocks that have the same index can possibly evict
each other because these memory blocks are loaded to the same cache set. Intuitively,
we can divide memory blocks into different subsets according to their index.

Suppose we have a set of q memory block addresses, M = {m0, m1, ..., mq−1}, and
an L-way set associative cache. The index of the cache ranges from 0 to N − 1. We
can derive N subsets of M as follows.

m̂i = {mk ∈ M |idx(mk) = i}, (0 ≤ i < N) (1)

When the memory blocks in the same subset defined above are accessed, these memory
blocks are loaded into the same set in the cache because they have the same index.
Thus, cache evictions can happen among these memory blocks (i.e., with the same
index).

If we denote cM = { bmi| bmi 6= ∅, 0 ≤ i < N}, where ∅ is the empty set and bmi is
defined as Equation 1, then cM is a partition of M [2]. Based on this conclusion, we
define the Cache Index Induced Partition of a memory block address set as follows.

Definition 3. Cache Index Induced Partition (CIIP) of a memory block address set:
Suppose we have a set of memory block addresses, M = {m0, m1, ..., mq−1}, and an
L-way set associative cache. The index of the cache ranges from 0 to N − 1. We can
derive a partition of M based on the mapping from memory blocks to cache sets, which
is denoted by M̂ = {m̂i|m̂i 6= ∅, 0 ≤ i < N}. Each m̂i = {mk ∈ M |idx(mk) = i} is a

subset of M . We call M̂ the CIIP of M .�
The CIIP of a memory address set categorizes the memory addresses according

to their indices in the cache. Cache evictions can only happen among memory blocks
that are in the same subset in the CIIP. We first defined and introduced CIIP in [1].

The definition of CIIP provides a formal representation useful to analyze inter-task
cache evictions. Suppose we have two tasks Ta and Tb. All the memory blocks accessed
by Ta and Tb are in the set Ma = {ma,0, ma,1, ..., ma,ka

} and Mb = {mb,0, mb,1, ..., mb,kb
}

respectively. Tb has a higher priority than Ta. An L-way set associative cache with a
maximum index of N − 1 is used in the system. In the case Ta is preempted by Tb,
the cache lines to be reloaded when Ta resumes are used by both the preempting task
and the preempted task. Thus, we can look for the conflicting memory blocks accessed
by the preempting task and the preempted task in order to estimate the number of
reloaded cache lines. We can use the CIIPs of Ma and Mb to solve this problem.

We use M̂a = {m̂a,0, m̂a,1, ..., m̂a,N−1} to represent the CIIP of Ma and M̂b =

{m̂b,0, m̂b,1, ..., m̂b,N−1} to represent the CIIP of Mb. For m̂a,k1
∈ M̂a and m̂b,k2

∈ M̂b,
only when k1 = k2 can memory blocks in m̂a,k1

possibly conflict with memory blocks
in m̂b,k2

in the cache. Also, when the memory blocks in m̂a,k1
and m̂b,k2

are loaded into
the cache, the number of conflicts in the cache cannot exceed min(|m̂a,k1

|, |m̂b,k2
|, L),

where L is the number of ways of the cache. Therefore, we can conclude that the
following formula gives an upper bound for the number of cache lines that could be
reloaded after Task Ta resumes following a preemption by Task Tb:

S(Ma, Mb) =

N−1∑

r=0

min{|m̂a,r|, |m̂b,r|, L} (2)

where m̂a,r ∈ M̂a, m̂b,r ∈ M̂b.

8
Overlapped
Cache lines

.

.

.
1

0

15

0x700 0x800

0x710 0x810 0x910

0x200

0x310 0x410 0x510

INDEX line 0 line 1 line 2 line 3

.

.

.

0

1

15

............

INDEX

0x200

(b)

0x510

0x700 0x800

0x710 0x810 0x910 0x4100x310

line 0 line 1 line 2 line 3

A 4−way set associative cache
(16bytes/line, size=1KB)

(a)

A 4−way set associative cache
(16bytes/line, size=1KB)

Fig. 2. Conflicts of cache lines in a set associative cache

S(Ma, Mb) denotes an upper bound on the number of cache lines that conflict when
the memory blocks in Ma and Mb are loaded into the cache. This number can be used
to estimate the cache lines to be reloaded due to Tb preempting Ta.

