
WCRT Analysis for a Uniprocessor with a Unified Prioritized
Cache

Yudong Tan
Center for Research on Embedded Systems and Technology

School of Electrical and Computer Engineering
Georgia Institute of Technology, Atlanta, GA 30332

ydtan@ece.gatech.edu

Vincent J. Mooney III
Center for Research on Embedded Systems and Technology

School of Electrical and Computer Engineering
College of Computing

Georgia Institute of Technology, Atlanta, GA 30332
mooney@ece.gatech.edu

Abstract
In this paper, we investigate the problem of inter-task cache in-
terference in preemptive multi-tasking real-time systems. A priori-
tized cache is used to reduce cache conflicts among tasks by parti-
tioning the cache. Cache partitions are assigned to tasks according
to their priorities. We extend a known tool, SYMTA, in order to es-
timate the Worst Case Execution Time of each task executing on a
uniprocessor with a unified prioritized L1 cache. Furthermore, we
apply a formal timing analysis approach to estimate the Worst Case
Response Time (WCRT) of each task using the prioritized cache.
Our WCRT analysis handles nested preemptions. WCRT using a
prioritized cache is compared to using a conventional set associa-
tive cache of the same size and associativity. Our experiments show
that the WCRT estimate can be reduced up to 26% when a priori-
tized cache is used.

Categories and Subject Descriptors C.3 [Computer Systems Or-
ganization]: Special-Purpose and Application-Based Systems

General Terms Algorithms, Reliability

Keywords Real-time System, Cache Design, Timing Analysis

1. Introduction
In real-time systems, we have to know in advance if each task can
meet its time constraint. Especially for hard real-time systems, dis-
astrous results may occur if tasks miss their deadlines. Usually,
in a real-time system where there are no preemptions, we can use
the Worst Case Execution Time (WCET) of a task to check if the
task can be completed before its deadline [23]. In a multi-tasking
real-time system where preemptions are allowed, we have to es-
timate the Worst Case Response Time (WCRT) for each task in
order to check for satisfaction of timing constraints[1, 12, 20, 21].
WCET and WCRT analyses are complicated due to the fact that
advanced features such as caching, pipelining and out-of-order ex-
ecution are used in modern processors. For example, a cache in-
troduces uncertainty in memory access time, which complicates
cache-related timing analysis. This problem is worsened when pre-
emptions are allowed in a multi-tasking system; the multi-tasking
results in cache conflicts among different tasks. By customizing the
cache allocation policy, we can reduce WCRT as well as reduce the
complexity of cache-related timing analysis by removing or mini-
mizing cache conflicts among tasks.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

LCTES’05, June 15–17, Chicago, Illinois, USA.
Copyright c© 2005 ACM 1-59593-018-3/05/0006. . . $5.00.

Although customized caches can reduce task WCRT by mini-
mizing cache conflicts, we still need to analyze the behavior of cus-
tomized caches formally in order to safely apply customized caches
to real-time systems. This paper explains an approach to evaluate
some key trade-offs in cache design when designers are focused on
the effect of cache type selection on WCET/WCRT estimation. We
apply a known tool, SYMTA [23], to estimate the WCET of each
task executing on a uniprocessor with a unified prioritized [16] L1
cache. Then, our formal WCRT approach as proposed in [17, 18] is
extended to estimate the WCRT of each task in a preemptive multi-
tasking system with a unified prioritized cache.

We also compare the performance of a prioritized cache with
a set associative cache in terms of WCRT estimates. Three appli-
cations are used in our experiments. The experimental results show
that the WCRT estimate can be reduced significantly by using a pri-
oritized cache. A tight WCET/WCRT estimate allows a program-
mer to utilize computing resources in real-time systems more ef-
ficiently. For example, more tasks may be able to be scheduled or
more complicated applications can be executed. As a result, the to-
tal utilization of CPU and other resources is improved.

2. Problem Statement
A typical embedded system usually includes memory, programmable
components, reconfigurable logic and Application Specific Inte-
grated Circuits (ASICs). Software programmable components can
be typical RISC embedded processors or Digital Signal Processors
(DSPs).

Hardware units such as ASICs and reconfigurable logic have
strict timing properties. Their behavior is predictable. A processor
provides a platform on which to run software, which is much eas-
ier to develop, thus having a short time-to-market period. Software
design is more flexible in terms of design changes and product evo-
lution. However, as compared to custom hardware, the execution
time of software is more difficult to predict, especially when the
target memory hierarchy has several levels.

Software applications can be accelerated significantly by using
caches. Caches exploit temporal and spacial locality in memory
access patterns. Cache performance is degraded when multiple
memory reference streams with different localities compete for the
same cache resources.

In a multi-tasking real time system, a set of tasks has to be
completed before the corresponding task deadlines. We use the
Worst Case Response Time (WCRT) of each task to analyze if each
task can meet its deadline.
Definition 1. Worst Case Response Time (WCRT): The WCRT is
the time taken by a task from its arrival to its completion of com-
putations in the worst case. �

Notice that WCRT is different from Worst Case Execution Time
(WCET) which is often used in timing analysis for single-task
systems. WCET only includes the execution time of a task with-
out considering preemptions, interrupts and context switch cost.
WCRT, on the other hand, includes both execution time of the task

LCTES’05, 1 2005/4/21

and additional time caused by preemptions, interrupts and context
switches.

The WCRT of a task is affected by cache behavior. In a preemp-
tive multi-tasking real-time system, each task usually has a priority.
Low priority tasks can be preempted by high priority tasks. Ex-
ample 1 shows two types of inter-task cache interference that can
possibly degrade the cache performance.
Example 1: Figure 1 shows a scenario in a preemptive multi-
tasking system. A low priority task, Task A, is preempted by a high
priority task, Task B, at time t1. During the preemption, Task B uses
some cache lines that were used by Task A before the preemption.
The memory blocks loaded to these cache lines by Task A are
thus evicted. After Task A resumes at time t2, it again needs to
access some of the memory blocks evicted by Task B. Task A has
to reload those memory blocks to the cache. Furthermore, after
Task A resumes, Task A may evict some cache lines used earlier
by Task B as well. When Task B is executed for the second time at
time instant t3, Task B also needs to reload some cache lines. Cache
reload caused by inter-task interference extends the response times
of Task A and Task B, as shown in Figure 1(B). �

��
�
�� non−preemption−related cache reload cost

preemption−related cache reload cost

���
�

�������
�

������������

(B)

Task A

Task B

t1 t2t0 t3 Time

	�	�	�	�	�	�		�	�	�	�	�	�	

�
�
�
�
�
�

�
�
�
�
�
�

���������������������������������������
���������������������������������������

������������
��������������������������

���������������������������������������
���������������������������������������

��������������������������
��������������������������

���������������������������������������
���������������������������������������

��������������������������
��������������������������

���������������������������������������
���������������������������������������

(A)

used by Task A
Cache lines

Cache lines
used by Task B

Cache lines
to be reloaded

Figure 1. An example of inter-task cache eviction
Example 1 shows that inter-task cache interference can degrade

the usefulness of a cache and can introduce additional cache reload
cost to the WCRT of a task. Furthermore, cache reload cost in-
creases uncertainty in memory access time, which worsens the tim-
ing analysis problem. Thus, we aim to avoid or reduce cache con-
flicts among tasks.

