
A Prioritized Cache for Multi-tasking Real-Time Systems

Abstract: In this paper, we present a new prioritized cache
which can reduce the Worst Case Cache Miss Rate (WCCMR)
of an application in a multi-tasking environment. The Worst
Case Execution Ti me (WCET) can be estimated more precisely
when the cache miss rate has a stable and low upper bound.
An experiment in which a MPEG decoder and a Mobile Robot
(MR) control program are executed alternatively shows that
we can achieve a nearly constant cache miss rate with our
method. The cache miss rate of the time critical application
(MR) varies from 45% to 15% with a normal cache, while with
a prioritized cache the cache miss rate is always less than 13%,
a 3X reduction. With this lower WCCMR, we achieve a much
tighter WCET estimate, 41% lower in fact, for MR in this
example.

I. Introduction

In a real-time system, it is important to estimate the Worst

Case Execution Time (WCET) of each task in order to
schedule tasks so that timing constraints are not violated.
Unfortunately, WCET is hard to estimate in a processor with
a cache. While a cache can dramatically speed up
processor performance, a cache also complicates processor
performance analysis, especially in a multi-tasking
environment where one task may evict cache lines used by
another task. Cache line evictions cause unpredictability in
cache behavior, resulting in pessimistic WCET estimates.
In some real-time systems, caching is disabled in order to
reduce unpredictability. However, disabling caches
degrades processor performance. A better way to solve
this problem is to design a new cache management policy
that can reduce or eliminate the interference among tasks.

In this paper, we propose a cache management policy
which makes the cache behavior more predictable for high
priority tasks, resulting in significantly reduced Worst Case
Cache Miss Rate (WCCMR) for these tasks. It is helpful
to analyze WCET when the cache is more predictable.

This paper is organized as follows. Section 2
investigates some related work. Section 3 elaborates the
details of design and implementation of our cache
management policy. Section 4 gives the experimental
results. Section 5 concludes the paper.

II. Related Work

Interference among tasks in the cache complicates

WCET analysis. This problem motivates us to improve
cache management policies so that cache behavior is more
predictable. Dropso et al. [1] investigate some existing
cache management techniques that intend to make caching
predictable. They divide these techniques into two
categories, Spatial Only Sharing (SOS) and Temporal Only
Sharing (TOS). Dropso compares these two methods and
concludes that neither policy is superior to the other when
considering a large variety of general purpose computing
scenario s such as scientific computing, real -time control
applications and so on. Effectiveness of each policy
depends on the target applications. In [2], a
data-replace-controlled cache is presented. Users can
control every cache line by setting a cache line in a status of
“lock” or “release”. Only when a cache line is in the
“release” status can it be replaced. Users can “lock” cache
lines in order to prevent replacement. Additional
instructions are used to release and lock cache lines. Users
have to take care of all cache lines that need to be
locked/released, which increases users’ work. Chiou et al.
[3,4,5] proposes a column cache model. In this scheme,
caches are partitioned at the granularity of columns.
Columns in a set -associative cache can be assigned to a task
exclusively so that the cache lines in these columns are not
going to be kicked out. This technique requires users to
partition the cache explicitly. Approach [6] gives another
way to eliminate interference in the cache using specific
load/store instructions; also, the compiler is modified to
partition the data and instructions. Approaches [7,8]
present another cache partitioning method which focuses on
memory mapping without considering the tasks properties.
Approaches [9,10] present cache partitioning schemes in
which timing requirements of tasks are taken into account.
However, only the utilization of tasks are considered in the
their cache allocation algorithms, no matter which
scheduling algorithm is actually used by the system outside
of the cache, while in our approach the cache allocation
algorithm can be consistent with the task scheduling
algorithm in the Real-Time Operating System (RTOS).

