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Abstract 
 

In this paper, a software debugging mechanism for 
embedded systems is presented. The debugger is a 
dynamically loadable and linkable module of the 
operating system. The methodology presented in this 
paper provides automatic error detection, classification 
and location capabilities for a set of algorithmic errors. 
An example implementation of our approach is given for 
debugging an integer divide-by-zero error. 
 
 
1.  Introduction 
 

Testing and debugging of software constitutes a 
significant amount of the development time. Debugging 
time itself can account for up to 50% of the total time 
required for software development [1]. Experience with 
software development has shown that software is often 
delivered late, although it is still functionally incorrect.  

Today’s debugging is mostly dependent on the 
programmer’s experience. In order to remove a bug from 
software, the programmer first has to detect the erroneous 
behavior in the program and classify the error, i.e., he or 
she has to find out what type of error may be the cause of 
the abnormal situation. Then, he or she has to locate the 
exact place of the error in the code. Finally, the 
programmer has to modify the code piece at the error 
location to remedy the situation. The problem is that this is 
an iterative, trial and error process, that is, more than one 
pass through each step may be needed in order to 
successfully remove the bug from the program. What is 
worse is that clearing a bug may create new bugs in the 
code.  

Another challenge arises if we consider debugging 
embedded software.  This is because of the difficulty of 
testing the code within the embedded environment in 
which the program will eventually be running. Although 
the earlier stages of the development can be accomplished 
on a separate host machine, the final code development 

has to be done on the target embedded system in order be 
able to capture the errors related to the target platform, 
such as an error which only occurs during collecting 
samples from an attached sensor in the embedded system. 
It is an unaffordable luxury to run a powerful debugger 
together with other application(s) and possibly with a 
complex operating system on the target embedded 
platform because of the scarceness of the available 
resources. On the other hand, if the debugger is run on a 
host machine communicating with the target, it is hard to 
collect state information with necessary detail from a 
deeply embedded target system. 

In order to ease the debugging process for the 
programmer, several software-debugging techniques have 
been researched. One of the efforts is called relative 
debugging [2]. This approach relies on the automatic 
comparison of the buggy code with a correct reference 
code. However, in this method the drawback is that the 
correct version of the code may not be always available.  

There are also other approaches where the software 
developer is forced to avoid errors during coding. This is 
provided by constraints defined inside the program code in 
the form of assertions [3]. Assertions are linguistic 
constructions which allow either run-time checking or 
compile-time checking of constraints defined in the 
programs. Going one step further, some logic 
programming languages have been developed depending 
on the assertion methodology such as Godel [4] and 
Mercury [5]. Although assertions can get rid of a set of 
common user errors, they are not fully efficient as they 
still do not cover a large set of errors that cannot be 
detected by linguistic constructions. This is also true for 
logic languages which also require dedicated compilers. 

 Two other related methods for simplifying the job of 
locating the error in the program are divide-and-query [6] 
and program slicing [7]. The divide-and-query algorithm 
recursively searches a computation tree representing the 
target program until a bug is found. Program slicing, on 
the other hand, is a method which specifies executable 
statements (program slices) that can influence a value of a 
variable, so that when an incorrect value is attained by that 



 

variable, the error search space is reduced to the relative 
program slice.  However, these methods do not work well 
for multi-threaded applications running on a Real-Time 
Operating System (RTOS) where complex interactions 
between program parts hinder the process of searching 
computation trees and specifying exact program slices. 

There are also different techniques that have been 
developed for debugging embedded systems. In one 
technique, a part of the debugger tool that is called the 
debug monitor (which is responsible for providing 
debugging features and downloading the executable 
program to the target system) and the application program 
run on the target system. Since the debug monitor runs on 
the target platform, it has the ability to collect information 
about the target system internals. However, a debug 
monitor is usually burned on a ROM in the target 
platform, which prevents the monitor from being updated 
later on. Also, it is not easy to remove the ROM monitor 
after system testing is done, so that the ROM monitor is 
usually kept in the final product at an extra cost. The rest 
of the debugger tool, which is the user interface, runs not 
on the application platform but instead on a different 
platform which is usually a computer with a display 
terminal. Since the platforms are separate, a 
communication link is needed between the two. A UART 
and a suitable line driver in the target platform are often 
needed for this [8]. 