Usually, WCET/WCRT analysis assumes a cold cache when a
task starts to run. This assumption is reasonable in a system where
the cache is shared by all tasks because the cache lines used by one
task may be evicted by other tasks. In the worst case, a task has
to reload all data and instructions from the memory to the cache
after a context switch. This cache reload cost due to the cold cache
assumption applies to all multi-tasking systems, either preemptive
or non-preemptive. Thus, we call this type of cache reload cost non-
preemption related cache reload cost; such cost is already included
in the WCET estimate for each task. Non-preemption related cache
reload cost as shown in Example 1 affects both WCET and WCRT
of tasks.

Notice that in a system where the cache is used by a task
exclusively, the assumption of a cold cache is too conservative.
After the first run of the task, the cache is filled with some data
and instructions used by the task. Since the cache is not shared,
no inter-task cache conflicts exist. When the task runs again later,
the cache is already warmed up. In SYMTA [23], an iterative
method is provided to calculate the minimum set of memory blocks
guaranteed to reside in the cache because of previous executions.

In preemptive multi-tasking systems, preemptions can cause
additional cache reload cost. As shown in Example 1, during Task
B preempting Task A, some cache lines used by Task A before
preemption are evicted, which causes cache reloading after Task A
resumes. This cache reload overhead only happens in preemptive
multi-tasking systems. Thus, we call this type of cache reload cost
preemption-related cache reload cost. We propose an approach in
[17, 18, 19] to analyze this type of cache reload cost.

Cache reload cost (including preemption-related and non-
preemption related cache reload cost) is caused by cache interfer-
ence among tasks. Cache interference can be reduced by customiz-

ing cache management policy. We propose a prioritized cache in
[16]. In the prioritized cache, cache ways (“columns”[14]) are al-
located to tasks dynamically according to the priorities of tasks.
Each task uses its cache columns exclusively. Thus, cache conflicts
among tasks are reduced. As distinct from all other cache partition-
ing approaches known to the authors, the prioritized cache takes
the priorities of tasks into consideration. High priority tasks are
given more privileges to use cache resources because it is usually
more critical to meet the timing constraints of high priority tasks.
Additionally, cache partitions are assigned to tasks adaptively ac-
cording to the requirements of tasks. Users do not have to allocate
cache partitions explicitly. Only minor modifications in the context
switch function of the operating system are required to support the
prioritized cache [16].

A prioritized cache can be used safely in a real-time system
only if we can analyze the impact of a prioritized cache on the
WCRT of tasks. In this paper, we aim to analyze the behavior of a
prioritized cache formally by appropriately modifying the WCRT
analysis approach as proposed in [17, 18]. This WCRT analysis
approach is particularly well-tuned in its ability to analyze cache-
related preemption delay. We integrate inter- and intra-task cache
eviction analysis and give a new WCRT estimate formula. With
our new approach, the WCRT estimate is tightened significantly.
We also compare the prioritized cache with the conventional set
associative cache.

We formally state the problem addressed in this paper. We
assume we have a preemptive multi-tasking system consisting of
n periodic tasks, T0, T1, ..., Tn−1. Each task, Ti, (0 ≤ i ≤ n− 1),
has a period Pi. We assume that the deadline of task Ti is the
same as its period. Each task, Ti, has a unique priority pi. Task
priorities can be derived by using a Fixed Priority Scheduling (FPS)
algorithm (e.g., the rate monotonic algorithm) or can be assigned
statically by designers. We also assume that tasks are sorted in
the descending order of their priorities p0 < p1 < ... < pn−1.
For two tasks Ta and Tb, if pa < pb, Task Ta has a higher
priority than Task Tb. The Worst Case Execution Time (WCET)
of Task Ti can be estimated by using existing approaches such as
SYMTA [23]. Here, we assume that there is no dynamic memory
allocation and all memory addresses accessed by tasks are fixed.
We further assume that only instructions residing in cache lines
with instructions actually executed are loaded to the cache. In other
words, we do not consider the impact of out-of-order execution,
branch prediction and pipelining. We use Ci and Ri to denote the
WCET and WCRT of Task Ti, respectively. We use a prioritized
cache in such a preemptive multi-tasking real-time system. In order
to know if Task Ti can meet its deadline, we need to estimate its
Worst Case Response Time (WCRT). Such a WCRT estimate has
to take into consideration the impact of a prioritized cache.

3. Prioritized Cache
Inter-task cache interference breaks spacial and temporal locality
in memory access patterns because multiple tasks compete for the
same cache resource. Memory access locality characteristics of
different tasks are typically not very similar at all. An intuitive
method to address this problem is to allocate cache lines to tasks
exclusively so that cache lines used by one task cannot be used by
other tasks.

In [16], we propose a prioritized cache. Briefly, a prioritized
cache is a variant of a conventional set-associative cache. Figure 2
shows a prototype of the prioritized cache. Each way in an L-way
set associative cache is viewed as a “column” in the prioritized
cache [14]. The prioritized cache is partitioned and allocated to
tasks at the granularity of columns. Each column can be set either
“shared” or “not shared.” If a column is not shared, it can be
allocated to any task upon request. As soon as a column is allocated
to a task, that task is called the owner of the column. As shown in
Figure 2(A), extra registers are added to save the status of each

LCTES’05, 2 2005/4/21

column. Memory blocks are mapped to a prioritized cache in the
same way as a set associative cache. A memory address is split
to three parts, tag, index and offset. The index selects a set in the
cache. A set in the cache contains L cache lines. A cache line is
selected by the cache replacement algorithm (e.g., LRU). The offset
determines the location of the memory block in a cache line. A
memory-to-cache mapping example is shown in Figure 2(B) which
assumes a 4-way set associative cache with 16 sets. Each cache line
has 16 bytes.

(A) Prototype of a prioritized cache

Col. 0 Col. 1 ...

Set 0

Set 1

Col. L−1

. . .
Set N−1

Registers

Control Logic

Cache
(4 ways, 16 bytes/line, size=1KB)

line 0 line 1 line 2 line 3

���������������������������
���������������������������

���������������������������
��
���������������������������

���������������������������
���������������������������

	�	�	�	�		�	�	�	�		�	�	�	�	

�
�
�
�

�
�
�
�

�
�
�
�

Memory
(byte alligned)

...

...

0x01F

0x012

0x011

0x010

...
1

0

15

.

