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Abstract

In this paper, we propose an approach to estimate the Worst
Case Response Time (WCRT) of tasks in a preemptive multi-tasking
single-processor real-time system with a set associative cache. The
approach focuses on analyzing the cache reload overhead caused
by preemptions. We combine inter-task cache eviction behavior
analysis and path analysis of the preempted task to reduce, in our
analysis, the estimate of the number of cache lines that can possi-
bly be evicted by the preempting task (thus requiring a reload by the
preempted task). A mobile robot application which contains three
tasks is used to test our approach. The experimental results show
that our approach can tighten the WCRT estimate by up to 73%
over prior state-of-the-art.

1. Introduction

Timing analysis is critical in a real-time system. Underestimat-
ing the execution time of tasks may cause deadlines to be missed in
practice, which might bring disastrous results. On the other hand,
pessimistic estimates of execution times may lower the utilization
of resources. However, advanced features in modern processors
such as caching and pipelining complicate timing analysis. Lots of
work has been performed to analyze the cache behavior in a sin-
gle task system in order to predict the timing properties of the sys-
tem. Although single-task based timing analysis can help us ac-
quire insight about timing properties of tasks, lots of factors in a
multi-tasking system are not taken into consideration which will
definitely affect the accuracy of such timing estimates. In a pre-
emptive multi-tasking system, timing analysis becomes even more
difficult because of unpredictability of preemptions, the interaction
among tasks such as inter-task cache evictions and the underlin-
ing scheduling algorithms.

In this paper, we give an approach to analyze the Worst Case
Response Time (WCRT) of tasks. We target a single-processor pre-
emptive multi-tasking system with set associative caches. The ap-
proach focuses on the cache reload overhead caused by preemption
and imposed on the preempted task. Inter-task cache eviction be-
havior analysis is combined with path analysis of the preempted
task to tighten the estimate of the number of cache lines to be
reloaded by the preempted task. A mobile robot application which
contains three tasks is used to test the performance of our approach.

The remaining of this paper is organized as follows. Section 2
introduces the previous work in the field of timing analysis. Sec-
tion 3 defines terminology used in this paper. Section 4 gives the
details of our approach. Experimental results are presented in Sec-
tion 5. The last section concludes the paper.

2. Previous Work

A cache is one of the main factors complicating timing anal-
ysis in real-time systems. Two categories of methods can be ap-
plied to predict cache behavior. One is limiting cache usage. This
can be implemented by hardware approaches such as cache parti-
tioning [1, 2], or, by software approaches such as compiler opti-
mizations and memory remapping [3, 4]. Usually, these schemes
need specialized hardware support in the cache controllers or TLBs
as well as custom modifications to the compilers used. Moreover,
cache utilization is compromised in these schemes, because either
the cache allocation strategy is more strict than conventional caches
such as in [1, 2] or the memory-to-cache mapping is more restric-
tive such as in [3, 4].

The second category of methods to predict cache behavior is to
use static analysis methods. Such methods analyze cache behavior
and make restrictive assumptions in order to predict Worst Case Ex-
ecution Time (WCET) or Worst Case Response Time (WCRT) of
tasks in real-time systems. Li and Malik contributed to WCET anal-
ysis by proposing an explicit path enumeration method [5]. They
use Integer Linear Programming (ILP) techniques to limit the paths
to be evaluated. Path analysis in their work is at the granularity of
basic blocks. Wolf and Ernst extend the concept of basic blocks
to program segments for timing analysis [6]. By extending basic
blocks to program segments, the overestimate of execution time in
boundaries of basic blocks is reduced, thus improving the preci-
sion of timing estimate. Wolf and Ernst developed a framework for
timing analysis, SYMTA [6]. However, both of the aforementioned
works focus on single task timing analysis. The problem becomes
more complicated in a multi-tasking system, especially when pre-
emption is allowed.