Example 2. Suppose we have a a 4-way set associative cache with 16 sets. Each cache
line has 16 bytes. Two tasks T1 and T2 run with this cache. The memory block ad-
dresses accessed by T1 and T2 are contained in M1 = {0x700, 0x800, 0x710, 0x810, 0x910}

and M2 = {0x200, 0x310, 0x410, 0x510} respectively. The CIIP of M1 and M2 are cM1 =

{{0x700, 0x800}, {0x710, 0x810, 0x910}} and cM2 = {{0x200}, {0x310, 0x410, 0x510}} respec-
tively.

If we map the memory blocks in M1 and M2 to the cache as shown in Figure 2(a),
we find that the maximum number of overlapped cache lines, which is 4, is the same as
the result derived from Equation 2. Note that the memory blocks can be mapped to cache
lines in other ways (e.g., 0x800 can possibly be mapped to line 0 instead of line 1, but
in this case 0x800 would kick out 0x700 or vice versa). In any case, the mapping given
in Figure 2 gives a case in which the largest amount of cache line overlaps occur. Let us
consider another case: if we map the memory blocks in M1 and M2 to the cache as shown
in the Figure 2(b), only two cache lines overlap. Therefore, Equation 2 only gives an upper
bound (as opposed to an exact count) for the number of overlapped cache lines. �

Now, we can calculate the intersection of useful memory blocks of the preempted
task as derived from the approach of Lee et al. and the memory blocks used by the
preempting task in order to estimate the cache reload overhead.

Suppose we have two tasks, Ta and Tb. Tb has a higher priority than Ta, thus, Tb

can preempt Ta. In the case that Tb preempts Ta, we want to know the number of
cache lines that need to be reloaded by Ta after Ta resumes from the preemption.

Definition 4. The Maximum Useful Memory Blocks Set (MUMBS): The maximum
intersection set of LMB and RMB over all the execution points of a task Ta is called

the maximum set of useful memory blocks of this task. It is represented with M̃a.
̂̃
Ma

is the CIIP of M̃a.

We use the approach of Lee et al. to calculate the MUMBS of the preempted task.
Only the memory blocks in this set can possibly be reloaded by the preempted task.

The simulation method in SYMTA is used to obtain all the memory blocks that can
possibly accessed by the preempting task [8]. All these memory blocks are contained

in a set Mb. M̂b is the CIIP of Mb. Only the memory blocks in Mb can possibly evict
the cache lines used by the preempted task. Note that we can apply path analysis
techniques proposed in [1, 2] to the preempting task in order to tighten the estimate
of cache reload overhead by reducing the number of memory blocks in Mb.

9

Then, we apply Equation 2 to calculate the intersection of memory block set M̃a

and Mb, which is shown in Equation 3. This result gives an upper bound on the number
of cache lines that can possibly need to be reloaded after Tb preempts Ta.

S(M̃a, Mb) =

N−1∑

r=0

min{| ̂̃ma,r|, |m̂b,r|, L} (3)

where ̂̃ma,r ∈ ̂̃
Ma, m̂b,r ∈ M̂b.

We use Cpre(Ta, Tb) to represent the cache reload cost imposed on task Ta when
Ta is preempted by task Tb. Suppose the penalty for a cache miss is a constant, Cmiss.
Then, Cpre(Ta, Tb) can be calculated with the following equation:

Cpre(Ta, Tb) = S(M̃a, Mb) × Cmiss (4)

6 WCRT analysis

We can use the Worst Case Response Time (WCRT) to analyze schedulability of a
multi-tasking real-time analysis as shown in [17]. The approach uses the following
recursive equations to calculate the WCRT Ri of the task Ti.

Ri = Ci +
∑

j∈hp(i)

d
Ri

Pj

e × (Cj + γj) (5)

where hp(i) is the set of tasks whose priorities are higher than Ti. Because we as-
sume that all tasks are sorted in the descending order of their priorities in this paper, we
have hp(i) = {k|0 ≤ k < i}. γj is the cache reload cost related to preemptions caused
by Tj (indirect or direct). Recall that Cj is the WCET of Tj and Pj is the period of
Task Tj as defined in Section 3.1. In this equation, the term

∑
j∈hp(i)d

Ri

Pj
e× (Cj +γj)

reflects the interference of preempting tasks during the execution time of Ti. This
equation can be calculated iteratively. The iteration can be terminated when Ri con-
verges or Ri is greater than the deadline of Ti. If Ri is greater than its deadline, task
Ti cannot be guaranteed to be scheduled successfully.