.

.

���������������������������������
���������������������������������

index of sets

(B) An example of memory−to−cache mapping

31 7 4 3 0

tag index offset

memory address

Figure 2. The prioritized cache

The main idea in the prioritized cache is to partition the cache
among the the tasks. Cache columns allocated to lower priority
tasks can be used by higher priority tasks. But cache columns
allocated to higher priority tasks cannot be used by lower priority
tasks. In this manner, the high priority tasks can minimize cache
reload. As a result, the high priority tasks can be completed more
quickly.

In the case of a cache hit, the prioritized cache behaves exactly
the same as a conventional set associative cache. In the case of
a cache miss, when a memory block needs to be loaded to the
cache, a set in the cache is uniquely determined by the address of
the memory block. Then, a cache line in that set is chosen from a
column in the order as follows:
(1). Columns owned by the current task.
(2). Columns not owned by any tasks.
(3). Columns owned by lower priority tasks.
(4). Shared columns.
Example 2: Suppose we have three tasks, a Mobile Robot con-
trol application (MR), an Edge Detection (ED) application and an
Orthogonal Frequency Division Multiplexing (OFDM) transmitter.
MR updates the behavior of a robot periodically. ED processes im-
ages detected by the robot, and OFDM is used to communicate
among robots. MR has the highest priority, and OFDM has the low-
est priority. Also, we assume that a 4-way prioritized cache is used
in the system and that one column is shared. Consider the scenario
in Figure 3(A). OFDM runs first. Then, ED arrives and preempts
OFDM. ED is then itself preempted by MR. When OFDM runs, it
uses all columns. Column 0, Column 1 and Column 2 are owned
by OFDM as shown in Figure 3(B). Column 3 is shared and can-
not be owned by any task. After OFDM is preempted by ED, ED
uses Column 0 and Column 1 because ED has a higher priority than
OFDM. Now, Column 0 and Column 1 are owned by ED as shown
in Figure 3(C). OFDM cannot load memory blocks to cache lines
in Column 0 and Column 1. However, OFDM can still read cache
lines in Column 0 and Column 1 in the case of cache hit. Similarly,
after ED is preempted by MR, MR owns Column 0 as shown in
Figure 3(D). �

The prioritized cache can allocate columns to tasks dynamically.
The cache is partitioned at the granularity of columns. By changing
the number of columns, we can partition the cache at different
granularities. High priority tasks are given priority in cache usage.
This strategy conforms to the characteristics of real-time systems
because usually high priority tasks are more critical and thus have
a greater requirement to guarantee their timing constraints.

We divide prioritized cache usage into two stages. In the first
stage, the cache columns are allocated to tasks. Cache evictions
may happen if columns used by low priority tasks are allocated
to high priority tasks. In this stage, tasks run with a cold cache.

���������������������������������������

���

���

���

���

���

���

���
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
��

���

���

���

���

���

���

��� Col. 0 Col. 1 Col. 2 Col. 3 Col. 0 Col. 1 Col. 2 Col. 3

T 3,1

T 2,1

T 3,1

T 2,1

T 1,1

Time

OFDM

ED

MR

OFDM OFDM OFDM ED ED OFDM MR ED OFDM
(D)(C)(B)

(A)

Col. 0 Col. 1 Col. 2 Col. 3

Figure 3. An example use of the prioritized cache
Because a task may have multiple feasible paths, the task may
not execute all basic blocks (or equivalently, Single Feasible Path
Program Segments as explained in SYMTA [23]) in one run. In
other words, a task may request more cache columns after the
first run. Thus, the cache columns owed by a task may change
dynamically. A high priority task may acquire more cache columns
and a lower priority task may lose cache columns subsequently.
However, after all basic blocks of a task are executed at least once,
cache columns allocated to this task become stable. Therefore, for
the purpose of WCRT analysis, we run each task one or more times
with carefully selected input data so that every basic block in the
task is executed at least once in the first stage. Tasks are executed in
this way in the descending order of task priorities. After this stage,
cache allocation is completed. So, in the second stage, all tasks are
allocated a portion of columns. The prioritized cache works in the
second stage for the rest of time. Thus, we call the first stage transit
stage and the second stage stable stage.

4. WCRT Analysis for a Prioritized Cache
In this section, we introduce our cache-related WCRT analysis
approach proposed in [17, 18] briefly first. Then we modify this
WCRT analysis approach to the prioritized cache.
4.1 Cache-related WCRT analysis

In [17, 18], we propose an approach to estimate the WCRT of
each task in a preemptive multi-tasking real-time system. The tasks
have properties as stated in Section 2. Our approach focuses on
incorporating cache reload overhead into the WCRT estimate.

Suppose we have two tasks, Ta and Tb. Tb has a higher priority
than Ta. Thus, Ta can possibly be preempted by Tb. As shown
in Example 1, such preemption can bring cache reload overhead
to the response time of Ta. Cache reload overhead caused by Tb

preempting Ta is analyzed by calculating an upper bound on the
number of cache lines to be reloaded by the preempted task Ta.
Two conditions must be satisfied for memory blocks to have to be
reloaded into the cache.

Condition 1. These memory blocks are used by both the pre-
empted and the preempting task.

Condition 2. The memory blocks mapped to these cache lines
are accessed by the preempted task before the preemption and are
also required by the preempted task after the preemption (i.e., when
the preempted task is resumed).

By using the simulation method as presented in SYMTA [23],
we can find all the memory blocks that can be possibly accessed by
tasks Ta and Tb. The memory blocks that satisfy Condition 2 are
called “Useful Memory Blocks”[4, 5]. Lee et al. propose an intra-
task cache eviction analysis approach to find useful memory blocks
in the preempted task [4, 5]. We extend this concept to Maximum
Useful Memory Block Set (MUMBS) [18, 19]. MUMBS is the
maximum set (i.e., the union) of useful memory blocks over all
the execution points of a task. Example 3 explains MUMBS.
Example 3: Suppose we have a task as shown in Figure 4. The
task is represented with a Program Control Flow Graph as defined
in [19]. The memory blocks accessed by the task are also shown
in Figure 4. Let us consider the execution point s. Memory block

LCTES’05, 3 2005/4/21

0x0010

0x0020

0x0120 0x0100

0x0110

0x0020

0x0030

execution
point s

0x0030

Figure 4. An example of MUMBS
0x0020 is accessed by the task before the execution point s as
well as after the execution point s. By using the useful memory
block analysis approach in [5], we can find that 0x0020 is a useful
memory block. The useful memory block set at the execution
point s is {0x0020}. We perform the same analysis over all the
execution points in the task and calculate the union of all useful
memory blocks to obtain MUMBS. In this example, the MUMBS
is {0x0020, 0x0030}. �

MUMBS contains all the memory blocks that can possibly
cause cache reload cost in a task when this task is preempted
at any possible execution point in the task. We can calculate the
intersection set of MUMBS and the set of memory blocks that can
possibly be accessed by the preempting task. The memory blocks
in the intersection set satisfy both Condition 1 and Condition 2.
In [17], we propose a Cache Index Introduced Partition (CIIP) of
memory block sets. Let us briefly summarize CIIP.

