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Abstract: In this paper, we present a new prioritized cache 
which can reduce the Worst Case Cache Miss Rate (WCCMR) 
of an application in a multi-tasking environment.  The Worst 
Case Execution Ti me (WCET) can be estimated more precisely 
when the cache miss rate has a stable and low upper bound.  
An experiment in which a MPEG decoder and a Mobile Robot 
(MR) control program are executed alternatively shows that 
we can achieve a nearly constant cache miss rate with our 
method.  The cache miss rate of the time critical application 
(MR) varies from 45% to 15% with a normal cache, while with 
a prioritized cache the cache miss rate is always less than 13%, 
a 3X reduction.  With this lower WCCMR, we achieve a much 
tighter WCET estimate, 41% lower in fact, for MR in this 
example. 
 
 

I. Introduction 
 
In a real-time system, it is important to estimate the Worst 

Case Execution Time (WCET) of each task in order to 
schedule tasks so that timing constraints are not violated.  
Unfortunately, WCET is hard to estimate in a processor with 
a cache.  While a cache can dramatically speed up 
processor performance, a cache also complicates processor 
performance analysis, especially in a multi-tasking 
environment where one task may evict cache lines used by 
another task.  Cache line evictions cause unpredictability in 
cache behavior, resulting in pessimistic WCET estimates.  
In some real-time systems, caching is disabled in order to 
reduce unpredictability.  However, disabling caches 
degrades processor performance.  A better way to solve 
this problem is to design a new cache management policy 
that can reduce or eliminate the interference among tasks. 

In this paper, we propose a cache management policy 
which makes the cache behavior more predictable for high 
priority tasks, resulting in significantly reduced Worst Case 
Cache Miss Rate (WCCMR) for these tasks.  It is helpful 
to analyze WCET when the cache is more predictable. 

This paper is organized as follows.  Section 2 
investigates some related work.  Section 3 elaborates the 
details of design and implementation of our cache 
management policy.  Section 4 gives the experimental 
results.  Section 5 concludes the paper. 

II. Related Work 
 
Interference among tasks in the cache complicates 

WCET analysis.  This problem motivates us to improve 
cache management policies so that cache behavior is more 
predictable.  Dropso et al.  [1] investigate some existing 
cache management techniques that intend to make caching 
predictable.  They divide these techniques into two 
categories, Spatial Only Sharing (SOS) and Temporal Only 
Sharing (TOS).  Dropso compares these two methods and 
concludes that neither policy is superior to the other when 
considering a large variety of general purpose computing 
scenario s such as scientific computing, real -time control 
applications and so on.  Effectiveness of each policy 
depends on the target applications.  In [2], a 
data-replace-controlled cache is presented.  Users can 
control every cache line by setting a cache line in a status of 
“lock” or “release”.  Only when a cache line is in the 
“release” status can it be replaced.  Users can “lock” cache 
lines in order to prevent replacement.  Additional 
instructions are used to release and lock cache lines.  Users 
have to take care of all cache lines that need to be 
locked/released, which increases users’ work.  Chiou et al. 
[3,4,5] proposes a column cache model.  In this scheme, 
caches are partitioned at the granularity of columns.  
Columns in a set -associative cache can be assigned to a task 
exclusively so that the cache lines in these columns are not 
going to be kicked out.  This technique requires users to 
partition the cache explicitly.  Approach [6] gives another 
way to eliminate interference in the cache using specific 
load/store instructions; also, the compiler is modified to 
partition the data and instructions.  Approaches [7,8] 
present another cache partitioning method which focuses on 
memory mapping without considering the tasks properties. 
Approaches [9,10] present cache partitioning schemes in 
which timing requirements of tasks are taken into account. 
However, only the utilization of tasks are considered in the 
their cache allocation algorithms, no matter which 
scheduling algorithm is actually used by the system outside 
of the cache, while in our approach the cache allocation 
algorithm can be consistent with the task scheduling 
algorithm in the Real-Time Operating System (RTOS).  

We distinguish our contribution from the previous 
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work in that while the previous work requires the user to 
map code/data to specific memory locations, use specific 
instructions, or partition the cache explicitly, we only 
require the user to choose a priority for each task.  Cache 
allocation is dependent on the task scheduling algorithm 
used in the real-time system so that the cache allocation in 
our scheme is flexible.  In short, we provide a new method 
with a simple interface to the user and with transparent 
hardware details.  