Timing analysis in multi-tasking systems is tightly related to
scheduling techniques. In this paper, we assume that a Rate Mono-
tonic Scheduling (RMS) algorithm is used in the system [7, 8]. We
further assume a single processor with a unified (instruction plus
data) set associative L1 cache and secondary memory (the sec-
ondary memory can be either on- or off-chip). The purpose of tim-
ing analysis is to verify the schedulability of tasks. In this paper, we
use the Worst Case Response Time (WCRT) [9] to analyze schedu-
lability. Busquests-Mataix propose an approach to analyze cache
eviction cost in a multi-tasking system [10]. They conservatively
assume that all the cache lines used by the preempting lines need to
be reloaded by the preempted task when the preempted task is re-
sumed. [11] also give an approach for cache analysis in preemp-
tions. This approach counts the number of “useful cache lines” by
performing path analysis on the preempted task. However, they as-
sume that all “useful cache lines” of the preempted task are evicted
by the preempting task, which might not be true. In our approach,
we show that the cache lines to be reloaded are not only determined



by the preempted task, but also by the preempting task. Thus, the
intersection of cache lines used by the preempted task and the pre-
empting task needs to be analyzed.

This paper presents the most accurate WCRT method known to
the authors to date for a multi-tasking single-processor system us-
ing set-associative or direct mapped instruction and data caches. In
Section 5 we will show examples where we achieve results up to
73% better than prior art.

3. Terminology

For clarity, we first define terminology we will use throughout
the paper.

We assume that there are n tasks in the system, which are repre-
sented with T1, T2, ..., Tn. Each task Ti has a period Pi. Ti is ready
to run at the beginning of its period. The deadline of Ti is at the
end of its period. A fixed priority scheduling algorithm is used for
scheduling; thus, each task has a fixed priority, pi. The Worst Case
Execution Time (WCET) of task Ti is denoted with Ci. This WCET
can be estimated initially with existing analysis tools such as Cin-
derella [5] and SYMTA [6]. In this paper, we use SYMTA to derive
the WCET of tasks. We will discuss later how to estimate WCRT
on the basis of WCET in a multi-tasking system. Tasks are executed
periodically. We use Ti,j to represent the jth run of Task Ti. Note
that our approach also works with other scheduling algorithms, e.g.,
when scheduling tasks with precedence constraints.

In a multi-tasking system,we aim at estimating the Worst Case
Response Time (WCRT) of tasks, as defined in [9], for schedulabil-
ity analysis.
Definition 1. Worst Case Response Time (WCRT) : The WCRT is
the time taken by a task from its arrival to its completion of com-
putations in the worst case. The WCRT of task Ti is denoted by Ri.
�

Example 1. We have three tasks T1, T2 and T3. T1 is a Mo-
bile Robot control application (MR). The mobile robot updates
its behavior every 3.5ms. The second task, T2 is an Edge De-
tection application (ED) and is invoked every 6.5ms to pro-
cess the images of obstacles detected by the robot. The third
task, T3, which is an OFDM transmitter, is invoked to commu-
nicate with other robots every 40ms. Figure 1 shows this ex-
ample. In this example, three tasks arrive at time instant 0.
However, T3 is not executed until there are no instances of
T1 or T2 ready to run. During the execution of T3, it could be
preempted by T1 or T2, which is shown in Figure 1. The re-
sponse time of T3 is the time from 0 to the time when T3 is
completed. We need to estimate the response time of such a
task in the worst case. �

When one task is preempted, the cache lines used by the pre-
empted task may be evicted by the preempting task. This forces
the preempted task to reload these cache lines when the preempted
task is executed and the evicted cache lines are accessed again. The
cache evictions cause an overhead in execution time of the pre-
empted task. In order to predict the cache reload overhead caused
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Figure 2. Example of a set associative cache

by inter-task cache eviction, we need to analyze cache eviction be-
havior first.