Another technique is to use in-circuit emulators (ICEs), 
which are hardware units containing real-time event 
detection, real-time tracing and memory emulation, all 
integrated behind a unified user interface. The problem 
with ICEs, however, is that they lag behind the processor 
production time and become useless as the processor 
version changes. Furthermore, ICEs are usually expensive. 

Finally, the last technique, which is becoming 
increasingly common, is the debugging technique using 
dedicated processor pins. Most of the modern processors 
support some dedicated pins by which a debugger program 
can observe some internal signals of the processor and 
extract debug information from interpretation of these 
signals. In this technique, the whole debugger software 
runs on a host machine and communicates with the target 
processor via these dedicated pins. In the latest processors 
this type of debugging is done via JTAG pins [9]. 
However, for deeply embedded cores, it is almost 
impossible to reach the internal signals of a processor and 
extract detailed debugging information.  

Therefore, it is desirable to come up with an efficient 
mechanism which solves the problems related with the 
debugging of the embedded software. Also, it is highly 
desirable to develop an easy method which will take the 
burden away from the software engineer by automating 
the error detection, classification and location steps not 
only for single-threaded  applications  but  also  for  multi- 
threaded ones. 

 

 

Figure 1. Typical debugging platform for 
Debugger RTOS applications 

 
In this paper, we explain a new approach which 

addresses the aforementioned issues by automating the 
debugging process for multi-threaded applications running 
on embedded systems. Specifically, we propose a unique 
and novel RTOS based debugging methodology for 
embedded systems where the debugger is a dynamically 
loadable module of the operating system. For this reason 
we give our methodology the name Debugger RTOS. Our 
Debugger RTOS brings much more control over errors by 
providing both an automatic error detection, classification 
and location mechanism as well as complete state 
information about the system both at the application level 
and the operating system level. Since the debugger runs on 
the target system rather than on a host computer, it is 
possible to collect information about the internals of the 
target system no matter how deeply embedded it is.  On 
the other hand, since the debugger is dynamically loaded, 
it does not consume system resources while not in the 
debugging session. However, instrumentation code – i.e., 
code inserted into the kernel to detect errors and then load 
the debugger module – must be present at all times. Thus, 
during normal operation, the overhead is only due to the 
instrumentation code. Moreover, there is a flexibility 
brought by a dynamically loadable debugger module: 
namely, the debugger module can be improved by 
additional functionality and integrated into the system at 
any point in time. In other words, our methodology 
combines the advantages of ROM based debugging and 
JTAG based debugging by providing necessary detail 
together with flexibility and low cost.  
 
2.  System model 
 

A typical debugging platform for the Debugger RTOS 
applications is shown in Figure 1. The Debugger RTOS  
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In the case of hardware exceptions, the error monitor 

does not need to provide a detection mechanism as these 
exceptions themselves can be detected by hardware. 
Therefore, if there should happen to be a hardware 
exception, the error monitor is only responsible for the 
dynamic instantiation of the debugger module. On the 
other hand, in case of algorithmic errors, the error monitor 
is responsible for both the detection of the error and the 
instantiation of the debugger module. Algorithmic error 
detection is achieved by the probes inserted inside the 
RTOS code. The programmer can enable or disable these 
probes according to his needs. This monitoring method is 
completely different from traditional monitoring 
methodologies where probes are inserted directly inside 
the application code. Probes inside the RTOS keep the 
application code unchanged and brings transparency 
between the user and the system. Another advantage of 
RTOS probes comes with the concept of RTOS-aware 
debugging [10]. RTOS-awareness comprises two basic 
sets of resources: RTOS state knowledge and tracking of 
code execution on a thread, rather than on a procedural, 
basis. RTOS probes can have a complete access to RTOS 
internals such as task control blocks (TCBs), the ready 
task table, semaphores and mailbox structures. Access to 
these RTOS internals allows the Debugger RTOS to have  
wider control over the system, therefore providing much 
more detailed information in case of a failure condition. 
Moreover, by RTOS-aware error monitoring, it is possible 
to differentiate between the threads. Conventional 
debuggers fail miserably in multi-threaded environments 
where there is no way to differentiate between threads: 
thus, for instance, a breakpoint set on one thread affects all 
instances of the code.   