In [17], the authors assume that all the cache lines used by the preempting task
need to be reloaded after the preemption. As we pointed out in Section 4 and 5,
this assumption exaggerates the cache reload cost for each preemption. We can ap-
ply inter-task and intra-task cache eviction analysis techniques above to reduce the
overestimation in Equation 5.

When we estimate the WCRT of task Ti, we need to consider all possible preemp-
tions caused by each task, Tk, 0 ≤ k < i, which has a higher priority than Ti. Tk

can preempt Ti directly, which brings a cache reload overhead of Cpre(Ti.Tk) to the
WCRT of Ti. Ti can also be preempted by Tk indirectly. Let us consider Example 3.

Example 3. Consider two cases in Figure 1(B). T2 is preempted by T0 twice. At the first
time, T2 is preempted by T0 directly, thus, the cache reload overhead is Cpre(T2, T0).
In the second case, T2 is preempted by T1 first, then T1 is preempted by T0 further.
Thus, T2 is preempted by T0 indirectly in this case. The cache reload overhead caused by
this indirect preemption is Cpre(T1, T0). In practice, it is difficult to know if T0 preempts
T2 directly or indirectly. In order to avoid underestimating the WCRT of T2, we use

10

max(Cpre(T1, T0), Cpre(T2, T0)) as the cache reload overhead caused by T0 preempting
T2 (i.e., either indirectly or directly).�

Example 3 shows that when one or more than one task has a priority higher than Ti

and lower than Tk, the cache reload overhead caused by Tk preempting Ti depends on
the actual preemption scenarios, which is difficult to predict in practice. Thus, in order
to avoid underestimating WCRT, we use an upper bound, maxi

l=k+1{Cpre(Tl, Tk)}, to
uniformly estimate the cache reload cost caused by Tk preempting Ti.

In Equation 5, Cj is the WCET estimate of Tj without considering preemption.
We use SYMTA [8] to estimate WCET. Note that the cost of context switch caused
by preemptions is not included in Equation 5. Here, we focus on cache reload overhead
analysis and assume the cost of a context switch is a constant, Ccs, which is equal to
the WCET of a context switch. The context switch function cannot be preempted,
so the context switch cost is not affected by inter-task cache eviction. Therefore, it is
reasonable to assume the context switch cost is a constant, which is its WCET. The
context switch function is called twice in every preemption, once for switching to the
preempting task and once for resuming the preempted task.

When preemptions are allowed in a multi-tasking system, the WCRT of tasks that
can be preempted may be increased because of cache reload overhead. By considering
the cache reload overhead, Equation 5 can be modified as follows:

Ri = Ci +
i−1∑

j=0

d
Ri

Pj

e × (Cj + maxi
l=j+1{Cpre(Tl, Tj)} + 2Ccs) (6)

Based on Equation 6,we can estimate the WCRT for each task Ti with the following
iteration:
R0

i = Ci;

R1
i = Ci +

∑i−1
j=0d

R0

i

Pj
e × (Cj + maxi

l=j+1{Cpre(Tl, Tj)} + 2Ccs)

...

Rk
i = Ci +

∑i−1
j=0d

R
k−1

i

Pj
e × (Cj + maxi

l=j+1{Cpre(Tl, Tj)} + 2Ccs)

This iteration terminates when Ri converges or Ri is greater than the deadline of
Ti. After the iteration is terminated, we compare the value of Ri with the deadline of
Ti. Only if Ri is less than the deadline of Ti can Ti be guaranteed to be successfully
scheduled. Hence, we can analyze the schedulability of the system based on the WCRT
estimate of each task.

In Equation 6, every preemption is tied to an invocation of a task. Thus, no in-
feasible preemptions are introduced to the WCRT estimate. A preemption is included
in our estimate only when a task with a higher priority than the running task arrives
(i.e., the condition for preempting is satisfied). However, in the approach of Lee et
al., the number of preemptions are estimated separately from the number of invoca-
tions of tasks. Due to this separate estimation of the number of preemptions, Lee et
al. [19] suffer from a problem that our approach as presented in this paper does not
have: infeasible preemptions that cannot happen in any real case could potentially be
included in the WCRT estimate. To eliminate this possibility, Lee et al. use an ILP
formulation to remove infeasible preemptions.