 
III.  Prioritized Cache 

     
As mentioned above, the difficulties in estimating 

WCET of real-time tasks in a multi-tasking environment 
with caches lie in interference among tasks.  Cache lines 
used by one task may be evicted by another task when the 
former is suspended.  One way to help solve this problem 
is to divide the cache into several partitions.  Each task is 
assigned one or more partitions exclusively so that 
interference among tasks is eliminated.  In this method, the 
algorithms of partitioning the cache and assigning partitions 
to tasks are important.  Here, we propose a assignment 
strategy by borrowing some ideas from real-time 
scheduling.   
 
A.  Assignment Strategy 
 

We target set associative caches in this paper.  In a 
multi-way set associative cache, one “way” is called a 
column [3].  For example, a 4-way set associative cache 
has four columns.  The cache is partitioned at the 
granularity of columns, that is, all cache lines in one column 
are always in the same partition.  When a column in the 
cache is assigned to a task, that task is called the owner of 
the column and the column is owned by the task.  Not all 
columns need to be assigned to tasks.  We can also set a 
column to the status of “shared” so that the column can be 
shared by tasks. 

We want to assign cache partitions to tasks according 
to their priorities.  Priorities are widely used in task 
scheduling of real-time systems.  Depending on the 
scheduling algorithm chosen, priorities of tasks may be 
fixed (e.g., Rate Monotonic Scheduling) or dynamic (e.g., 
Earliest Deadline First or the Priority Ceiling Protocol).  
Usually, those tasks with strict timing constraints have 
higher priorities in using CPU resources.  Note that these 
existing scheduling algorithms (e.g., RMS, EDF and PCP as 
mentioned above) are used to allocate CPU resources.  The 
priorities of tasks are not taken into account in conventional 
cache allocation.  However, tasks with strict timing 
constraints should have higher priorities not only for using 
the CPU but also in using other resources such as caches.  
With this intuition, we divide a cache into partitions and 
assign partitions to each task according to its priority.  In 
this section, we do not address the problem of choosing task 
priorities, but assume that each task has been assigned a 

unique priority (not assigned to any other task) with an 
existing priority-based scheduling algorithm such as RMS 
or EDF.  (At the end of this section we will extend our 
approach to handle multiple tasks with the same priority.)  
We focus instead on how to assign cache partitions to tasks 
according to their priorities. 
    Now, we assume that priorities of tasks range from 0 to 
N.  0 is the highest priority and N is the lowest priority.  
We also give each column a priority.  At the beginning, the 
priority of every column in the cache is the lowest one (N).  
When a task needs to use the cache, the cache controller 
compares the priority of the task with the priority of each 
column.  To accomplish this, we added a special register to 
the cache controller as described in the next subsection.  
Only when the priority of a task is higher than or equal to 
the priority of a column can the task use the column.  In 
other words, a task with a higher priority can use all 
columns owned by tasks with lower priorities.  When a 
column is used by a task, the priority of the column is 
upgraded to be equal to the priority of the task.  After a 
task completes, it notifies the cache controller to release all 
columns the task owns.  The cache controller does this by 
setting priorities to those columns to the lowest priority 
again.  Let us consider an example as below.   
Example 1. Suppose we have two tasks, an MPEG decoder 
(MPEG for short) and a Mobile Robot Control program (MR for 
short).  The MR application is derived from Missionlab, which is 
mobile robot control software developed by the Georgia Tech 
Mobile Robot Lab [13]. The Control Flow Graph (CFG) of MR is 
shown in Figure 1.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Control Flow Graph of MR 
MPEG and MR are two different kinds of applications. MPEG 

is a data-processing application with soft real -time constraints. MR 
depends on a fixed size of data, which mainly includes the 
coordinates of the robot and the coordinates of obstacles. However, 
MR has a more strict timing requirement than MPEG. Thus, a tight 
WCET analysis for MR is needed. According to the CFG shown in 
Figure 1, we can see that the worst case control path in MR is the 
path from Is_At_Goal( ) to Move_To( )  via Detect_Obstacles( ) and 
Avoid_Obstacles( ).   