We distinguish our contribution from the previous

Yudong Tan

School of Electrical and Computer Engineering
Georgia Institute of Technology
Atlanta, Georgia, USA 30332

Tel : 404-894-0966
Fax : 404-894-9959

e-mail : ydtan@ece.gatech.edu

Vincent Mooney

School of Electrical and Computer Engineering
Georgia Institute of Technology
Atlanta, Georgia, USA 30332

Tel : 404-385-0437
Fax : 404 -894-9959

e-mail : mooney@ece.gatech.edu

work in that while the previous work requires the user to
map code/data to specific memory locations, use specific
instructions, or partition the cache explicitly, we only
require the user to choose a priority for each task. Cache
allocation is dependent on the task scheduling algorithm
used in the real-time system so that the cache allocation in
our scheme is flexible. In short, we provide a new method
with a simple interface to the user and with transparent
hardware details.

III. Prioritized Cache

As mentioned above, the difficulties in estimating

WCET of real-time tasks in a multi-tasking environment
with caches lie in interference among tasks. Cache lines
used by one task may be evicted by another task when the
former is suspended. One way to help solve this problem
is to divide the cache into several partitions. Each task is
assigned one or more partitions exclusively so that
interference among tasks is eliminated. In this method, the
algorithms of partitioning the cache and assigning partitions
to tasks are important. Here, we propose a assignment
strategy by borrowing some ideas from real-time
scheduling.

A. Assignment Strategy

We target set associative caches in this paper. In a
multi-way set associative cache, one “way” is called a
column [3]. For example, a 4-way set associative cache
has four columns. The cache is partitioned at the
granularity of columns, that is, all cache lines in one column
are always in the same partition. When a column in the
cache is assigned to a task, that task is called the owner of
the column and the column is owned by the task. Not all
columns need to be assigned to tasks. We can also set a
column to the status of “shared” so that the column can be
shared by tasks.

We want to assign cache partitions to tasks according
to their priorities. Priorities are widely used in task
scheduling of real-time systems. Depending on the
scheduling algorithm chosen, priorities of tasks may be
fixed (e.g., Rate Monotonic Scheduling) or dynamic (e.g.,
Earliest Deadline First or the Priority Ceiling Protocol).
Usually, those tasks with strict timing constraints have
higher priorities in using CPU resources. Note that these
existing scheduling algorithms (e.g., RMS, EDF and PCP as
mentioned above) are used to allocate CPU resources. The
priorities of tasks are not taken into account in conventional
cache allocation. However, tasks with strict timing
constraints should have higher priorities not only for using
the CPU but also in using other resources such as caches.
With this intuition, we divide a cache into partitions and
assign partitions to each task according to its priority. In
this section, we do not address the problem of choosing task
priorities, but assume that each task has been assigned a

unique priority (not assigned to any other task) with an
existing priority-based scheduling algorithm such as RMS
or EDF. (At the end of this section we will extend our
approach to handle multiple tasks with the same priority.)
We focus instead on how to assign cache partitions to tasks
according to their priorities.
 Now, we assume that priorities of tasks range from 0 to
N. 0 is the highest priority and N is the lowest priority.
We also give each column a priority. At the beginning, the
priority of every column in the cache is the lowest one (N).
When a task needs to use the cache, the cache controller
compares the priority of the task with the priority of each
column. To accomplish this, we added a special register to
the cache controller as described in the next subsection.
Only when the priority of a task is higher than or equal to
the priority of a column can the task use the column. In
other words, a task with a higher priority can use all
columns owned by tasks with lower priorities. When a
column is used by a task, the priority of the column is
upgraded to be equal to the priority of the task. After a
task completes, it notifies the cache controller to release all
columns the task owns. The cache controller does this by
setting priorities to those columns to the lowest priority
again. Let us consider an example as below.
Example 1. Suppose we have two tasks, an MPEG decoder
(MPEG for short) and a Mobile Robot Control program (MR for
short). The MR application is derived from Missionlab, which is
mobile robot control software developed by the Georgia Tech
Mobile Robot Lab [13]. The Control Flow Graph (CFG) of MR is
shown in Figure 1.