A cache is defined by three parameters: size, the number of
cache lines in a set (i.e., the number of ways) and the number of
bytes/words in a cache line. A direct mapped cache can be viewed
as a special set associative cache which only has one way. The sets
in a cache are indexed sequentially, starting from 0. All the cache
lines in a set have the same index. Accordingly, a memory address
is divided into three parts: the offset, the index and the tag. When
a memory block is loaded to a set associative cache, it can only oc-
cupy a cache line in the set which has the same index as the index
in the memory block address. We use idx(a) to denote the index of
a memory address a.

Example 2. Suppose we have a 4-way set associative
cache with each line in the cache having 16 bytes. The size
of the cache is 1KB. Thus, the maximum index of the cache
is 15. If a memory address has 32 bits, we can derive each
part (i.e., offset, index and tag) of the address for this cache
as shown in Figure 2. �

Cache eviction only happens among memory blocks that need
to be loaded to the same set in a set associative cache. The mem-
ory blocks that are loaded into the same set in the cache have the
same index. Intuitively, we can divide memory blocks into differ-
ent subsets according to their index.

Suppose we have a set of r memory block addresses, M =
{m0,m1, ...,mr−1} and an L-way set associative cache. The in-
dex of the cache ranges from 0 to N − 1. We can derive N subsets
of M as follows.

m̂i = {mk ∈ M |idx(mk) = i}, (0 ≤ i < N) −−(1)

When the memory blocks in the same subset defined above are ac-
cessed, these memory blocks are loaded into the same set in the
cache because they have the same index. Thus, cache evictions can
happen among these memory blocks (i.e., with the same index).

If we denote M̂ = {m̂i|m̂i 6= ∅, 0 ≤ i < N}, where ∅ is the
empty set and m̂i is defined as Equation (1), then M̂ is a partition of
M . Based on this conclusion, we define the Cache Index Induced
Partition (CIIP) of a memory block address set as follows.

Definition 2. Cache Index Induced Partition (CIIP) of a mem-
ory block address set: Suppose we have a set of memory block ad-
dresses, M = {m0,m1, ...,mr−1} and an L-way set associative
cache. The index of the cache ranges from 0 to N − 1. We can de-
rive a partition of M based on the mapping from memory blocks to
cache lines, which is denoted by M̂ = {m̂i|m̂i 6= ∅, 0 ≤ i < N}.
Each m̂i = {mk ∈ M |idx(mk) = i} is a subset of M . We call M̂

the CIIP of M .�
The CIIP of a memory address set categorizes the memory block

addresses according to their indices in the cache. Cache evictions



can only happen among memory blocks that are in the same subset
in the CIIP.

Example 3: Suppose we have a set of memory block
addresses M = {0x000, 0x100, 0x010, 0x110, 0x210}. Also, we
have a cache as defined in Example 2. 0x000 and 0x100
have the same index 0x0. 0x010, 0x110 and 0x210 have
the same index 0x1. So, the CIIP of this memory block ad-
dress set is M̂ = {m̂0, m̂1}, where m̂0 = {0x000, 0x100} and
m̂1 = {0x010, 0x110, 0x210}. Any block in m̂0 will be loaded
into the cache set with index 0 when the memory block is ac-
cessed. Any block in m̂1 will be loaded into the cache set with
index 1 when the memory block is accessed. Cache eviction
can only happen among memory blocks in m̂0 or memory
blocks in m̂1. A memory block in m̂0 can never be replaced
by a memory block in m̂1 and vice versa because the mem-
ory blocks in m̂0 and the memory blocks in m̂1 are loaded into
different sets in the cache. �

The definition of CIIP provides us a formal representation to
analyze the behavior of set associative caches. The memory block
addresses in the same element of the CIIP have the same index.
Therefore, when these memory blocks are loaded into the cache,
they might conflict with each other. Memory blocks in different el-
ements of the CIIP can never conflict in the cache.