Suppose we have a memory block set M = {m0,m1, ..., mk},
where mi is the address of a memory block. We also assume an
L-way set associative cache with N sets. When a memory block
is loaded into the cache, the set in which this memory is located is
determined by the index in the address of this memory block. We
use idx(mi) to represent the index of mi. The index of the cache
ranges from 0 to N − 1. We can derive N subsets of M as follows.

bmi = {mk ∈ M |idx(mk) = i}, (0 ≤ i < N) (1)

We represent the CIIP of M with cM , defined as below.

cM = { bmi|bmi 6= ∅, 0 ≤ i < N}

where ∅ is the empty set and bmi is defined as Equation 1.
Example 4: Suppose we have a memory block setM1 = {0x0010,
0x0210, 0x1100} and a two-way set associative cache. We have
16-bit memory addresses. The cache has 16 sets. Each cache line
has 16 bytes, thus, bit 3 to bit 0 is the offset and bit 15 to bit 4
is the tag. In this case, we have bm10 = {0x1100} and bm11 =
{0x0010, 0x0210}. All the memory blocks in bm10 have the same
index of 0. All the memory blocks in bm11 have the same in-
dex of 1. Note that in this example, bm1i = ∅ for all i such
that 1 < i < 16. In this example, cM1 = { bm10, bm11} =
{{0x1100}, {0x0010, 0x0210}}. �

When the memory blocks in the same subset bmi are accessed,
these memory blocks are loaded into the same set in the cache be-
cause they have the same index. Thus, cache evictions can happen
among these memory blocks (i.e., with the same index).

CIIP builds a bridge from memory blocks to a set associative
cache without requiring knowledge the replacement algorithm in
the cache. Based on the CIIP of the intersection set, we can estimate
the cache reload cost caused by preemptions.

Suppose we have two tasks, the preempted task Ta and the
preempting task Tb. Ta accesses the memory blocks in Ma,
where Ma = {ma,0,ma,1, ..., ma,ka}. The MUMBS of Ta

is M̃ . Tb accesses the memory blocks in Mb, where Mb =

{mb,0,mb,1, ..., mb,kb
}. We use c̃

Ma = { b̃ma,0, b̃ma,1, ..., b̃ma,N−1}

to represent the CIIP of M̃a and cMb = {bmb,0, bmb,1, ..., bmb,N−1}

to represent the CIIP of Mb. We can estimate the number of cache
conflicts between Ta and Tb by using the following formula.

S(M̃a,Mb) =

N−1X

r=0

min{| b̃ma,r|, | bmb,r|, L} (2)

where b̃ma,r ∈ d̃
Ma and bmb,r ∈ cMb.

We assume cache miss penalty is fixed, which is represented
with Cmiss. Therefore, CRPD caused by Tb preempting Ta can be
estimated as below.

CRPD(Ta, Tb) = S(M̃a,Mb) × Cmiss (3)

CRPD estimate given in Equation 3 can be further tightened
by using path analysis as proposed in [18]. However, this estimate
does not consider nested preemptions. Let us consider the case in
Example 5.

Table 1. Tasks in Example 5
Task WCET(us) Period(us) Preemptions CRPD(us)
T0 5 20 T1 by T0 5
T1 11 30 T2 by T0 2
T2 12 100 T2 by T1 2

0 2Cache reload cost due to cache interference between T and T

Cache reload cost due to cache interference between T and T0 1

1 2Cache reload cost due to cache interference between T and T

T0,1

T2,1

T1,1
T1,1

T0,1

T2,1

T1,1

T0,2

T1,2

T0,3

T2,1

T0,4

2(A). WCRT of T without considering nested preemptions

2(B). WCRT of T with considering nested preemptions

T2,1������

T0,2

T2,1

T1,2

T0,3

T2,1���
�
���
�

T2,1

T1,1

������

���
�

��	
	

�

�
������

�
��

����
��

31 42

Time

Time

2 17 4222 3127 5947

22721 47 62 70

71

Figure 5. An example of nested preemptions
Example 5: Suppose we have three tasks, T0, T1 and T2. WCET,
period and cache reload cost for each task are listed in Table 1.
Task T2 has the has the lowest priority and Task T0 has the highest
priority. Here we ignore the context switch cost. At time instant 1
(measured in clock cycles; e.g., we assume a 100MHz clock), T2 is
preempted by T1 directly. Then, at time instant 2, T1 is preempted
by T0. The second preemption is nested in the first preemption.
Thus, T2 is also preempted by T0, albeit indirectly, at time instant
2. We call this type of preemption an indirect preemption. Note that
another indirect preemption occurs at time instant 42. In this case,
the CRPD caused by T0 indirectly preempting T2 consists of two
parts, cache reload cost due to cache interference between T2 and
T0 and cache reload cost due to cache interference between T1 and
T0 as shown in Figure 5(B). However, by using Equation 3, only
cache reload cost due to cache interference between T2 and T0 is
included in CRPD caused by T0 indirectly preempting T2, which
is shown in Figure 5(A). Comparing Figure 5(A) with Figure 5(B),
we find that cache reload cost due to cache interference between
T1 and T0 can possibly extend the response time of T2. Notice that
when the cache reload cost due to cache interference between T0

and T1 is considered, the WCRT of T2 is 70 (instead of 59). Thus,
we need to include this factor in our WCRT analysis; in this specific
case, while T0 can arrive at most three times in 59 clock cycles,
in fact T0 can arrive up to four times in 70 clocks – as shown in
Figure 5(B). �

LCTES’05, 4 2005/4/21

Example 5 shows the effect of nested preemptions on WCRT.
Note that in this example, we explain the difference between an
indirect preemption and a direct preemption. When we estimate the
WCRT of a task Ta, we need to consider all possible preemptions
caused by each task, Tb, 0 ≤ b < a, which has a higher priority
than Ta. Tb can preempt Ta directly, which brings a cache reload
cost ofCRPD(Ta, Tb) to the WCRT of Ta. Ta can also potentially
be preempted by Tb indirectly if there exists a task Tl with a
priority lower than Tb, but higher than Ta. In this case, when an
instance of Tb arrives while Ta is preempted by Tl, Tl is further
preempted by Tb. This indirect preemption introduces a cache
reload cost of CRPD(Tl, Tb) to the WCRT of Ta. In the worst
case, Ta−1 preempts Ta first, then Ta−1 is preempted by Ta−2, ...,
until finally Tb+1 is then preempted by Tb. Thus, there are a − b
nested preemptions in the worst case.