 



Figure 2. Architecture for Executing MPEG and MR 
We assume that MR has a higher priority than MPEG.  In 

this example, there are 4 priorities, where 3 is the lowest and 0 is 
the highest priority.  MR is given a priority of 1 and MPEG is 
given a priority of 2.  We use a 4-way 16KB set associative L1 
cache for all instructions and data.  Each column has 256 lines.  
The processor used in this example is ARM9TDMI. Figure 2 shows 
the architecture for the example. At the very beginning, all columns 
in the cache are empty, thus, with the lowest priority of 3.  When 
MPEG runs, it uses all four columns.  The priorities of these four 
columns are upgraded to the priority of MPEG, i.e., to 2 as shown 
in Figure 3(b).  Then, MPEG is suspended and MR begins to run.  
When there is a cache miss, a cache line is chosen to be replaced.  
If the priority of the column in which the cache line locates is lower 
than the priority of the task, the priority of this column is upgraded 
to the priority of the task.  In this example, two columns used by 
MPEG are replaced by MR and the priorities of these two columns 
are upgraded to 1 as shown in Figure 3(c).  So, next time when 
MPEG is executed, MPEG can only use the other two columns 
that still have priority 2.  From this example, we can see that if 
there is no other task with an equal or higher priority than MR, MR 
can use the first two columns exclusively.  In this manner, we can 
guarantee the usage of the cache by high priority tasks at a cost, 
however, of degrading the performance of lower priority tasks.  

   
Figure 3. Assignment Strategy in the Prioritized Cache 
When a task is completely over, it releases all columns it 

owns.  The cache controller sets the priorities of these columns 
to the lowest priority.  In the example above, we assume that MR 
is completed earlier than MPEG.  When MR is over, it releases 

the first and the second column and sets the priorities of these two 
columns to 3, which is shown in Figure 3 (d).  So, when MPEG is 
executed next time, it can use all four columns again, as shown in 
Figure 3 (e).  
 
B.  Hardware Implementation 
 

The assignment strategy is implemented in the cache 
controller.  We add two tables, the Column Priority Table 
(CPT) and the Column Owner Table (COT), and three 
registers, Current Task Register (CTR), Current Task 
Priority Register (CTPR) and Column Status Register (CSR), 
to the cache controller.  Each column has an entry in CPT 
and COT.  An entry records the priority and the owner of 
the column.  CTR and CTPR are used to save the ID and 
the priority of the task which is currently running on the 
processor.  CSR indicates if a column is shared.  A 
column is shared if all tasks can use this column.  Note that 
this shared column differs from a column with the lowest 
priority in that a shared column always has the lowest 
priority and this priority is never upgraded even if the 
column is used by a high priority task.  Each column has 
one bit in the CSR. If the bit is set, the corresponding 
column is shared. An example of such an extended cache 
controller is shown in Figure 4.  

Obviously, the prioritized cache only uses the task ID 
and the task priorities to allocate columns.  The prioritized 
cache does not limit the number of tasks and priorities 
directly, except for the limitation imposed by the length of 
the CPT and COT registers.  For example, if the CPT and 
COT entries each have 16 bits, up to 162  tasks and 162  
different priorities can be supported, which is sufficient for 
many real-time systems.  Suppose we have a m-way set 
associative cache, a maximum of n2  tasks and a 
maximum of k2  different priorities. Clearly, then, we have 
m entries each in the COT and CPT tables (i.e., m columns 
or ways). Each COT entry needs n bits, for a total usage of 
m×n bits. Each CPT entry needs k  bits, for a total usage of 
m×k bits. The CTR register has n bits, while CTPR has k 
bits. Additionally, the CSR register needs m bits. Therefore, 
in total, we need m ×n+m ×k+n+k+m=(m+1)(k+n)+m bits 
for the CPT and COT tables and the CTR, CTPR and CSR 
registers.  Example 2 shows these extra tables and registers 
in a 4-way set-associative prioritized cache.  The 
prioritized cache does not require much more area than a 
normal cache. For a prioritized 16KB 4-way cache which 
supports 64 tasks and 64 priorities, the area increases by less 
than 1% if compared with a same size normal cache (i.e., 
non-prioritized).   
Example 2. Suppose we have a 16KB cache with 4 columns as 
shown in Figure 4. The lengths of the specialized registers in the 
cache – CPT, COT, CSR and CTR – are 16 bits. Since the CPT 
and COT registers are each 16 bits long, this cache supports up to 

162  tasks and 162  priorities.  In this example, k=the number 
of bits in each CPT register=16, n=the number of bits in each COT 
register=16, m=the number of columns=4; thus, we need 



(m+1)(k+n)+m = (4+1)×(16+16)+4=164 extra bits for the prioritized 
16KB cache.  