The debugger module is a dynamically loadable and 
linkable part of the RTOS. In case of error free execution, 
the debugger module is never loaded; this prevents 
consumption of extra system resources. When the 
debugger module is not activated, it is kept in a storage 
unit external to the target system. This storage unit may be 
the hard drive of the host computer shown in Figure 1. As 
soon as an error condition occurs (either a hardware 
exception or an algorithmic error), the error monitor loads 
the debugger module from the external storage unit into 
the memory of the target system and the debugger module 
is dynamically linked to the RTOS. The dynamic loading 
and linking mechanism of the debugger module is 
explained in the following section. This method is similar 
to the method described by Kuacharoen, et al [13]. 
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Module Table 
 

Function name Address 
Debugger 0xFF000000 

 
 
 

Global Variable Table 
 

Global Variable Address 
Current_Task_ID 0xFF00A000 

TCB_List 0xFFF00B00 
… … 

 
   

 
 

Figure 3. Module table and global variable table 
structures 

 
 
2.1. Dynamic addition of the debugger module to 
the Debugger RTOS 
 

The loading and linking process of the debugger 
module at run-time is composed of three steps as follows: 

 
1. If the debugger module is not already in the memory, it    

has to be brought into memory first. 
2. There may be external references inside the debugger 

module that must be resolved when it is linked to the 
kernel executable. 

3. The debugger module has to be initialized in order to 
completely integrate with the kernel. 

 
In order to make the loading and linking processes 

much more flexible, we decided to implement API 
functions that take care of the above three steps. These         
functions are named load_module_debugger() and 
init_module_debugger(). 

The load_module_debugger() routine handles step 1 of 
the loading and linking mechanism by allocating memory 
space and loading the pre-compiled debugger module into 
this memory location. The first place that is looked for 
loading the debugger module is a free memory block in 
the heap section of the memory. If there is no such block 
available in which to fit the debugger module, another 
module of the RTOS such as the scheduler is replaced by 
the debugger module. We assume that after an error is 
detected, the programmer will not want to continue the 
execution but will modify the code in order to remove the 
bug reported by the debugger module. Then, he or she will 
re-compile the code with the original components and re-
execute the program. Therefore, it is completely safe to 
perform a module replacement as described above. 

The second step of the loading and linking mechanism 
is one of the most important and tricky steps. To achieve 
this, we maintain a global variable table (Figure 3) which 
holds the addresses of global variables that may be 
referenced within the debugger module. Furthermore, 
most of the compilers today generate code so that global 
variables local to a module are referenced by an 
indirection from an absolute address. Therefore, these 
references must be updated according to the target 
memory space where the module is loaded. However, this 
updating degrades performance considerably due to 
further processing of binary executable at run-time [11]. 
Instead, we compile the debugger module so as to generate 
position independent code in advance. Consequently, all of 
the references inside the debugger module become relative 
addresses and thus independent of the memory address 
where the module is located.  

Finally, the init_module_debugger() function takes care 
of the third step of the loading and linking mechanism. We 
construct another table, module table (Figure 3), which has 
an entry for referencing the debugger module inside the 
RTOS kernel. This entry consists of a function pointer. 
The init_module_debugger() function updates this pointer 
in order to make it point to the debugger module. The 
init_module_debugger() function also handles the 
initialization necessary for the debugger module to work 
properly. 