In Equation 2, the number of cache conflicts between Ta and
Tb results from a calculation using M̃a, the MUMBS of Ta, and
Mb, the memory blocks that are accessed by Tb. However, when
nested preemptions exist, Tb may evict cache lines used by useful
memory blocks of all tasks that have higher priorities than Ta but
lower priorities than Tb. In order to include nested preemptions,
we extend Equation 2 as follows (for additional details/examples,
please see [19]).

S(

a[

l=b+1

M̃l,Mb) =

N−1X

r=0

min{|
a[

l=b+1

b̃ml,r|, | bmb,r|, L} (4)

By using Equation 4, we can derive a CRPD estimate formula
which considers nested preemptions.

CRPD(Ta, Tb) = S(
a[

l=b+1

M̃l,Mb) × Cmiss (5)

Now, suppose we have as a known item the preemption related
cache reload cost, CRPD(Ti, Tj), then we can use an iterative
method to estimate the WCRT of tasks. We use Rk

i to represent the
WCRT of task Ti in the kth iteration. The initial WCRT of Ti, R0

i ,
is equal to Ci, which is the WCET of Ti.
R0

i = Ci;

R1
i = Ci +

Pi−1

j=0
d

R0

i

Pj
e × (Cj + CRPD(Ti, Tj) + 2Ccs)

...

Rk
i = Ci +

Pi−1

j=0
d

R
k−1

i

Pj
e × (Cj + CRPD(Ti, Tj) + 2Ccs)

where CRPD(Ti, Tj) is the cache reload overhead caused by Tj

preempting Ti. Ccs is the context switch cost (number of cycles).
We assume a constant upper bound on context switch cost in this
paper. There are two context switches for each preemption, one
for loading the preempting task and the other for resuming the
preempted task.

This iteration terminates when Ri converges or Ri is greater
than the deadline of Ti. If the iteration converges, Ti can be sched-
uled. Otherwise, we cannot find a feasible schedule. In short, using
the iterative WCRT calculation approach presented above, we can
analyze the schedulability of the system based on the WCRT esti-
mate of each task.

Next, we propose a novel method of adapting the WCRT anal-
ysis approach for the prioritized cache. We are not aware of any
prior work (other than the thesis of the first author [19]) in WCRT
analysis for customized caches.

4.2 WCRT analysis for a prioritized cache

As stated in Section 3, we assume that we can use the behavior of a
prioritized cache in the stable stage to determine the timing proper-
ties of tasks. Otherwise, to analyze the transit stage, the assumption
of a cold cache can be used. In the stable stage, cache eviction only
happens in the shared columns. Notice that we assume each task
has a unique priority.

Now, let us summarize CRPD analysis for a prioritized cache in
the stable stage formally. In a prioritized cache, tasks only conflict
in the shared columns. The tasks that do not use shared columns
do not have cache interference with other tasks in the stable stage.
Thus, all preemptions related to these tasks do not incur CRPD.
Since cache columns are allocated to tasks according to task priori-
ties, high priority tasks have higher priority in using cache columns.
Suppose we have a set of tasks Ti, (0 ≤ i < n) sorted in the de-
scending order of their priorities. Here, n is the number of tasks. In
other words, if i < j, Ti has a higher priority than Tj . In this case,
if Tj can use some non-shared cache columns in the stable stage,
Ti must own some non-shared cache columns as well. (Otherwise,
Ti will occupy cache columns used by Tj since Tj has a lower pri-
ority.) Thus, in the stable stage, we divide tasks into two groups. In
the first group, we have tasks T0, T1, ..., Tq , where 0 ≤ q < n. We
use ψ1 = {Tl|0 ≤ l ≤ q} to represent this group of tasks. All the
tasks in this group do not use any shared columns. Thus, each task
in ψ1 does not conflict with any other task. In the second group, we
have tasks Tq+1, ...,Tn−1. We use ψ2 = {Tl|q < l < n} to repre-
sent this group of tasks. The tasks in ψ2 use shared cache columns;
thus, each task in ψ2 may conflict with other tasks in ψ2.

Suppose we have two tasks, Ta and Tb. Tb has a higher priority
than Ta. Let us consider two cases.

1. Tb is in the task group set ψ1. In this case, Tb owns cache
columns exclusively. As a result, the cache lines used by Tb do not
overlap with the cache lines used by Ta; thus, CRPD(Ta, Tb) =
0.

Note that Ta has a lower priority than Tb. If Ta is in ψ1, Tb must
be also in ψ1. Thus, we do not need to consider the case where Ta

is in ψ1, since the case of Ta ∈ ψ1 is already covered by Case 1
above.

2. Neither Ta nor Tb is in ψ1. In other words, both Ta and Tb

use shared columns. In this case, cache eviction only happens in the
shared columns. We can modify the CIIP-based approach proposed
in [17, 18] to estimate the number of cache lines to be reloaded after
Ta resumes from a preemption. The necessary modifications are
shown in Equation 6 below, which is based on Equations 4 and 5.

CRPD(Ta, Tb) =

0 Tb ∈ ψ1

S(
Sa

l=b+1
M̃l,Mb) × Cmiss Tb ∈ ψ2

(6)
We use Example 6 to explain how a prioritized cache affects cache
interference among tasks.
Example 6: Suppose we have three tasks as stated in Example 2
and a 32KB 8-way prioritized cache. Each cache line has 16 bytes.
Thus, each column has 256 cache lines. MR uses Column 0 to Col-
umn 4 and ED uses the rest of columns. The last two columns are
set as shared. Thus, OFDM can only use the last two columns.
OFDM has no conflicts with MR, but OFDM and ED may con-
flict in the shared columns in the prioritized cache. In this example,
the estimate of an upper bound on the number of cache conflicts
between OFDM and ED is 160.
If we use a conventional cache, all three tasks, MR, ED and OFDM
conflict with each other in the cache. The estimate of cache con-
flicts between MR and OFDM is 88. The estimate of the number of
cache conflicts between ED and OFDM is 98.
Assuming cache miss penalty is 10 clock cycles, the CRPD caused
MR preempting OFDM is zero in a prioritized cache. As a com-
parison, the CRPD caused MR preempting OFDM is 880 clock
cycles in a conventional set-associative cache. Therefore, a priori-
tized cache can be quite effective in preventing high priority tasks
conflicting with low priority tasks. �

In Example 6, although the number of cache conflicts between
ED, MR and OFDM is reduced, OFDM cannot use the full cache.
Thus, the WCET of OFDM is expected to increase. We examine
this impact in our experiments.

LCTES’05, 5 2005/4/21

Now, let us consider how to adapt our WCRT analysis approach
to a prioritized cache. Based on the CRPD given in Equation 6, we
can modify our WCRT analysis approach for the prioritized cache.