Figure 4. Extended Cache Controller 
In Example 1, the prioritized cache needs to be initialized before it 
is used (as shown in Figure 3(a)).  We notice that most Operating 
Systems have an IDLE task which controls the CPU when there is 
no other task running. The IDLE task has the lowest priority. 
Therefore, we can assign the ID and the priority of the IDLE task to 
the corresponding registers in the prioritized cache for initialization. 
We assume that the IDLE task has an ID of 0 and a priority of 
0xFFFF  which is the lowest priority.  Therefore, all of the CPT 
entries in Table 1 are 0xFFFF, and all of the COT entries are zero. 
Also, in order to allow low priority tasks to use the cache, we set 
the fourth column as shared by default. The initial settings of the 
registers are listed in Table 1.  

Table 1 Initialization of Registers in the Prioritized Cache 
 We give memory mapped addresses to the tables and 
the registers so that the values in the tables and registers can 
be set as needed.  Alternatively, specialized assembly 
instructions for accessing these tables and registers can be 
defined if the target instruction set has a sufficient number 
of undefined assembly instructions and if the processor can 
be redesigned to support the new specialized assembly 
instructions. Usually, we only need to set the value of CTR 
and CTPR.  Every time when the task is switched, we write 
the task ID and the priority of the task to be executed to the 
CTR and CTPR. 

When the cache hits, the prioritized cache works the 
same as the normal cache.  When there is a cache miss, a 
cache line is searched for replacement.  The columns 
owned by the current task, the columns with a lower priority 
than the current task and the shared columns are searched.  
If the cache line to be replaced is located in a column that is 
not owned by the current task, the priority and the owner of 
the column are updated, that is, the values in CTR and 
CTPR are copied to the corresponding entries in COT and 

CPT.  When a cache line is replaced, its status needs to be 
updated.  The entries in COT and CPT can be updated 
concurrently.  When a column is released, the priority of 
this column is set to the lowest priority.   
Example 3. In Example 1, suppose MPEG has an ID of 1 and MR 
has an ID of 2.  Suppose further that the priority of MPEG is 2 
while the priority of MR is 1.  Column 3 is set as shared by 
default in order to allow low priority tasks to always be able to use 
at least one column in the cache.  After MPEG runs, all four 
columns are owned by MPEG (as shown in Figure 3(b)).  The 
status of registers in the prioritized cache is shown in Line 1 of 
Table 2. Then, MR begins to run for the first time.  MR writes its 
ID and priority to the appropriate registers in the cache, which is 
shown in Line 2 of Table 2.  MR needs to load its instructions and 
data to the cache.  The cache searches for a cache line to be 
replaced.  Since MPEG has a lower priority than MR, the first 
column, which is owned by MPEG, is selected and assigned to MR.  
For the same reason, the second column is also assigned to MR 
(as shown in Figure 3(c)).  The values in registers are changed 
as shown in Line 3 of Table 1.  

Priority of 
Columns 
(CPT) 

Owner of 
Columns 
(COT) 

Line CTR CTPR CSR 

0 1 2 3 0 1 2 3 
1 1 2 0001 2 2 2 3 1 1 1 0 
2 2 1 0001 2 2 2 3 1 1 1 0 
3 2 1 0001 1 1 2 3 2 2 1 0 

 
Table 2  An Example of Cache Replacement  

 
 

 
 
 
 
 
 
 
Figure 5. Code Using APIs to Control the Prioritized Cache 
 
C. Software Interface 
 

The prioritized cache is software controllable.  We 
provide APIs for users or the RTOS to configure the cache.  
API functions can change the values in COT, CPT, CTR, 
CSR and CTPR to assign or release the columns.  We 
provide four APIs. Set_tid_pri(tid,pri) writes the priority 
and ID of the current task into CTR and CPTR, respectively.  
Set_column_pri(col,pri) sets the priority of a column.   
Release_column(tid)  releases all columns owned by the task  
with an ID of tid.   Set_ column_shared(col) sets a column 
to a status of shared.  These APIs can be implemented as 
system calls in an RTOS or a general purpose OS. We give 
an example below to show how we use these APIs in the 
MPEG and MR applications.  