Figure 1. Control Flow Graph of MR
MPEG and MR are two different kinds of applications. MPEG

is a data-processing application with soft real -time constraints. MR
depends on a fixed size of data, which mainly includes the
coordinates of the robot and the coordinates of obstacles. However,
MR has a more strict timing requirement than MPEG. Thus, a tight
WCET analysis for MR is needed. According to the CFG shown in
Figure 1, we can see that the worst case control path in MR is the
path from Is_At_Goal() to Move_To() via Detect_Obstacles() and
Avoid_Obstacles().

Figure 2. Architecture for Executing MPEG and MR
We assume that MR has a higher priority than MPEG. In

this example, there are 4 priorities, where 3 is the lowest and 0 is
the highest priority. MR is given a priority of 1 and MPEG is
given a priority of 2. We use a 4-way 16KB set associative L1
cache for all instructions and data. Each column has 256 lines.
The processor used in this example is ARM9TDMI. Figure 2 shows
the architecture for the example. At the very beginning, all columns
in the cache are empty, thus, with the lowest priority of 3. When
MPEG runs, it uses all four columns. The priorities of these four
columns are upgraded to the priority of MPEG, i.e., to 2 as shown
in Figure 3(b). Then, MPEG is suspended and MR begins to run.
When there is a cache miss, a cache line is chosen to be replaced.
If the priority of the column in which the cache line locates is lower
than the priority of the task, the priority of this column is upgraded
to the priority of the task. In this example, two columns used by
MPEG are replaced by MR and the priorities of these two columns
are upgraded to 1 as shown in Figure 3(c). So, next time when
MPEG is executed, MPEG can only use the other two columns
that still have priority 2. From this example, we can see that if
there is no other task with an equal or higher priority than MR, MR
can use the first two columns exclusively. In this manner, we can
guarantee the usage of the cache by high priority tasks at a cost,
however, of degrading the performance of lower priority tasks.

Figure 3. Assignment Strategy in the Prioritized Cache
When a task is completely over, it releases all columns it

owns. The cache controller sets the priorities of these columns
to the lowest priority. In the example above, we assume that MR
is completed earlier than MPEG. When MR is over, it releases

the first and the second column and sets the priorities of these two
columns to 3, which is shown in Figure 3 (d). So, when MPEG is
executed next time, it can use all four columns again, as shown in
Figure 3 (e).

B. Hardware Implementation

The assignment strategy is implemented in the cache
controller. We add two tables, the Column Priority Table
(CPT) and the Column Owner Table (COT), and three
registers, Current Task Register (CTR), Current Task
Priority Register (CTPR) and Column Status Register (CSR),
to the cache controller. Each column has an entry in CPT
and COT. An entry records the priority and the owner of
the column. CTR and CTPR are used to save the ID and
the priority of the task which is currently running on the
processor. CSR indicates if a column is shared. A
column is shared if all tasks can use this column. Note that
this shared column differs from a column with the lowest
priority in that a shared column always has the lowest
priority and this priority is never upgraded even if the
column is used by a high priority task. Each column has
one bit in the CSR. If the bit is set, the corresponding
column is shared. An example of such an extended cache
controller is shown in Figure 4.