For each task Ti, if Ti ∈ ψ1, Ti does not conflict with any other
tasks in the cache. For each preemption, we only need to consider
the context switch cost and the WCETs of preempting tasks. Thus,
the WCRT analysis formula introduced in Section 4.1 can be mod-
ified as follows.
R0

i = Ci;

R1
i = Ci +

Pi−1

j=0
d

R0

i

Pj
e × (Cj + 2Ccs)

...

Rk
i = Ci +

Pi−1

j=0
d

R
k−1

i

Pj
e × (Cj + 2Ccs)

On the other hand, if Ti ∈ ψ2, Ti may conflict with any other
task in the task group ψ2. But Ti does not conflict with any task in
ψ1. Thus, if Ti is preempted by a task Tj in ψ1, for overhead (i.e.,
over and above actual worst-case task execution time Cj of Tj) we
need only consider the context switch costs. If Ti is preempted by a
task in ψ2, we need to consider both CRPD and the context switch
costs. Therefore, we use the formula below to estimate the WCRT
of Ti.
R0

i = Ci;

R1
i = Ci +

Pq
j=0

d
R0

i

Pj
e × (Cj + 2Ccs) +

Pi−1

j=q+1
d

R0

i

Pj
e × (Cj +

CRPD(Ti, Tj) + 2Ccs)
...

Rk
i = Ci +

Pq
j=0

d
R0

i

Pj
e × (Cj + 2Ccs) +

Pi−1

j=q+1
d

R
k−1

i

Pj
e × (Cj +

CRPD(Ti, Tj) + 2Ccs)

In this section, we adapt our WCRT analysis approach to apply to
a prioritized cache. By using this new WCRT analysis, we can pre-
dict the worst case timing properties of a prioritized cache, which
allows us to safely use a prioritized cache in a real-time system.

5. Previous Work
Inter-task cache conflict complicates WCET/WCRT analysis be-
cause of uncertainty in memory access time. This problem can
be ameliorated by partitioning the cache and allowing each task
to use a portion of the cache exclusively. Cache partitioning can
be achieved with hardware approaches [3, 7, 14] or software ap-
proaches [11, 24].

Although customized caches show benefits in accelerating exe-
cutions of applications in multi-tasking environments, a connection
between formal WCET/WCRT analysis and customized caches is
still missing. The authors of this paper have been unable to find any
published work on WCET/ WCRT analysis for customized caches.
Instead, the effectiveness of cache partitioning methods are evalu-
ated with experiments [3, 7, 11, 14, 24]. Some typical benchmark
applications are executed with cache partitioning approaches. The
average execution time or the cache miss rate is used to measure the
performance. In [13], Suh et al. give an analytical cache model to
analyze the cache miss rate of a partitioned cache. This model pre-
dicts the overall cache miss rate of general applications. The worst
case is not considered. Dropso et al. [2] compare some existing
customized caches by using an analytical cache model. Again, the
analysis targets the average performance of general applications.

Customized caches can be demonstrated to be effective in elim-
inating inter-task cache conflicts by running benchmarks or evalu-
ating average performance (e.g., cache miss rate). However, lack of
worst case analysis is not acceptable in real-time systems. Bench-
mark applications cannot cover all situations. Average performance
cannot guarantee the same performance in the worst case. Thus, in
order to apply customized cache in real-time systems safely, we
need to analyze task WCET/WCRT formally.

Much work has been done in WCET analysis for a single task
with a conventional cache (such as set associative or direct mapped)

[6, 23]. In this paper, we use a WCET analysis tool, SYMTA[23];
however we can substitute any other WCET analysis approach for
SYMTA.

In preemptive multi-tasking systems, a task may be preempted
by another task. Thus, WCET cannot reflect the completion time of
a task. Instead, we use a task’s WCRT to evaluate if the task can
meet its deadline.

Tindell et al. [20] propose a generic framework for WCRT anal-
ysis by using an iterative equation. Busquests-Mataix et al. extend
Tindell’s WCRT analysis approach by including cache eviction cost
in a multi-tasking system [1]. They conservatively assume that all
the cache lines used by the preempting task need to be reloaded by
the preempted task upon resuming execution[1]. Other ILP-based
WCRT analysis approaches can be found in [4, 5, 12, 17, 18, 21].

The WCET/WCRT analysis approaches introduced above only
consider the behavior of conventional caches such as direct mapped
caches or set associative caches. For customized caches, these ap-
proaches may be difficult to use directly (i.e., without significant
modifications) because the behaviors of customized caches are not
the same as conventional caches. For example, in conventional set
associative caches that are shared by all tasks in a multi-tasking
system, the WCRT of each task is heavily affected by inter-task
cache conflicts. However, in some partitioned caches, inter-task
cache conflicts possibly do not exist at all. Additionally, some cus-
tomized caches are not easy to analyze formally. For example, in a
data-replace-controlled cache presented in [7], specific instructions
are inserted into the source code of applications to lock/release in-
dividual cache lines used by some data. Because data lock/release
is done in the source code level and cache lines used by specific
data is also related to the cache replacement algorithm, designers
may not be able to know physically which cache lines are actually
locked. As a result, inter-task cache conflict analysis is not straight-
forward. In [22], a cache locking approach is proposed to assist
static timing analysis. However, this approach only addresses data
caches while instruction caches are not considered [22].

Our prioritized cache is a variant of a set associative cache. The
cache is partitioned at the granularity of columns. After the cache
partitions are allocated to tasks, the prioritized cache behaves as a
group of small size set associative caches. Thus, as explained in
Section 4.2, the WCRT analysis approach designed for conven-
tional set associative caches can be adapted easily to analyze the
behavior of the prioritized cache.

6. Experimental Results
We use three applications to compare the prioritized cache with a
conventional set associative cache. All caches used have size 32KB
and have eight ways. A cache line has 16 bytes. In the prioritized
cache, two ways are set as shared. Only the cache line replacement
algorithms are different (i.e., one is prioritized while the other is
LRU). Notice that in our experiments, a single cache is used for
both instructions and data, which means the cache is a unified
cache. We do not need to distinguish an instruction cache from
a data cache because our WCRT analysis is based on simulation
and memory footprints. There is no need to differentiate memory
accesses caused by loading instructions or data. The same approach
explained in this paper can, however, be applied to an instruction
cache or a data cache; all that is required is separation into a
memory footprint for instructions and a memory footprint for data.

In our experiments, an ARM9TDMI processor with a clock fre-
quency of 100MHz is integrated with a specific cache (prioritized
or set-associative). Hardware is simulated with Synopsys VCS
[15]. The instruction set simulator is XRAY [8]. The whole sys-
tem including software and hardware is co-simulated with Seam-
less CVE [10] provided by Mentor Graphics. The simulation envi-
ronment is shown in Figure 6.