Priority of 
Columns 

Owner of 
Columns 

Line CTR CTPR CSR 

0 1 2 3 0 1 2 3 
Initial 0 0 0000 3 3 3 3 0 0 0 0 
1 0 0 0001 3 3 3 3 0 0 0 0 
3 1 2 0001 3 3 3 3 0 0 0 0 
4 1 2 0001 2 2 2 3 1 1 1 0 
5 2 1 0001 2 2 2 3 1 1 1 0 
6 2 1 0001 1 1 2 3 2 2 1 0 
8 2  1 0001 1 1 3 3 2 2 0 0 
10 2 1 0001 3 3 3 3 0 0 0 0 

Table 3. Changes of Values in Registers and Tables 
 

Example 4.  Consider the example shown in Figure 3. If we set 
Column 3 to be shared and execute MPEG and MR alternatively, 
we can implement this example with the C code shown in Figure 5.  
Table 3 shows how the CTR, CTPR, CSR, the priority and the 
owner of each column changes after each line of code in Figure 5 
is executed.  We give MPEG an ID of 1 and MR an ID of 2.  
After line 1 of Figure 5 is executed, Column 3 is set to be shared: 
thus, the value in CSR is changed to 0001 as can be seen in the 
second row of Table 3.  Set_tid_pri( ) is called in line 5 of Figure 5 
in order to write the ID and priority of MR to CTR and CTPR. Thus, 
the values in CTR and CTPR are changed to 2 and 1 respectively 
as can be seen in the fifth row of Table 3.  Then, MR starts to run. 
As described in Example 3, the first two columns of MPEG are 
assigned to MR. Thus, the register values are changed as shown 
in the sixth row of Table 3. In Line 8 of Figure 5, MPEG releases all 
of its columns if MPEG is over, which causes the change of 
register values indicating column priorities and owners, as shown 
in the seventh row of Table 3. When MR is over, it also releases all 
of its columns. The last row of Table 3 gives the status of registers 
after MR is over.    
 
D.  Embedding Prioritized Cache APIs in an OS Kernel 
 

We provide APIs for users to configure the prioritized 
cache.  However, users do not need to call these APIs 
directly; instead, the APIs can be embedded into the OS 
system calls. For example, we can insert Set_tid_pri() into 
the context switch function so that every time the task is 
switched, the priority and the ID of the current task is 
written into CTR and CTPR in the prioritized cache 
respectively. We can also embed Release_Column() into the 
task destruction function so that when one task is completed, 
all the columns it owns are released.  Obviously, the 
changes needed to be made in the OS are minor.  By 
embedding prioritized cache control APIs into t he OS kernel, 
the details of the prioritized cache are transparent to users. 
Thus, users can focus on application development at a 
higher level of abstraction.  

 
E.  Multiple Tasks with the Same Priority   

 
In the descriptions above, we assume that each task has 

a unique priority.  This assumption may not be true in 
real-time systems because different tasks may have the same 
priorities. In this case, we need to decide how to allocate 
caches among tasks with the same priority.  In the current 
implementation of our prioritized cache, the columns used 
by a task can be shared by other tasks with the same priority.  
The LRU algorithm is used for cache line replacement. 

 
IV.  Experiment 

 
In order to verify the effectiveness of the prioritized 

cache model, we ran two applications, an MPEG decoder 
(MPEG for short) and a Mobile Robot control program (MR 
for short), on a ARM9TDMI utilizing a prioritized L1 cache: 
a 16KB 4-way set associative cache.  We simulated the 
cache hardware using Verilog and the software using 
Seamless CVE, a hardware/software co-verification 
environment provided by Mentor Graphics [11, 12].  
Specially, we use the ARM9TDMI Processor Support 
Package (PSP) in this experiment. 

We design two cases for experiments, which are 
explained in detail in the remaining sections. 