Obviously, the prioritized cache only uses the task ID
and the task priorities to allocate columns. The prioritized
cache does not limit the number of tasks and priorities
directly, except for the limitation imposed by the length of
the CPT and COT registers. For example, if the CPT and
COT entries each have 16 bits, up to 162 tasks and 162
different priorities can be supported, which is sufficient for
many real-time systems. Suppose we have a m-way set
associative cache, a maximum of n2 tasks and a
maximum of k2 different priorities. Clearly, then, we have
m entries each in the COT and CPT tables (i.e., m columns
or ways). Each COT entry needs n bits, for a total usage of
m×n bits. Each CPT entry needs k bits, for a total usage of
m×k bits. The CTR register has n bits, while CTPR has k
bits. Additionally, the CSR register needs m bits. Therefore,
in total, we need m ×n+m ×k+n+k+m=(m+1)(k+n)+m bits
for the CPT and COT tables and the CTR, CTPR and CSR
registers. Example 2 shows these extra tables and registers
in a 4-way set-associative prioritized cache. The
prioritized cache does not require much more area than a
normal cache. For a prioritized 16KB 4-way cache which
supports 64 tasks and 64 priorities, the area increases by less
than 1% if compared with a same size normal cache (i.e.,
non-prioritized).
Example 2. Suppose we have a 16KB cache with 4 columns as
shown in Figure 4. The lengths of the specialized registers in the
cache – CPT, COT, CSR and CTR – are 16 bits. Since the CPT
and COT registers are each 16 bits long, this cache supports up to

162 tasks and 162 priorities. In this example, k=the number
of bits in each CPT register=16, n=the number of bits in each COT
register=16, m=the number of columns=4; thus, we need

(m+1)(k+n)+m = (4+1)×(16+16)+4=164 extra bits for the prioritized
16KB cache.

Figure 4. Extended Cache Controller
In Example 1, the prioritized cache needs to be initialized before it
is used (as shown in Figure 3(a)). We notice that most Operating
Systems have an IDLE task which controls the CPU when there is
no other task running. The IDLE task has the lowest priority.
Therefore, we can assign the ID and the priority of the IDLE task to
the corresponding registers in the prioritized cache for initialization.
We assume that the IDLE task has an ID of 0 and a priority of
0xFFFF which is the lowest priority. Therefore, all of the CPT
entries in Table 1 are 0xFFFF, and all of the COT entries are zero.
Also, in order to allow low priority tasks to use the cache, we set
the fourth column as shared by default. The initial settings of the
registers are listed in Table 1.

Table 1 Initialization of Registers in the Prioritized Cache
 We give memory mapped addresses to the tables and
the registers so that the values in the tables and registers can
be set as needed. Alternatively, specialized assembly
instructions for accessing these tables and registers can be
defined if the target instruction set has a sufficient number
of undefined assembly instructions and if the processor can
be redesigned to support the new specialized assembly
instructions. Usually, we only need to set the value of CTR
and CTPR. Every time when the task is switched, we write
the task ID and the priority of the task to be executed to the
CTR and CTPR.

When the cache hits, the prioritized cache works the
same as the normal cache. When there is a cache miss, a
cache line is searched for replacement. The columns
owned by the current task, the columns with a lower priority
than the current task and the shared columns are searched.
If the cache line to be replaced is located in a column that is
not owned by the current task, the priority and the owner of
the column are updated, that is, the values in CTR and
CTPR are copied to the corresponding entries in COT and

CPT. When a cache line is replaced, its status needs to be
updated. The entries in COT and CPT can be updated
concurrently. When a column is released, the priority of
this column is set to the lowest priority.
Example 3. In Example 1, suppose MPEG has an ID of 1 and MR
has an ID of 2. Suppose further that the priority of MPEG is 2
while the priority of MR is 1. Column 3 is set as shared by
default in order to allow low priority tasks to always be able to use
at least one column in the cache. After MPEG runs, all four
columns are owned by MPEG (as shown in Figure 3(b)). The
status of registers in the prioritized cache is shown in Line 1 of
Table 2. Then, MR begins to run for the first time. MR writes its
ID and priority to the appropriate registers in the cache, which is
shown in Line 2 of Table 2. MR needs to load its instructions and
data to the cache. The cache searches for a cache line to be
replaced. Since MPEG has a lower priority than MR, the first
column, which is owned by MPEG, is selected and assigned to MR.
For the same reason, the second column is also assigned to MR
(as shown in Figure 3(c)). The values in registers are changed
as shown in Line 3 of Table 1.