In this paper, we will also perform path analysis on the pre-
empted task in order to tighten the WCRT estimate. The path anal-
ysis is based on a Control Flow Graph (CFG) which describes the
control structure of a program. A CFG is represented with a graph
G = (V,E), where V = {v1, v2, ..., vm} is the set of nodes and
E = {e1, e2, ..., en} is the set of edges. Each edge ei = (vk, vj)
represents the control dependence between two nodes, vk and vj .
Usually, each node vi in a CFG represents a basic block in a pro-
gram. Wolf and Ernst extend the basic block concept to Single Fea-
sible Path Program Segment (SFP-Prs) in [6]. A Program Segment
can be viewed as a sequence of basic blocks with exactly on en-
try and one exit.

Definition 3. Single Feasible Path Program Segment (SFP-Prs):
SFP-Prs is defined as a hierarchical program segment with exactly
one path [6]. �

In this paper, each node in a CFG corresponds to a SFP-Prs. The
SFP-Prs represented by the node vj in the CFG of task Ti is de-
noted by SFP Prs(Ti, vj).

4. WCRT Analysis

The main purpose of timing analysis in a multi-tasking system is
to verify the schedulability of all tasks in the system. If we already
know the WCRT of tasks, we only need to check if the WCRT of
all tasks are earlier than their deadlines. WCRT may be affected by
cache behavior, pipelining and scheduling algorithms. In this paper,
we assume that the RMS algorithm is used for scheduling and only
focus on the cache eviction analysis.

In this section, we give our approach to analyze cache evictions
caused by preemption in a multi-tasking real-time system. The ap-
proach consists of three steps. First, we calculate the intersection set
of cache lines used by the preempting task and the preempted task
to find an upper bound of the number of cache lines which will be
reloaded by the preempted task. Next, we apply path analysis to re-
move the cache lines which will not be accessed by the preempted
task from the intersection set. Because these cache lines are not ac-
cessed after the preempted task resumes, we do not need to con-
sider these cache lines when estimating WCRT of the preempted
task. Finally, we use an iterative method to calculate the WCRT.

The architecture we target in this paper is a single processor sys-
tem with a unified set associative L1 cache. We only consider two
levels of memory hierarchy in our approach. For our future work,
we plan to extend this to three or more levels of memory hierar-
chy.

4.1. WCRT Analysis

One approach for schedulability analysis is the Worst Case Re-
sponse Time (WCRT) approach which can be found in [9]. The
approach uses the following recursive equations to calculate the
WCRT Ri of a task Ti:

Ri = Ci +
∑

j∈hp(i)

d
Ri

Pj

e × Cj −−(2)

where hp(i) is the set of tasks whose priorities are higher than Ti

and Pj is the period of Task Tj as defined in Section 3. In this equa-
tion, the term

∑
j∈hp(i)d

Ri

Pj
e × Cj reflects the interference of pre-

empting tasks during the execution time of Ti. This equation can
be calculated iteratively. When Ri converges, we obtain WCRT of
Ti. Then, Ri is compared with the deadline of Ti to determine if Ti

can meet its deadline or not. If the equation diverges, the task can-
not meet its deadline.

In this approach, Cj is the WCET estimate of Tj without con-
sidering preemption. The WCET of Tj can be derived with exist-
ing approaches such as Cinderella [5] and SYMTA [6]. The ap-
proaches of Cinderella and SYMTA do not consider the costs of
inter-task cache eviction and context switch caused by preemptions.
Therefore, the WCRT of tasks might be underestimated in Equa-
tion (2). Here, we focus on inter-task cache eviction analysis and
assume the cost of a context switch is a constant, Ccs, which is
equal to the WCET of a context switch. Example 4 gives the con-
text switch cost for our simulation architecture. The context switch
function cannot be preempted, so the context switch cost is not af-
fected by inter-task cache eviction. Therefore, it is reasonable to as-
sume the context switch cost is a constant, which is its WCET. The
context switch function is called twice in every preemption, once
for switching to the preempting task and once for resuming the pre-
empted task.