11

Now, let us consider the computational complexity of this iteration procedure.
Because we conclude that Ri converges and Ri = Rk

i if Rk
i is equal to Rk+1

i , Ri has
to increase monotonically before the iteration is terminated. Ri has to be increased
by min

j=i−1
j=0 (Cj) at least in each iteration. On the other hand, Ri cannot exceed

Pi. Thus, the number of iterations is limited by Pi

min
j=i−1

j=0
(Cj)

. This implies that the

number of iterations has a constant upper bound when the periods and the WCET of
tasks are determined. In each iteration, we have to calculate maxi

l=j+1{Cpre(Tl, Tj)}.
This can be done by calculating all possible preemption scenarios Cpre(Tb, Ta), where
a < b, 0 ≤ a ≤ n − 2 and 1 ≤ b ≤ n − 1. n is the number of tasks. So the number of
preemption-related cache reload cost is O(n2), where n is the number of tasks. Note
that in [19], in order to estimate the WCRT for one task, all the preemption scenarios
have to be investigated. The total number of preemption scenarios is exponential in
the number of tasks. Thus, our method is more feasible and scalable than [19] when
there are a large amount of tasks in the system.

7 Experimental Results

Our experiments are run on an ARM9TDMI processor with a 4-way set associative
unified cache, the size of which is 32KB. Each line in the cache is 16 bytes; thus, there
are 512 lines in each “way” of the cache in total. The instruction set is simulated with
XRAY [22]. The whole system is integrated with Seamless CVE provided by Mentor
Graphics [21]. The tasks are supported by the Atalanta RTOS developed at Georgia
Tech [20].

First, we have two experiments each with three tasks. The tasks in the first ex-
periment, IDCT, ADPCMD and ADPCMC, are described in Example 1. The tasks in
the second experiment are a Mobile Robot control program (MR), an Edge Detection
algorithm (ED) and an OFDM transmitter (OFDM). We use SYMTA to estimate the
WCET of each task in the experiments. The periods, priorities and WCET of tasks in
each experiment are listed in Table 1.

Table 1. Tasks

Tasks in Experiment I Tasks in Experiment II

Task WCET(us) Period(us) Pri. Task WCET(us) Period(us) Pri.

ADPCMC 7675 50,000 4 OFDM 2830 40,000 4

ADPCMD 2839 10,000 3 ED 1392 6,500 3

IDCT 1580 4,500 2 MR 830 3,500 2

In the experiment, we compare four approaches to estimate cache reload overhead
caused by preemptions. Furthermore, we calculate the WCRT of each task by using
Equation 6.
Approach 1 (A1): All cache lines used by preempting tasks are reloaded for a preemp-
tion. Note that this approach is proposed by [17].
Approach 2 (A2): Only lines in the intersection set of lines used by the preempting task
and the preempted task are reloaded for a preemption. The inter-task cache eviction
method proposed in [1] is used here.
Approach 3 (A3): Intra-task cache access analysis for the preempted task proposed by
Lee et al. in [19] is used here. Note that no path analysis is applied in this approach.
This approach can potentially include infeasible preemptions in the WCRT estimate
(which does not exist in our approach).
Approach 4 (A4): Both inter-task cache eviction analysis and intra-task cache access

12
Table 2. Number of cache lines to be reloaded

Experiment I Experiment II

Preemptions A1 A2 A3 A4 Preemptions A1 A2 A3 A4

ADPCMC by IDCT 249 68 64 56 OFDM by MR 245 134 118 88

ADPCMC by ADPCMD 220 114 92 64 OFDM by ED 254 172 135 98

ADPCMD by IDCT 183 58 55 46 ED by MR 245 87 85 81

analysis are used to estimate the cache reload cost. Also, path analysis proposed in [1]
is applied to the preempting task. Approach 4 is the approach described in this paper.

The estimates of the number of cache lines to be reloaded in each type of preemption
derived with these fours approaches are listed in Table 2.