Priority of
Columns
(CPT)

Owner of
Columns
(COT)

Line CTR CTPR CSR

0 1 2 3 0 1 2 3
1 1 2 0001 2 2 2 3 1 1 1 0
2 2 1 0001 2 2 2 3 1 1 1 0
3 2 1 0001 1 1 2 3 2 2 1 0

Table 2 An Example of Cache Replacement

Figure 5. Code Using APIs to Control the Prioritized Cache

C. Software Interface

The prioritized cache is software controllable. We
provide APIs for users or the RTOS to configure the cache.
API functions can change the values in COT, CPT, CTR,
CSR and CTPR to assign or release the columns. We
provide four APIs. Set_tid_pri(tid,pri) writes the priority
and ID of the current task into CTR and CPTR, respectively.
Set_column_pri(col,pri) sets the priority of a column.
Release_column(tid) releases all columns owned by the task
with an ID of tid. Set_ column_shared(col) sets a column
to a status of shared. These APIs can be implemented as
system calls in an RTOS or a general purpose OS. We give
an example below to show how we use these APIs in the
MPEG and MR applications.

Priority of
Columns

Owner of
Columns

Line CTR CTPR CSR

0 1 2 3 0 1 2 3
Initial 0 0 0000 3 3 3 3 0 0 0 0
1 0 0 0001 3 3 3 3 0 0 0 0
3 1 2 0001 3 3 3 3 0 0 0 0
4 1 2 0001 2 2 2 3 1 1 1 0
5 2 1 0001 2 2 2 3 1 1 1 0
6 2 1 0001 1 1 2 3 2 2 1 0
8 2 1 0001 1 1 3 3 2 2 0 0
10 2 1 0001 3 3 3 3 0 0 0 0

Table 3. Changes of Values in Registers and Tables

Example 4. Consider the example shown in Figure 3. If we set
Column 3 to be shared and execute MPEG and MR alternatively,
we can implement this example with the C code shown in Figure 5.
Table 3 shows how the CTR, CTPR, CSR, the priority and the
owner of each column changes after each line of code in Figure 5
is executed. We give MPEG an ID of 1 and MR an ID of 2.
After line 1 of Figure 5 is executed, Column 3 is set to be shared:
thus, the value in CSR is changed to 0001 as can be seen in the
second row of Table 3. Set_tid_pri() is called in line 5 of Figure 5
in order to write the ID and priority of MR to CTR and CTPR. Thus,
the values in CTR and CTPR are changed to 2 and 1 respectively
as can be seen in the fifth row of Table 3. Then, MR starts to run.
As described in Example 3, the first two columns of MPEG are
assigned to MR. Thus, the register values are changed as shown
in the sixth row of Table 3. In Line 8 of Figure 5, MPEG releases all
of its columns if MPEG is over, which causes the change of
register values indicating column priorities and owners, as shown
in the seventh row of Table 3. When MR is over, it also releases all
of its columns. The last row of Table 3 gives the status of registers
after MR is over.

D. Embedding Prioritized Cache APIs in an OS Kernel

We provide APIs for users to configure the prioritized
cache. However, users do not need to call these APIs
directly; instead, the APIs can be embedded into the OS
system calls. For example, we can insert Set_tid_pri() into
the context switch function so that every time the task is
switched, the priority and the ID of the current task is
written into CTR and CTPR in the prioritized cache
respectively. We can also embed Release_Column() into the
task destruction function so that when one task is completed,
all the columns it owns are released. Obviously, the
changes needed to be made in the OS are minor. By
embedding prioritized cache control APIs into t he OS kernel,
the details of the prioritized cache are transparent to users.
Thus, users can focus on application development at a
higher level of abstraction.

E. Multiple Tasks with the Same Priority

In the descriptions above, we assume that each task has

a unique priority. This assumption may not be true in
real-time systems because different tasks may have the same
priorities. In this case, we need to decide how to allocate
caches among tasks with the same priority. In the current
implementation of our prioritized cache, the columns used
by a task can be shared by other tasks with the same priority.
The LRU algorithm is used for cache line replacement.