The first experiment uses a mobile robot application as de-
scribed in Example 2. Task periods and priorities are listed in Ta-

LCTES’05, 6 2005/4/21

(ARM9TDMI)

Processor
Hardware

Software

L1 Cache Memory

Task 0 Task 1 Task 2

Atalanta RTOS

Seamless CVE

(XRAY)

(VCS)

Unified

Figure 6. Simulation Architecture
ble 2. We use SYMTA to estimate the WCET of each task. The
WCET of each task in the set associative cache (SA) and the WCET
of each task in the stable stage of the prioritized cache (PC) are
listed in Table 3. Note that the unit for all WCET/WCRT values
presented in this paper is a clock cycle.

Table 2. Tasks in Experiment I
Task Period(ms) Priority
MR 3.5 2
ED 6.5 3
OFDM 40 4

Table 3. WCET with different caches
Tasks MR ED OFDM
WCET in SA 842 1892 2830
WCET in PC 626 1676 4210

Three types of preemptions can happen in this system, MR pre-
empting ED, MR preempting OFDM and ED preempting OFDM.
The number of cache lines to be reloaded in these three preemptions
are estimated in Table 4. Table 4 shows that no cache conflicts oc-
cur between ED and MR in the prioritized cache. This is also true
for OFDM and MR. This means MR is assigned a partition of the
prioritized cache exclusively. Because MR has the highest prior-
ity, OFDM and ED cannot use the cache assigned to MR. Thus,
there are no cache conflicts among MR and other tasks (i.e., ED
and OFDM). In this experiment, three columns are assigned to MR
exclusively. It turns out that all cache lines required by MR fit into
these columns. MR uses 80% of the SRAM available in these three
cache columns. The other three non-shared columns are assigned
to ED exclusively. ED also uses the two shared columns, which
are also used by OFDM. Thus, there are cache conflicts between
ED and OFDM. ED uses over 90% of the cache columns which
ED can access (i.e., the three columns owned by ED and the two
shared columns). OFDM uses 100% of the shared columns.

Table 4. Estimate of cache lines to be reloaded
Preemptions

Cache Type ED by MR OFDM by MR OFDM by ED
SA 81 88 98
PC 0 0 160

Based on the WCET and the number of cache lines to be
reloaded, we can apply the WCRT approach as proposed in
[17, 18]. Because the impact of cache on the WCRT depends on not
only the number of cache conflicts but also the cache miss penalty,
we change the cache miss penalty from 10 cycles to 40 cycles. The
comparison of WCRT of OFDM running with the set associative
cache and the prioritized cache is shown in Table 5.

Two facts in these experimental results show the advantages of
the prioritized cache as compared to the conventional cache. First,
non-preemption related cache reload costs in high priority tasks are
reduced. High priority tasks such as MR do not share any cache
resources with other tasks; thus, we do not need to assume a cold
cache for WCET analysis of these tasks after the first execution of
the task upon startup/reboot. As a result, the WCET estimates of
high priority tasks are tightened. For example, the WCET of MR
– which is never preempted since MR has the highest priority – is
reduced by 26% according to the WCET estimate results in Table 3.

Table 5. WCRT of OFDM with different caches
Cmiss

Cache Type 10 20 30 40
PC 10260 11306 11626 11946
SA 9684 10264 12558 12966

In short, by using the prioritized cache, non-preemption related
cache reload costs of high priority tasks are reduced. However, as
we notice, the WCET of the low priority task, OFDM, is extended
significantly because OFDM is restricted to use a limited portion of
the cache; in our case, OFDM can only use the shared columns of
the hot cache (i.e., after initial runs of tasks due to startup/reboot).

Second, the prioritized cache can also tighten the WCRT esti-
mates of tasks because preemption-related cache reload overhead is
minimized. As we can see from Table 4, there are no cache conflicts
between ED and MR; neither are there any cache conflicts between
OFDM and MR. Thus, CRPD caused by MR preempting ED and
CRPD caused by MR preempting OFDM are both zero. However,
both ED and OFDM use the shared columns. Thus, there is still
CRPD caused by ED preempting OFDM.

We also compare the performance of the prioritized cache and
the set associative cache with another application in which there
are three tasks, Adaptive Differential Pulse Modulation Coder (AD-
PCMC), ADPCM Decoder (ADPCMD) and Inverse Discrete Co-
sine Transform (IDCT). This application is derived from Media-
Bench [9]. The periods, priorities and WCET for each task in listed
in Table 6. As a result of eliminating cache sharing, the WCET of
high priority task is reduced as well. For instance, the WCET of
IDCT is reduced by 5%.

Table 6. Tasks in Experiment II
Tasks IDCT ADPCMD ADPCMC
Periods(ms) 4.5 10 50
Priority 2 3 4
WCET in SA 1580 2839 7675
WCET in PC 1498 2830 11182

Table 7. Estimate of cache lines to be reloaded
Preemptions

Cache Type ADPCMD ADPCMC ADPCMC
by IDCT by ADPCMD by IDCT

SA 46 64 56
PC 0 0 0

Table 8. WCRT of ADPCMC with different caches
Cmiss

Cache Type 10 20 30 40
PC 35686 35873 36001 36349
SA 34676 34967 38779 39775

The number of cache lines to be reloaded in each cache is listed
in Table 7. Recall, as stated earlier, that we use caches with eight
“ways” or “columns.” In this experiment, IDCT uses two columns.
ADPCMD uses three columns and ADPCMC uses the remaining
three columns available, two of which the user preset as shared.
IDCT uses 70% of the available memory in the two cache columns
used by IDCT. ADPCMD and ADPCMC use 90% of the mem-
ory available in the cache columns each uses. In this application,
there are no cache conflicts among tasks in the prioritized cache.
This means both IDCT and ADPCMD use cache columns exclu-
sively and do not require any shared columns. Only ADPCMC uses
shared columns. The overall result is that there are no cache con-
flicts among these three tasks. The WCRT estimate of ADPCMC is
shown in Table 8.

In this application, because all inter-task cache conflicts in the
prioritized are eliminated, the preemption-related cache reload cost
is zero. Thus, the WCRT of ADPCMC is not affected by cache miss
penalty. As it turns out, when the cache miss penalty is big enough
so that the preemption-related cache reload cost cannot be ignored
in the conventional cache, the prioritized cache shows better per-
formance in the WCRT even of low priority tasks. For example,

LCTES’05, 7 2005/4/21

when the cache miss penalty is 40, the WCRT of ADPCMC with
the prioritized cache is reduced by 8% as compared to an equivalent
set-associative cache.

The third experiment contains six tasks: OFDM, ADPCMC,
ADPCMD, IDCT, ED and MR. Table 9 lists the priority and period
of each task. Note that in order to satisfy the necessary condition of
schedulability of a real-time system (i.e., the total CPU utilization
of all tasks must be less than 100%), we increase the periods
of some tasks as compared to the same tasks in the first two
experiments. ADPCMC has the lowest priority and MR has the
highest prority.