Example 4. In our simulation architecture, we have an
ARM9TDMI processor with two levels of memory, a 32KB 4-
way set associative L1 cache and 256MB SRAM. The cache
miss penalty is 20 cycles. The Atalanta RTOS developed at
Georgia Tech [12] is used for task management. We use
SYMTA to obtain the WCET of a context switch, which im-
plies that the instructions of the context switch function and
the memory blocks where contexts of the preempted and the
preempting tasks are saved are not in the L1 cache when
the context switch function is called. In this case, the WCET
of a single context switch estimated with SYMTA is 1049 cy-
cles. �

The cache lines that should be included in the estimate of cache
reload cost imposed on the preempted task by preemptions must
satisfy two conditions as follows.

Condition 1. These cache lines are used by the preempting task.
Condition 2. These cache lines are required by the preempted

task after the preempted task is resumed.
According to these two conditions, the cache eviction cost is de-

termined by the preempting task and the preempted task together.
We use Cpre(Ti, Tj) to represent the cache eviction cost imposed
on task Ti when Ti is preempted by task Tj . Equation (2) can be



modified as follows to no longer underestimate Ri:

Ri = Ci +
∑

j∈hp(i)

d
Ri

Pj

e × (Cj + Cpre(Ti, Tj) + 2Ccs) −−(3)

Now, we need to determine the cache eviction cost caused by pre-
emption, i.e., the value of Cpre(Ti, Tj).

4.2. Inter-task cache eviction analysis

In multi-tasking systems, inter-task cache evictions resulting
from preemptions may cause cache reloading when the preempted
task resumes. In [10], the authors assume that all the cache lines
used by the preempting task have to be reloaded when the pre-
empted task is resumed. This approach implies that all the cache
lines used by the preempting task will also be required by the pre-
empted task later on. Obviously, this is not always true. Consider-
ing Conditions 1 and 2, it is not difficult to find that the cache lines
that will be reloaded by the preempted task must be in the inter-
section set of the cache lines used by the preempting and the pre-
empted task.

Let us state the problem formally. Suppose we have two tasks
Ta and Tb. All memory blocks accessed by Ta and Tb are in the set
Ma = {ma,0,ma,1, ...,ma,ka

} and Mb = {mb,0,mb,1, ...,mb,kb
},

respectively. Tb has a higher priority than Ta. An L-way set associa-
tive cache with a maximum index of N −1 is used in the system. In
the case that Ta is preempted by Tb, the cache lines to be reloaded
when Ta resumes are used by both the preempting task and the pre-
empted task. Thus, we can look for the conflicting memory blocks
accessed by the preempting task and the preempted task in order
to estimate the number of reloaded cache lines. We can use the CI-
IPs of Ma and Mb to solve this problem.

We use M̂a = {m̂a,0, m̂a,1, ..., m̂a,N−1} to represent the CIIP
of Ma and M̂b = {m̂b,0, m̂b,1, ..., m̂b,N−1} to represent the CIIP
of Mb. For m̂a,k1

∈ M̂a and m̂b,k2
∈ M̂b, only when k1 = k2

can memory blocks in m̂a,k1
possibly conflict with memory blocks

in m̂b,k2
in the cache. Also, when the memory blocks in m̂a,k1

and
m̂b,k2

are loaded into the cache, the number of conflicts in the cache
cannot exceed min(|m̂a,k1

|, |m̂b,k2
|, L), where L is the number of

ways of the cache. Therefore, we can conclude that the following
formula gives an upper bound for the number of cache lines that
could be reloaded after Task Ta resumes following a preemption by
Task Tb:

S(Ta, Tb) =

N−1∑

r=0

min{|m̂a,r|, |m̂b,r|, L},

where m̂a,r ∈ M̂a, m̂b,r ∈ M̂b −−(4)

where S(Ta, Tb) denotes the upper bound on the number of
reloaded cache lines caused by Tb preempting Ta.