IV. Experiment

In order to verify the effectiveness of the prioritized

cache model, we ran two applications, an MPEG decoder
(MPEG for short) and a Mobile Robot control program (MR
for short), on a ARM9TDMI utilizing a prioritized L1 cache:
a 16KB 4-way set associative cache. We simulated the
cache hardware using Verilog and the software using
Seamless CVE, a hardware/software co-verification
environment provided by Mentor Graphics [11, 12].
Specially, we use the ARM9TDMI Processor Support
Package (PSP) in this experiment.

We design two cases for experiments, which are
explained in detail in the remaining sections.

A. Case 1

We have two tasks, MPEG and MR, which execute

alternatively. After a slice of data is decoded by MPEG,
MPEG is suspended and MR is executed. After MR
moves one step forward, MR is suspended and MPEG is
executed again. In this experiment, we do not use any
scheduler but rather have the two tasks execute in a
co-routine-like fashion as described above.

As we mentioned before, our goal is to obtain a more
precise estimate of WCET for high priority real-time tasks.
We achieve this goal by dramatically reducing the WCCMR
of high priority tasks. We assume that MR is more time
critical than MPEG. Thus, we aim to make the cache miss
rate of MR more predictable with our approach so that we
can more precisely estimate WCET of MR, which helps MR
to not miss its deadline. In order to reach this goal, we
give MR a higher priority than MPEG. The priority of MR
is 1, while MPEG has priority 2.

We first use a normal cache with an LRU cache line
replacement algorithm to run this example. Then, we use a
prioritized cache also with an LRU cache line replacement
algorithm. In the two cases, we run both MPEG and MR
three times. We sample the cache miss rate of MR every
10us. The result is shown in Figure 6, about which we
note several observations.

In the normal cache, the cache miss rate of MR varies
between 45% and 15% in each run, as shown in Figure 6(b).
The reason for this variance is that the cache lines used by
MR are evicted by MPEG when MR is suspended and
MPEG begins to run. The uncertainty in cache miss rate
makes the prediction of WCET of MR artificially high (see
Table 4).

(a) (b)

Figure 6. Comparison of Results. (a) Cache Miss Rate of MPEG. (b) Cache miss rate of MR.
(Note: MR and MPEG are executed alternatively three times. Thus, the execution times of three runs are not
continuous actually. But for convenience of comparison, we concatenate three runs of MR and MPEG respectively)

With the prioritized cache, on the other hand, the
MR cache miss rate is less than 13%, except in the very
first run when the cache is cold. We need to point out
that, in this experiment, we create a scenario for MR in
which the robot has to avoid obstacles in every step.
The code has no branches other than the branches used to
implement the control flow of Figure 1. All branches
are executed along the longest code path accessing all
memory locations in any other code path, plus some more.
Thus, MR is always executed along the worst case path.
On the other hand, the MR program is also not
data-dependent. The amount of data (i.e., coordinates of
the robot, the obstacle and the goal) it needs to process is
always the same in each run. No data-dependent loops,
memory stores, or other such memory operations affected
by data dependencies exist in the MR code. Furthermore,
because MR has the highest priority, no other tasks can
replace the cache lines used by MR after they are loaded
the first time. Therefore, our simulation captures the
worst case cache behavior for this simple MR code.
Thus, we can use the cache miss rate in this experiment
which is 13% as the WCCMR for WCET analysis of MR.
Compared with the normal cache, the WCCMR of MR is
reduced by a factor of 3.5 when using the prioritized
cache.

One might wonder how a reduction in WCCMR can
impact WCET estimation? In our specific example, the
MR code is fairly straightforward, this allowing us to use
a simple WCET analysis method that is not broadly
applicable.

We have pointed out that our simulation of MR
captures the worst case execution path. We also assume
there are no exceptions. Thus, if we only consider the
effect of the cache, we can use a simple method sufficient

to accurately estimate the WCET for the MR code [14].
On the basis of the WCCMR for this worst case code p ath,
we show how the WCCMR can affect the estimate of
WCET as follows.