Table 3. Comparison of WCRT estimate

Experiment I Experiment II
Cmiss Task A1 A2 A3 A4 ART Task A1 A2 A3 A4 ART

ADPCMC 35743 29392 29172 28836 23512 OFDM 9847 9350 9279 6456 6113
10 ADPCMD 6565 6315 6309 6291 6190 ED 2567 2409 2407 2403 2382

ADPCMC 48528 35607 35079 29420 23867 OFDM 12510 10096 9954 9524 6211
20 ADPCMD 6931 6431 6419 6383 6223 ED 2812 2496 2492 2484 2400

ADPCMC 88606 38997 38139 35175 24101 OFDM 23501 12174 11964 99844 6255
30 ADPCMD 7297 6547 6529 6475 6278 ED 3057 2583 577 2565 2426

ADPCMC 359239 48146 39335 35843 24353 OFDM 45216 16700 12774 10444 6362
40 ADPCMD 7663 6663 6639 6567 6354 ED 3302 2670 2662 2646 2525

We use SYMTA [8] to obtain the WCET of a context switch, which implies that
the instructions of the context switch function and the memory blocks where contexts
of the preempted and the preempting tasks are saved are not in the L1 cache when the
context switch function is called. In this case, the WCET of a single context switch
estimated with SYMTA is 1049 cycles.

In the first experiment, the WCRT of ADPCMC and ADPCMD can be calculated
based on the results shown in Table 2. Notice that IDCT has the highest priority and
thus cannot ever be preempted. As a result, the WCRT of IDCT is just equal to its
WCET. We also vary the Cmiss from 10 cycles to 40 cycles to investigate the influence
of cache miss penalty on the WCRT. The estimate results (Approach 1 through Ap-
proach 4) and the Actual Response Times (ART) – which is the WCRT as observed in
simulation – are listed in Table 3. (Please note that as we did not exhaust all possible
input data in our simulations, the observed ART may underpredict WCRT; nonethe-
less, for our experiments the ART should be quite close to the WCRT considering
the fact that the tasks in the experiments do not have complicated control flows and
the size of the input data is fixed). Table 4 lists the improvement of our approach
(Approach 4) over all other approaches (Approach 1, Approach 2 and Approach 3) in
these first two experiments.

Approach 1 assumes that all cache lines used by the preempting task will be ac-
cessed by the preempted task after the preempted task is resumed. Obviously, this
may not be true. Some cache lines will never be used by the preempted task no matter
which path the preempted task takes. Thus, by calculating the set of cache lines that
can possibly be accessed by both the preempting and the preempted task, we can fur-
ther reduce the estimate of the number of cache lines to be reloaded by the preempted
task, as shown in Approach 2.

13

Approach 3 calculates the maximum set of memory blocks in the preempted task
that can potentially cause cache reload. Inter-task cache evictions are also considered
in this approach. However, there is no path analysis in this approach. As compared
with Approach 3, Approach 4, in which we apply path analysis techniques on the
preempting task, achieves a significant reduction of up to 30% in the WCRT estimate
of OFDM.

Table 4. Comparison of results for different approaches

Comparison Experiment I Experiment II
Cache Penalty (cycles) Cache Penalty (cycles)

Task 10 20 30 40 Task 10 20 30 40

ADPCMC 19% 39% 60% 92% OFDM 34% 23% 57% 77%
A4 vs. A1 ADPCMD 4% 8% 11% 14% ED 6% 12% 16% 20%

ADPCMC 2% 17% 10% 26% OFDM 31% 6% 18% 38%
A4 vs. A2 ADPCMD 1% 1% 1% 1% ED 0.2% 0.5% 1% 1%

ADPCMC 1.4% 16% 8% 9% OFDM 30% 4% 17% 18%
A4 vs. A3 ADPCMD 0.2% 0.3% 0.5% 0.6% ED 0.3% 0.6% 0.8% 1%

We also executed a third experiment with a larger number of tasks. In this exper-
iment, we have six tasks, OFDM, ADPCMC, ADPCMD, IDCT, ED and MR. The
priority and period of each task is listed in Table 5. Note that, in order to satisfy the
necessary condition of schedulability of a real-time system (i.e., the total utilization
of all tasks must be less than 100% [14, 15]), we increase the periods of some tasks
as compared to the same tasks in experiment 1 and experiment 2. ADPCMC has the
lowest priority and MR has the highest prority. The WCET of each task stays the
same.

Table 5. Tasks in Experiment III

T1(MR) T2(IDCT) T3(ED) T4(ADPCMD) T5(OFDM) T6(ADPCMC)

Period(us) 7,000 9,000 13,000 20,000 40,000 50,000

Priority 2 3 4 5 6 7

WCET(us) 830 1580 1392 2839 2830 7675

We use the four different approaches described earlier to estimate the WCRT of the
two tasks with the lowest priorities, OFDM and ADPCMC, which may be preempted
more frequently than other tasks. Table 6 gives the WCRT estimates of OFDM and
ADPCMC with the different approaches.