Example 5: Suppose we have a cache as defined
in Example 2 and two tasks T1 and T2. The mem-
ory block addresses accessed by T1 and T2 are con-
tained in M1 = {0x000, 0x100, 0x010, 0x110, 0x210} and
M2 = {0x200, 0x400, 0x310, 0x410} respectively. The CIIP of
M1 is M̂1 = {{0x000, 0x100}, {0x010, 0x110, 0x210}}, and
the CIIP of M2 is M̂2 = {{0x200, 0x400}, {0x310, 0x410}}.
If we map the memory blocks in M1 and M2 to the cache
as shown in Figure 3(a), we find that the maximum num-
ber of overlapped cache lines, which is 4, is the same as the
result derived from Equation 4. However, if we map the mem-
ory blocks in M1 and M2 to the cache as shown in the
Figure 3(b), only one cache line is overlapped. There-
fore, Equation 4 only gives an upper bound for the number of
overlapped cache lines.�
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In order to apply Equation 4 to estimate the upper bound for the
number of cache lines to be reloaded after a preemption, we need
to know the memory block addresses accessed by the preempting
task and the preempted task.

Next, we will discuss how to find the memory blocks accessed
by a task by using path analysis techniques.

4.3. Path Analysis

The set Mi used in the section above contains all the memory
block addresses that can possibly be accessed by the preempted
task Ti, if we do not use any path analysis methods. In this case, the
result derived from Equation 4 only gives an upper bound for the
number of cache lines that could be potentially reloaded by the pre-
empted task. However, since the preempted task might have more
than one feasible path and only one path is executed, some mem-
ory blocks may not be accessed, in which case there would be no
need to reload the cache lines mapped from those memory blocks.
Example 6 gives such a case.

Example 6. Figure 4 shows the CFG of ED which has four
SFP-Prs. When the image size is fixed (i.e. the number of pix-
els to be processed is fixed), the loop bounds in the dashed-
line rectangles are fixed. There are no other branches de-
pending on the input data in these two loops. Thus, these
two loops can be viewed as SFP-Prs. The CFG of ED can
be simplified as the graph shown in Figure 4 (b). Each node
in this graph represents an SFP-Prs in the ED program. Ac-
cording to the parameter selected by the user, the program
can only take either the path (v1, e1, v2, e2, v3, e4, v5) or the
path (v1, e1, v2, e3, v4, e5, v6); thus, only one of two SFP-Prs,
v3 or v4, can be accessed in one run. In this case, the evicted
cache lines to be used by v3 and the evicted cache lines to
be used by v4 do not need to be reloaded at the same time in
one run. �
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The issue presented in Example 6 can be described more gener-
ally. Suppose we have two tasks in a system with an L-way set asso-
ciative cache, Ti and Tj . The largest index of the cache is N −1. Tj

has a higher priority than Ti. Thus, Tj can preempt Ti. We use Mj

to represent the set of all memory block addresses that can be pos-
sibly accessed by Tj . The CFG of Ti is Gi = (Vi, Ei), where Vi =
{vi,1, vi,2, ..., vi,n} and Ei = {ei,1, ei,2, ..., ei,m}. A path in Gi

can be represented with Pak
i = {vi,i1 , ei,i1 , vi,i2 , ei,i2 , ..., vi,ip

}.
We use Mk

i to denote the set of memory block addresses accessed
by the task Ti when Ti runs along the path Pak

i . The CIIP of Mk
i is

M̂k
i = {m̂k

i,0, m̂
k
i,1, ..., m̂

k
i,N−1}. When Pak

i is determined, Mi,k

can be derived from the simulation method as used in SYMTA [6].
We assume that there is no dynamic data allocation and the ad-
dresses for all data structures are fixed. Now, we need to find a
path in the preempted task Ti. When Ti takes this path, the mem-
ory blocks loaded to the cache have the largest overlap with the
cache lines that can possibly used by the preempting task. In other
words, when Ti takes this path, the number of cache lines evicted
by Tj and also used by Ti is the largest. This problem can be trans-
formed to a problem of finding the longest path in a graph.