Suppose we know the number of instructions M, CPI
with no cache miss idealCPI , the penalty of a cache miss
P (cycles) and the WCCMR r. We can derive idealCPI
by running applications with a large enough cache so that
the cache miss rate is nearly zero. (In this experiment,
we run MR using a 1MB cache in order to obtain

idealCPI . The average cache miss rate is zero after the
second run.) We can use the following formula to
estimate WCET:

WCET=M× idealCPI +r×M×P
In our experiment, we want to estimate the WCET of

MR, where M=238959, idealCPI =1.26 and P=4. As
shown in the experimental result, the WCCMR using the
normal cache is 45%, while the WCCMR using the
prioritized cache is 13%. We use the WCCMRs 45% and
13% to estimate WCET of MR respectively, then compare
the estimates with the actual execution time. In our
simulation, the actual execution time of MR using a
prioritized cache was 409286 cycles. Table 4 shows the
result, a 41% reduction in WCET estimate.

r WCET estimates
0.45 731214
0.13 425347

Table 4 Comparison of WCET Estimates

Note that although in this specific example, only a
simple analytical WCET calculation method was used, it
sufficed. We hypothesize that similar reductions in
WCET would be observed in more complicated software

requiring more sophisticated WCET analysis techniques.
The example here gives us an insight that we can estimate
the WCET with a tighter bound by reducing WCCMR.

In our method, the performance of lower priority
tasks is sacrificed. If we check the cache miss rate of
MPEG in this example, we find that the average miss rate
of MPEG increases only by 2%, thus increasing overall
MPEG execution time by only 3%. In the normal cache,
MPEG can always use all the columns. However, only
two columns can be used by MPEG in the prioritized
cache. That is the reason why the cache miss rate of
MPEG is increased.

B. Case 2

In order to evaluate the performance of the

prioritized cache when multiple tasks have the same
priority, we design a case in which there are one instance
of the MPEG application and two instances of the MR
application. They are still executed one by one in a
co-routine-like fashion. The WCCMRs are compared in
Figure 7.

From the experimental results, we can see that the
WCCMR of MR is increased if compared with the result
in Case 1. However, the WCCMR of MR in Case 2 is
still much less than in the normal cache cas e. On the
other hand, if the number of tasks which have the same
priority is large, it is not hard to see that the performance
of the prioritized cache will deteriorate. The reason is
that the partition of cache shared by the tasks with the
same priorities works the same as a normal cache with
LRU replacement strategy. Thus, our current imple-

mentation of the prioritized cache needs to be improved in
order to handle the case in which a large number of tasks
have the same priority. One possible way is to partition
the cache at a finer granularity than columns. This will
be considered in our future research. Compared with other
cache partitioning schemes [2-10], the prioritized cache
model has several clear advantages. First, timing
constraints of applications are considered in the
assignment policy so that highly time critical tasks are
given high priorities in using the cache.

Although priority-based scheduling algorithms are
widely used in real-time systems, these algorithms are
mainly used to allocat e CPU resources. Our method
provides a way to possibly extend these algorithms to
apply to cache allocation so that the performance of high
priority tasks are guaranteed with more confidence in
systems with caches. Even more, the lower level details
of our method are transparent to users. Users only need
to call a few APIs in order to use the prioritized cache.
In a system with an RTOS, we can even embed the APIs
into the OS kernel such as the context switch function and
the task destruction function so that the prioritized cache
is totally transparent to users.

V. Conclusion and Future Work

In this paper, we present a prioritized cache model.

The experiment shows that we can achieve a much lower
cache miss rate for high priority tasks with this cache
model. With a lower constant cache miss rate, we can
estimate WCET of a task more precisely, which is critical
is real -time task scheduling.

Figure 7 Compare of results (a) Cache Miss Rate of MPEG. (b) Cache miss rate of MR.