Table 6. WCRT estimates in Experiment III

WCRT estimates of ADPCMC WCRT estimates of OFDM

Cmiss A1 A2 A3 A4 A4 vs.A3 A1 A2 A3 A4 A4 vs. A3

10 51572 34837 34336 33781 2% 16901 16217 15948 15643 2%

20 75585 58646 51990 38235 27% 25904 17531 16993 16383 4%

30 258814 75673 69025 57496 18% 50831 25756 24697 17123 31%

40 6837328 152023 76729 68599 11% 116464 33690 31834 17863 44%

Approach 3 and Approach 4 are compared in Table 6. By applying path analysis,
the WCRT estimate is reduced by up to 44%. Thus, we demonstrate that our approach
can tighten WCRT estimate significantly by using path analysis technique, which is
missing in the enhanced approach of Lee et al. [19].

As stated in Section 6, the approach of Lee et al. cannot guarantee removal of all
infeasible preemptions. We have one last (actually, fourth) experiment to show the

14

effect of infeasible preemptions. For example, consider the following scenario based on
the experiment in Lee et al. [19].

The four tasks listed in Table 7 are used in the experiment in [19]. When the
cache reload penalty is 100 cycles (this is the penalty used by Lee et al. in [19]), the
WCRT of FIR (i.e., the task with the lowest priority) given by the approach of Lee
et al. is 5,323,620 cycles. However, the WCRT estimate resulting from the iteration
we proposed in Section 6 is 3,297,383 cycles, which shows a reduction of 38%. Note
that we use the preemption related cache reload cost as reported in [19]. Since we use
the same cache reload cost for each preemption, the difference in WCRT estimate is
caused by the the number of preemptions used in WCRT estimate. Apparently, the
approach of Lee et al. cannot remove all the infeasible preemptions.

Table 7. Tasks in the paper of Lee et al. [19]

Task Period WCET

FFT 320, 000 60, 234 + 280 × Cmiss

LUD 1, 120, 000 255, 998 + 364 × Cmiss

LMS 1, 920, 000 365, 893 + 474 × Cmiss

FIR 25, 600, 000 557, 589 + 405 × Cmiss

8 Conclusion

We propose a method to analyze the preemption cost caused by cache eviction in a
multi-tasking real-time system. The method first analyzes the maximum set of memory
blocks in the preempted task that can possibly cause cache reload. Then, the method
incorporates the inter-task cache eviction behavior by calculating the intersection set
of cache lines used by the preempting task and the preempted task. By combining
these two approaches, we achieve over prior state-of-the-art up to 44% reduction in
WCRT estimate in our experiments.

For future work, we plan to expand our analysis approach for systems with more
than two-level memory hierarchy. Also, we will research the cache eviction problem in
multi-processor systems.

9 Acknowledgment

This research is funded by NSF under INT-9973120, CCR-9984808 and CCR-0082164.
We acknowledge donations received from Denali, Hewlett-Packard, Intel, LEDA, Men-
tor Graphics, Sun and Synopsys. We also thank Jan Staschulat and Prof. Dr. Rolf Ernst
for their help in using SYMTA.

References

1. Y. Tan and V. Mooney, “Timing Analysis for Preemptive Multi-tasking Real-Time Sys-
tems,” Proceedings of Design, Automation and Test in Europe (DATE’04), pp. 1034-1039,
February 2004.

2. Y. Tan and V. Mooney,“Timing Analysis for Preemptive Multi-tasking Real-time Systems
with Caches,” Technical Report, GIT-CC-04-02, Georgia Institute of Technology, February
2004.

3. D. Kirk, “SMART (Strategic Memory Allocation for Real-Time) Cache Design”, Proceed-
ings of IEEE 10th Real-Time System Symposium, pp. 229-237, December 1989.

4. G. Suh, L. Rudolph and S. Devadas, “Dynamic Cache Partitioning for Simultaneous Mul-
tithreading Systems,” Proceedings of the IASTED International Conference on Parallel
and Distributed Computing and Systems, pp. 116-127, September 2001.