First, since the cache lines in all SFP-Prs only need to be
reloaded once, we can remove all the cycles caused by loops in
the CFG. In Example 6, edge e6 and edge e7 are removed, which is
shown in Figure 4 (c). Next, we define a cost function for the path
Pak

i in the preempted task Ti.

C(Pa
k
i ) = S(Mj , M

k
i ) =

N−1∑

r=0

min{|m̂k
i,r|, |m̂j,r|, L} − −(5)

The cost of a path Pak
i in the preempted task Ti is defined as the

maximum number of cache lines that can be possibly overlapped
with the cache lines used by the preempting task Tj , when the pre-
empted task Ti runs along the path Pak

i .
By using this cost function, we can apply a Dynamic Program-

ming algorithm to find the longest path in the CFG of Ti. Suppose
the longest path is represented with Palongest, the number of cache
lines to be reloaded in the worst case is bounded by the cost of
Palongest.

Furthermore, we assume that cache miss penalty is a constant,
which is represented by Cmiss. The cache reload overhead caused
by Tj preempting Ti, Cpre(Ti, Tj) can be estimated with the fol-
lowing formula,

Cpre(Ti, Tj) = C(Palongest) × Cmiss −−(6)

This algorithm potentially needs to calculate over all paths. How-
ever, in practice, many embedded programs have control flow
graphs with a reasonably small number of paths. Thus, our ap-
proach can still apply to many such systems.

4.4. Overall Approach

Putting all the steps described above together, we can de-
rive our WCRT estimate approach. Suppose we want to estimate
the WCRT of Ti. All the SFP-Prs of Ti are represented by the nodes
in the CFG of Ti, which are v1, v2, ..., vm. All the tasks that have
higher priorities than Ti are in the set hp(i) = {Ti1 , Ti2 , ..., Tik

}.
Also, we assume that we have derived the WCET Ci of ev-
ery task Ti, i = 1, 2, ..., n, and the CFG of all tasks except the
tasks with the highest priority by using SYMTA. Because the
tasks with the highest priority are not preempted, we will not per-
form path analysis on these tasks.
Step 1. For every task in hp(i), derive the set of all memory block
addresses that can be possibly accessed by the task in hp(i) by

Task WCET(us) Period(us) Priority
T1(OFDM) 2830 40,000 4
T2(ED) 1392 6,500 3
T3(MR) 830 3,500 2

Table 1. Tasks

the simulation approach as used in SYMTA [6]. Here, we as-
sume that there is no dynamic data allocation in the program. For
our future work, we plan to extend our research to handle dy-
namic data allocation.
Step 2. For every task Tik

∈ hp(i), use the cost function de-
fined in Equation (5) to estimate the number of cache lines to be
reloaded after Tik

preempts Ti. Furthermore, the cache reload over-
head caused by Tik

preempting Ti, which is Cpre(Ti, Tik
), can be

derived with Equation (6).
Step 3. Use the following iterations to calculate WCRT of Ti.
R0

i = Ci;

R1
i = Ci +

∑
j∈hp(i)d

R0

i

Pj
e × (Cj + Cpre(Ti, Tj) + 2Ccs)

...
Rk

i = Ci +
∑

j∈hp(i)d
R

k−1

i

Pj
e × (Cj + Cpre(Ti, Tj) + 2Ccs)

This iterative procedure terminates when Ri converges. The final
value of Ri is the WCRT of Ti.

In order to analyze the schedulability of the system, we compare
the WCRT of each task with its deadline. Because we assume that
the deadlines of tasks are equal to their periods, we can conclude
that a task cannot meet its deadline if the WCRT of a task is longer
than its period or if the iteration procedure in Step 3 diverges.

5. Experimental Results

We use the application described in Example 1 to test our ap-
proach. Table 1 lists the WCET, periods and priorities of three
tasks: OFDM, ED and MR. For WCET, we use SYMTA, which
is a single-task based WCET estimate approach [6] as mentioned
in Section 4.1. MR has the highest priority and OFDM has the low-
est priority.