For our future work, we plan to improve our approach in
several aspects. First, the cache is partitioned at the
granularity of columns, which may lower the utilization of the
cache. We plan to support partitioning the cache at a lower
level of granularity in order to solve this problem. Second,
the experiment shows a reduction in WCCMR. Also, we
intuitively believe that WCET can be tightly bounded with a
significantly reduced WCCMR. However, we still need to
build an analytical model to estimate the WCET of
applications with the prioritized cache formally. Third, we
need to analyze the performance further when there are
multiple tasks with the same priorities.

In conclusion, this paper is the first time a connection is
made between task priorities and cache column priorities. For
real-time applications, this connection can result in a 3X or
more reduction in cache miss rates and a corresponding
reduction in WCET for critical tasks, which is, we believe, a
very important and new result.

VI. Acknowledgement

This research is funded by NSF under INT-9973120,

CCR-9984808 and CCR-0082164. We acknowledge
donations received from Denali, Hewlett-Packard, Intel,
LEDA, Mentor Graphics, Sun and Synopsys.

References

[1] S. Dropso, “Comparing caching techniques for
multitasking real-time systems,” Technical Report, Computer
Science Department, University of Massachusetts, Amherst,
UM -CS-1997-065, November, 1997.
[2] N. Maki, K. Hoson and A. Ishida, “A
Data-Replace-Controlled Cache Memory System and its
Performance Evaluations,” Proceedings of the IEEE Region
10 Conference, pp. 471-474, April 1999.
[3] D. Chiou, P. Jain, L. Rudolph and S. Devadas,
“Application-Specific Memory Management for Embedded
Systems Using Software-Controlled Caches,” Proceedings of

the 37th Design Automation Conference (DAC'00), pp.
416-420, June 2000.
[4] G. Suh, L. Rudolph and S. Devadas, “Dynamic Cache
Partitioning for Simultaneous Multithreading Systems,”
Proceedings of the IASTED International Conference on
Parallel and Distributed Computing and Systems, August,
pp.116 -127, September 2001.
[5] P. Jain, S. Devadas, D. Engels and L. Rudolph,
“Software-Assisted Cache Replacement Mechanisms for
Embedded Systems m,” Proceedings of the Int'l Conference
on Computer -Aided Design, pp. 119-126, November 2001.
[6] D. May, J. Irwin and H. Muller, “Effective Caching for
Multithreaded Processors,” in P. H. Welch and A. W. P.
Bakkers, editors, Communicating Process Architectures 2000,
pp. 145-154, IOS Press, September 2000.
[7] J. Liedtke, H. Härtig and M. Hohmuth, “OS-Controlled
Cache Predictability for Real-Time Systems,” Proceedings of
the Third IEEE Real-time Technology and Applications
Symposium (RTAS'97), pp. 213 -227, June, 1997.
[8] J. Löser and H. Härtig, “Cache Influence on Worst Case
Execution Time of Network Stacks,” Technische Universität
Dresden Technical Report TUD-FI02-07, July 2002.
[9] D. Kirk, “SMART (Strategic Memory Allocation for
Real-Time) Cache Design,” Proceedings of the Real-Time
Systems Symposium , pp. 229-237, December 1989.
[10] S. Shahrier and J. Liu, “On the Design of
Multiprogrammed Caches for Hard Real-Time systems,”
International Performance, Computers and Communications
Computer (IPCCC’97), pp. 17-25, February 1997.
[11] “Getting Started With Seamless Co-Verification
Environment (Software Version 3.0-1.0),” Seamless
Documentation, Mentor Graphics.
[12] Mentor Graphics, Seamless Hardware/Software
Co-Verification, http://www.mentor.com/seamless/.
[13] Research Projects: MissionLab,
http://www.cc.gatech.edu/ai/robot -lab/research/MissionLab/.
[14] J. Hennessy and D. Patterson, Computer Architecture: A
Quantitative Approach (3rd edition), Morgan Kaufmann,
Menlo Park, CA, 2002.