15

5. J. Liedtke, H.Härtig and M. Hohmuth, “OS-Controlled Cache Predictability for Real-
Time Systems,” Proceedings of the Third IEEE Real-Time Technology and Applications
Symposium (RTAS’97), pp. 213-227, June 1997.

6. F. Muller, “Compiler Support for Software-based Cache Partitioning,” Proceedings of ACM
SIGPLAN Workshop on Languages, Compliers and Tools for Real-Time Systems, pp. 125-
133, June 1995.

7. Y. Li and S. Malik, Performance Analysis of Real-Time Embedded Software, Kluwer Aca-
demic Publishers, Boston, 1999.

8. F. Wolf, Behavioral Intervals in Embedded Software, Kluwer Academic Publishers, Norwell,
MA, 2002.

9. H. Negi, T. Mitra and A. Roychoudhury, “Accurate Estimation of Cache-related Preemp-
tion Delay,” Proceedings of ACM Joint Symposium CODES+ISSS, pp. 201-206, October
2003.

10. H. Tomiyama and N. Dutt, “Program path analysis to bound cache-related preemption
delay in preemptive real-time systems,” Proceedings of the Eighth International Workshop
on Hardware/software Codesign, pp. 67-71, May 2000.

11. C. Ferdinand, R. Heckmann, M. Langenbach, F. Martin, M. Schmidt, H. Theiling,
S. Thesing and R. Wilhelm, “Reliable and Precise WCET Determination for a Real-
Life Processor,” Proceedings of the First International Workshop on Embedded Software,
(EMSOFT 2001), pp. 469-485, Volume 2211 of LNCS, Springer-Verlag (2001).

12. M. Alt, C. Ferdinand, F. Martin and R. Wilhelm, “Cache behavior prediction by abstract
interpretation,” Proceedings of Static Analysis Symposium (SAS’96), pp. 52-66, September
1996.

13. T. Lundqvist and P. Stenstrom, “An Integrated Path and Timing Analysis Method based
on Cycle-Level Symbolic Execution,”Real-Time Systems,Volume 17, Issue 2-3, pp. 183-207,
November 1999.

14. J. Lehoczky, L. Sha and Y. Ding, “The Rate Monotonic Scheduling Algorithm:Exact
Characterization and Average Case Behavior,” Proc. IEEE 10th Real-Time System Sym-
posium, pp. 166-171, 1989.

15. C. Liu and J. Layland, “Scheduling Algorithms for Multiprogramming in a Hard Real-
Time Environment,” Journal of ACM, Vol. 20, No. 1, pp. 26-61, January 1973.

16. K. Tindell, A. Burns, A. Wellings, “An Extendible Approach for Analyzing Fixed Priority
Hard Real-Time Tasks,” Real-Time Systems Vol.6, No.2, pp. 133-151, March 1994.

17. J. Busquets-Mataix, J. Serrano, R. Ors, P. Gil and A. Wellings, “Adding instruction cache
effect to schedulability analysis of preemptive real-time systems,” Real-Time Technology
and Applications Symposium, pp. 204-212, June 1996.

18. C. Lee, J. Hahn, Y. Seo, S. Min, R. Ha, S. Hong, C. Park, M. Lee and C. Kim. “Anal-
ysis of Cache-related Preemption Delay in Fixed-priority Preemptive Scheduling,” IEEE
Transactions on Computers, Vol. 47, No. 6, pp. 700-713, 1998.

19. C. Lee, J. Hahn, Y.-M. Seo, S. Min, R. Ha, S. Hong, C. Park, M. Lee and C. Kim, “En-
hanced Analysis of Cache-related Preemption Delay in Fixed-priority Preemptive Schedul-
ing,” IEEE Real-Time Systems Symposium, pp. 187-198, December 1997.

20. D. Sun, D. Blough and V. Mooney, “Atalanta: A New Multiprocessor RTOS Kernel for
System-on-a-Chip Applications,” Technical Report GIT-CC-02-19, Georgia Institute of
Technology, April 2002.

21. Mentor Graphics, Seamless Hardware/Software Co-Verification,
http://www.mentor.com/seamless/.

22. Mentor Graphics XRAY Debugger, http://www.mentor.com/embedded/xray/.
23. MediaBench, http://cares.icsl.ucla.edu/MediaBench/.
24. Berkeley MPEG2 decoder, http://bmrc.berkeley.edu/frame/research/mpeg/.