The applications are run on an ARM9TDMI processor with a
32KB 4-way set associative cache. Each line in the cache is 16
bytes; thus, there are 512 lines in each “way” of the cache. The
instruction set is simulated with XRAY [14]. The tasks are sup-
ported by the Atalanta RTOS developed at Georgia Tech [12]. The
whole system is simulated with Seamless CVE provided by Men-
tor Graphics [13].

In the experiment, we compare three approaches to estimate
cache reload overhead caused by preemptions.
Approach 1: All cache lines used by preempting tasks are reloaded
for a preemption. Note that this approach is proposed by [10].
Approach 2: Only lines in the intersection set of lines used by the
preempting task and the preempted task are reloaded for a preemp-
tion. Inter-task cache eviction method proposed in this paper is used
here.
Approach 3: Path analysis for the preempted task is added to Ap-
proach 2 to reduce the estimate of the number of cache lines to be
reloaded, as explained in this paper.

Approach 1 assumes that all cache lines used by the preempt-
ing task will be accessed by the preempted task after the preempted
task is resumed. Obviously, this may not be true. Some cache lines
will never be used by the preempted task no matter which path the
preempted task takes. Thus, by calculating the set of cache lines
that can possibly be accessed by both the preempting and the pre-
empted task, we can further reduce the estimate of the number of



App. 1 App. 2 App. 3
OFDM by MR 245 134 111
OFDM by ED 254 172 135

ED by MR 245 82 77

Table 2. Number of cache lines to be reloaded

cache lines to be reloaded by the preempted task, as shown in Ap-
proach 2. On the other hand, due to the existence of multiple fea-
sible paths in the preempted task, the preempted task cannot ac-
cess all the memory blocks in one run after it is resumed. Hence,
we use path analysis techniques to find the longest path of the pre-
empted task in terms of the cost function defined in Equation (5).
Approach 3 integrates such path analysis based on Approach 2. The
results show that performing path analysis on the preempted task
can further reduce the estimate of the number of cache lines to be
reloaded.

Cmiss(cycles) Task App. 1 App. 2 App. 3 ART
OFDM 9847 9350 9207 6113

10 ED 2567 2404 2399 2382
OFDM 12510 10096 9810 6211

20 ED 2812 2486 2476 2400
OFDM 23501 12174 10413 6255

30 ED 3057 2568 2553 2426
OFDM 45216 16700 12390 6362

40 ED 3302 2650 2630 2525

Table 3. Comparison of WCRT estimate

We also vary Cmiss from 10 cycles to 40 cycle to investigate the
influence of cache miss penalty on WCRT estimate. The estimate
results and the Actual Response Times (ART) are listed in Table 3.
Table 4 lists the improvement of our approach (Approach 3) over
Approach 1.

Compared with Approach 1, Approach 3 achieves a reduction of
73% in WCRT estimate of OFDM when the cache penalty is 40 cy-
cles. The WCRT estimate of ED is also reduced by 20.4% in this
case.

6. Conclusion

We propose a method to analyze the preemption cost caused by
cache eviction in a multi-tasking real-time system. The method ana-
lyzes the inter-task cache eviction behavior by calculating the inter-
section set of cache lines used by the preempting task and the pre-
empted task. Furthermore, path analysis is used to eliminate cache
lines that will not be accessed in a task from being used in the es-
timate. By combining these two approaches, we can achieve up to
73% reduction in WCRT estimate in our experiment.

Currently, we assume that all cache lines evicted in the preemp-
tion will be reloaded by the preempted task after the preemption.
However, only a subset of cache lines evicted during the preemp-

Cache Penalty (cycles)
Task 10 20 30 40
OFDM 6.5% 21.6% 55.7% 73%
ED 6.5% 11.9% 16.5% 20.4%

Table 4. Comparison of results

tion will be accessed again. By applying this fact, we can expect
a even tighter estimate of preemption-related cache reloading cost.
We will continue our work in this aspect in future.
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