 
A. Case 1 

  
We have two tasks, MPEG and MR, which execute 

alternatively.  After a slice of data is decoded by MPEG, 
MPEG is suspended and MR is executed.  After MR 
moves one step forward, MR is suspended and MPEG is 
executed again.  In this experiment, we do not use any 
scheduler but rather have the two tasks execute in a 
co-routine-like fashion as described above. 

As we mentioned before, our goal is to obtain a more 
precise estimate of WCET for high priority real-time tasks.  
We achieve this goal by dramatically reducing the WCCMR 
of high priority tasks.  We assume that MR is more time 
critical than MPEG.  Thus, we aim to make the cache miss 
rate of MR more predictable with our approach so that we 
can more precisely estimate WCET of MR, which helps MR 
to not miss its deadline.  In order to reach this goal, we 
give MR a higher priority than MPEG.  The priority of MR 
is 1, while MPEG has priority 2.  

We first use a normal cache with an LRU cache line 
replacement algorithm to run this example.  Then, we use a 
prioritized cache also with an LRU cache line replacement 
algorithm.  In the two cases, we run both MPEG and MR 
three times.  We sample the cache miss rate of MR every 
10us.  The result is shown in Figure 6, about which we 
note several observations.  

In the normal cache, the cache miss rate of MR varies 
between 45% and 15% in each run, as shown in Figure 6(b).  
The reason for this variance is that the cache lines used by 
MR are evicted by MPEG when MR is suspended and 
MPEG begins to run.  The uncertainty in cache miss rate 
makes the prediction of WCET of MR artificially high (see 
Table 4). 



 
(a)           (b) 

Figure 6. Comparison of Results.  (a) Cache Miss Rate of MPEG.  (b) Cache miss rate of MR. 
(Note: MR and MPEG are executed alternatively three times.  Thus, the execution times of three runs are not 
continuous actually.  But for convenience of comparison, we concatenate three runs of MR and MPEG respectively) 
 

With the prioritized cache, on the other hand, the 
MR cache miss rate is less than 13%, except in the very 
first run when the cache is cold.  We need to point out 
that, in this experiment, we create a scenario for MR in 
which the robot has to avoid obstacles in every step.  
The code has no branches other than the branches used to 
implement the control flow of Figure 1.  All branches 
are executed along the longest code path accessing all 
memory locations in any other code path, plus some more. 
Thus, MR is always executed along the worst case path.  
On the other hand, the MR program is also not 
data-dependent.  The amount of data (i.e., coordinates of 
the robot, the obstacle and the goal) it needs to process is 
always the same in each run.  No data-dependent loops, 
memory stores, or other such memory operations affected 
by data dependencies exist in the MR code.  Furthermore, 
because MR has the highest priority, no other tasks can 
replace the cache lines used by MR after they are loaded 
the first time.  Therefore, our simulation captures the 
worst case cache behavior for this simple MR code.  
Thus, we can use the cache miss rate in this experiment 
which is 13% as the WCCMR for WCET analysis of MR. 
Compared with the normal cache, the WCCMR of MR is 
reduced by a factor of 3.5 when using the prioritized 
cache.  

One might wonder how a reduction in WCCMR can 
impact WCET estimation? In our specific example, the 
MR code is fairly straightforward, this allowing us to use 
a simple WCET analysis method that is not broadly 
applicable.  

We have pointed out that our simulation of MR 
captures the worst case execution path. We also assume 
there are no exceptions.  Thus, if we only consider the 
effect of the cache, we can use a simple method sufficient 

to accurately estimate the WCET for the MR code [14].  
On the basis of the WCCMR for this worst case code p ath, 
we show how the WCCMR can affect the estimate of 
WCET as follows.    

Suppose we know the number of instructions M, CPI 
with no cache miss idealCPI , the penalty of a cache miss 
P (cycles) and the WCCMR r.  We can derive idealCPI  
by running applications with a large enough cache so that 
the cache miss rate is nearly zero.  (In this experiment, 
we run MR using a 1MB cache in order to obtain 

idealCPI . The average cache miss rate is zero after the 
second run.)  We can use the following formula to 
estimate WCET: 