Table 9. Tasks in Experiment III
T1 T2 T3 T4 T5 T6

MR IDCT ED ADPCMD OFDM ADPCMC

Period(ms) 7 9 13 20 40 50
Priority 2 3 4 5 6 7

In this experiment, we set the cache miss penalty to 30 clock
cycles. Figure 7 compares the WCRT of each task with a set
associative cache and a prioritized cache.

Figure 7. Comparison of task WCRT with a SA and a PC

Apparently, by using a prioritized cache, the WCRT of high pri-
ority tasks can be reduced because high priority tasks are allocated
cache columns exclusively. On the contrary, low priority tasks have
to use shared columns. Thus, a prioritized cache improves the per-
formance of high priority tasks at the cost of the performance of
low priority tasks. As shown in Figure 7, the WCRTs of MR, IDCT
and ED are reduced by between 7% and 26%. However, the WCRT
of ADPCMC is increased by nearly 70%.

7. Conclusion
In this paper, we compare the set associative and the prioritized
cache in terms of their impact on the Worst Case Response Times
of tasks in a preemptive multi-tasking real-time system. As best we
can tell, we are the first authors to publish a formal WCRT analysis
approach to analyze the behavior of a customized cache (specif-
ically, the prioritized cache). The prioritized cache reduces inter-
task cache interference. As a result, the WCRT is tightened signifi-
cantly. Our experiments show a reduction up to 26% in WCRT es-
timate by using the prioritized cache versus using conventional set-
associative cache of the same size and associativity. With a tighter
WCRT estimate, we can schedule more tasks in a real-time system
and thus increase the utilization of computing resources.

For future work, we need to consider the case in which more
than one task have the same priority. In this case, tasks with the
same priority share a cache partition. Due to preemptions among
tasks with the same priority, cache reload overhead caused by pre-
emption may be different. Also, more experiments will be per-
formed in the future to investigate the impact of cache size on
WCRT estimation of tasks executing on a processor utilizing a pri-
oritized cache.

References
[1] J. Busquets-Mataix, J. Serrano, R. Ors, P. Gil, and A. Wellings. Adding

instruction cache effect to schedulability analysis of preemptive real-
time systems. In Real-Time Technology and Applications Symposium,
pages 204–212, June 1996.

[2] S. Dropso. Comparing caching techniques for multitasking real-time
systems. Technical report, University of Massachusetts, Amherst,
UM-CS-1997-065, November 1997.

[3] D. Kirk. Smart (strategic memory allocation for real-time) cache
design. In Proceedings of the Real-Time Systems Symposium, pages
229 –237, December 1989.

[4] C. Lee, J. Hahn, Y. Seo, S. Min, R. Ha, S. Hong, C. Park, M. Lee, and
C. Kim. Enhanced analysis of cache-related preemption delay in fixed-
priority preemptive scheduling. In Proceedings of IEEE Real-Time
Systems Symposium, pages 187–198, December 1997.

[5] C. Lee, J. Hahn, Y. Seo, S. Min, R. Ha, S. Hong, C. Park, M. Lee, and
C. Kim. Analysis of cache-related preemption delay in fixed-priority
preemptive scheduling. IEEE Transactions on Computers, 47(6):700–
713, 1998.

[6] Y. Li, S. Malik, and A. Wolfe. Performance estimation of embedded
software with instruction cache modeling. ACM Transaction on Design
Automation of Embedded Systems, 4(3):257–279, July 1999.

[7] N. Maki, K. Hoson, and A. Ishida. A data-replace-controlled cache
memory system and its performance evaluations. In Proceedings of the
IEEE Region 10 Conference, pages 471–474, April 1999.

[8] Mentor Graphics, XRAY R© Debugger. http://www.mentor.com/xray/.
[9] MediaBench, http://cares.icsl.ucla.edu/MediaBench/.
[10] Mentor Graphics, Hardware/Software Co-Verification: Seamless.

Avaliable HTTP: http://www.mentor.com/seamless/.
[11] F. Muller. Compiler support for software-based cache partitioning.

In Proceedings of ACM SIGPLAN Workshop on Languages, Compliers
and Tools for Real-Time Systems, pages 125–133, June 1995.

[12] H. Negi, T. Mitra, and A. Roychoudhury. Accurate estimation of
cache-related preemption delay. In Proceedings of ACM Joint Symposia
CODES+ISSS, 2003.

[13] G. Suh, S. Devadas, and L. Rudolph. Cache models with applications
to cache partitioning. In Proceedings of the 15th international
conference on Supercomputing, pages 1 – 12, June 2001.

[14] G. Suh, L. Rudolph, and S. Devadas. Dynamic cache partitioning for
simultaneous multithreading systems. In Proceedings of the IASTED
International Conference on Parallel and Distributed Computing and
Systems, pages 116–127, September 2001.

[15] Synopsys, http://www.synopsys.com/products/simulation/simulation.html.
[16] Y. Tan and V. Mooney. A prioritized cache for multi-tasking real-

time systems. In Proceedings of the 11th Workshop on Synthesis And
System Integration of Mixed Information technologies (SASIMI’03),
pages 168–175, April 2003.

[17] Y. Tan and V. Mooney. Timing analysis for preemptive multi-tasking
real-time systems. In Proceedings of Design, Automation and Test in
Europe (DATE’04), pages 1034–1039, February 2004.

[18] Y. Tan and V. Mooney. Integrate inter- and intra- cache eviction
anlaysis for preemptive multi-tasking real-time systems. In Proceedings
of the 8th International Workshop on Software and Compilers for
Embedded Systems (SCOPES’04), pages 200–206, September 2004.

[19] Y. Tan. Cache Design and Timing Analysis for Preemptive Multitask-
ing Real-Time Uniprocessor Systems. PhD Thesis, Georgia Institute of
Technology, April 2005. Available HTTP: http://etd.gatech.edu.

[20] K. Tindell, A. Burns, and A. Wellings. An extendible approach
for analyzing fixed priority hard real-time tasks. Real-Time Systems,
6(2):133–151, March 1994.

[21] H. Tomiyama and N. Dutt. Program path analysis to bound cache-
related preemption delay in preemptive real-time systems. In Pro-
ceedings of the Eighth International Workshop on Hardware/software
Codesign, pages 67–71, May 2000.

[22] X. Vera, B. Lisper, and J. Xue. Data cache locking for higher
program predictability. In Proceedings of International Conference on
Measurement and Modeling of Computer Systems (SIGMETRICS’03),
pages 272–282, June 2003.

[23] F. Wolf. Behavioral Intervals in Embedded Software. Kluwer
Academic Publishers, 2002.

[24] A. Wolfe. Software-based cache partitioning for real-time applica-
tions. In Proceedings of the 3rd Workshop on Responsive Computer
Systems, September 1993.

LCTES’05, 8 2005/4/21