WCET=M× idealCPI +r×M×P 
In our experiment, we want to estimate the WCET of 

MR, where M=238959, idealCPI =1.26 and P=4. As 
shown in the experimental result, the WCCMR using the 
normal cache is 45%, while the WCCMR using the 
prioritized cache is 13%. We use the WCCMRs 45% and 
13% to estimate WCET of MR respectively, then compare 
the estimates with the actual execution time.  In our 
simulation, the actual execution time of MR using a 
prioritized cache was 409286 cycles.  Table 4 shows the 
result, a 41% reduction in WCET estimate.  
 

r WCET estimates 
0.45 731214 
0.13 425347 

Table 4 Comparison of WCET Estimates 
 

Note that although in this specific example, only a 
simple analytical WCET  calculation method was used, it 
sufficed.  We hypothesize that similar reductions in 
WCET would be observed in more complicated software 



requiring more sophisticated WCET analysis techniques. 
The example here gives us an insight that we can estimate 
the WCET with a tighter bound by reducing WCCMR.   

In our method, the performance of lower priority 
tasks is sacrificed.  If we check the cache miss rate of 
MPEG in this example, we find that the average miss rate 
of MPEG increases only by 2%, thus increasing overall 
MPEG execution time by only 3%. In the normal cache, 
MPEG can always use all the columns. However, only 
two columns can be used by MPEG in the prioritized 
cache.  That is the reason why the cache miss rate of 
MPEG is increased. 

 
B. Case 2 

 
In order to evaluate the performance of the 

prioritized cache when multiple tasks have the same 
priority, we design a case in which there are one instance  
of the MPEG application and two instances of the MR 
application.  They are still executed one by one in a 
co-routine-like fashion.  The WCCMRs are compared in 
Figure 7. 

From the experimental results, we can see that the 
WCCMR of MR is increased if compared with the result 
in Case 1.  However, the WCCMR of MR in Case 2 is 
still much less than in the normal cache cas e.  On the 
other hand, if the number of tasks which have the same 
priority is large, it is not hard to see that the performance 
of the prioritized cache will deteriorate.  The reason is 
that the partition of cache shared by the tasks with the 
same priorities works the same as a normal cache with 
LRU replacement strategy.  Thus, our current imple- 

mentation of the prioritized cache needs to be improved in 
order to handle the case in which a large number of tasks 
have the same priority.  One possible way is to partition 
the cache at a finer granularity than columns.  This will 
be considered in our future research. Compared with other 
cache partitioning schemes [2-10], the prioritized cache 
model has several clear advantages.  First, timing 
constraints of applications are considered in the 
assignment policy so that highly time critical tasks are 
given high priorities in using the cache. 

Although priority-based scheduling algorithms are 
widely used in real-time systems, these algorithms are 
mainly used to allocat e CPU resources.  Our method 
provides a way to possibly extend these algorithms to 
apply to cache allocation so that the performance of high 
priority tasks are guaranteed with more confidence in 
systems with caches.  Even more, the lower level details 
of our method are transparent to users.  Users only need 
to call a few APIs in order to use the prioritized cache.  
In a system with an RTOS, we can even embed the APIs 
into the OS kernel such as the context switch function and 
the task destruction function so that the prioritized cache 
is totally transparent to users. 

 
V. Conclusion and Future Work 

 
In this paper, we present a prioritized cache model.  

The experiment shows that we can achieve a much lower 
cache miss rate for high priority tasks with this cache 
model.  With a lower constant cache miss rate, we can 
estimate WCET of a task more precisely, which is critical 
is real -time task scheduling.   

 

Figure 7 Compare of results  (a) Cache Miss Rate of MPEG.  (b) Cache miss rate of MR. 
 
 
 



For our future work, we plan to improve our approach in 
several aspects.  First, the cache is partitioned at the 
granularity of columns, which may lower the utilization of the 
cache.  We plan to support partitioning the cache at a lower 
level of granularity in order to solve this problem.  Second, 
the experiment shows a reduction in WCCMR.  Also, we 
intuitively believe that WCET can be tightly bounded with a 
significantly reduced WCCMR. However, we still need to 
build an analytical model to estimate the WCET of 
applications with the prioritized cache formally. Third, we 
need to analyze the performance further when there are 
multiple tasks with the same priorities. 

In conclusion, this paper is the first time a connection is 
made between task priorities and cache column priorities.  For 
real-time applications, this connection can result in a 3X or 
more reduction in cache miss rates and a corresponding 
reduction in WCET for critical tasks, which is, we believe, a 
very important and new result. 
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