 
3.  Experimental setup 
 

We implemented an experimental setup similar to the 
setup shown in Figure 1 for testing our methodology. The 
setup consists of the Debugger RTOS which runs on a 
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Figure 5.  A snapshot of an example application 

for testing Debugger RTOS with the detection 
of the divide-by-zero error 

 
PowerPC 860 processor.  We instrumented the Debugger 
RTOS with the error monitor code. The debugger module 
is a custom made small program which reports the cause 
of an error, the location of the error in the program, and 
dumps the state information to the screen. The 
communication between the host computer and the target 
board is established by a JTAG interface. Note that the 
JTAG interface is not used for JTAG based debugging in 
its original way; rather, it is used only for data exchange 
between the host and the target in our experimental setup.  
Therefore, we are not subject to the disadvantages of the 
JTAG based debugging as outlined before. The reason we 
chose JTAG is that we wanted to show that our 
methodology can work fine with the latest available 
technology. In the following paragraphs we show an 
example of detecting an integer divide-by-zero algorithmic 
error1 in the application code. 

The probe for the detection of a divide-by-zero error is 
implemented in the following way. Class types of 
int_check, float_check and double_check are defined for 
all data types in the RTOS, which include an overloading 
of the division operator (“/”) using the C++ language. 
Thus, the ordinary division operator gains a functionality 
of checking for the divide-by-zero condition. Then, these 
class types are mapped into the corresponding generic data 
types such as INT, FLOAT and DOUBLE. Thus, when the 
application programmer uses a division operator (“/”) with 
operands of these generic data types, he or she actually 
uses the modified division operator, which detects the 
divide-by-zero error condition.  

                                                 
1 This error has hardware support on PowerPC processors in terms of a 

hardware exception which is generated for floating point division 
only. 

The integer divide-by-zero error detection mechanism 
is summarized in the diagram in Figure 4. The generic data 
type INT is converted into int_check class type (which is 
defined in the RTOS code) during the compilation of the 
source code. When a divide-by-zero error condition occurs 
(which is checked by the int_check class type implicitly), 
a trap() function is called, which in turn calls the 
load_module_debugger() and init_module_debugger() 
functions. 

We ran a multi-threaded graphics application to test the 
Debugger RTOS. We used the CrossView Pro Tool [12] 
as our user interface on the host. The experiment 
application consists of three threads. Two threads read two 
different sets of floating-point voltage samples from a file 
record and display the waveforms on the screen. The third 
thread rounds the voltage values by assigning them to 
integer variables and computes the ratio of them by 
dividing one of the rounded samples by the other. When 
one of the divisor voltage samples is between –1 and +1, it 
is rounded to zero, so that a divide-by-zero error condition 
occurs. A snapshot of the user interface running on the 
host and a sample output from the debugger module are 
shown in Figure 5 and Figure 6, respectively. Note that the 
fourth thread, of which status is shown as “ready” in the 
sample output, is the idle thread created by the operating 
system in the system initialization phase. 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 

Figure 6. A sample output from the debugger 
module 

 
Error occurred in program at address: 0x35f10 
Error type: Divide by zero 
 
R0: 0x35f10 R11: 0x0  R22: 0x0 
R1: 0x9160 R12: 0x0  R23: 0x0 
R2: 0x4080 R13: 0x4000 R24: 0x0 
R3: 0x4074 R14: 0x0  R25: 0x0 
R4: 0x0  R15: 0x0  R26: 0x0 
R5: 0x0          R16: 0x0  R27: 0x0 
R6: 0x0  R17: 0x0  R28: 0x0 
R7: 0x0  R18: 0x0  R29: 0x0  
R8: 0x0  R19: 0x0  R30: 0x0 
R9: 0x0  R20: 0x0  R31: 0x0 
R10: 0x0  R21: 0x0 
MSR: 0x9002 SRR0: 0x35f10 SRR1: 0x9002 
CR: 0xe0e1e2e3 LR: 0x35f2c IAR : 0x3f0c 
 
Current thread ID: 3 
Current thread stack address: 0xd0f0 
 
Thread states 
------------- 
Thread 1 : Waiting 
Thread 2 : Waiting 
Thread 3 : Running 
Thread 4 : Ready 



 

The current version of the debugger module is capable 
of classifying the error, indicating its location in the 
program code and dumping state information. As it can be 
seen from Figure 6, it is very easy to acquire valuable state 
information about RTOS internals even by a simplistic 
first version of the debugger module. Table 1 shows the 
sizes of the error monitor, the debugger module and the 
other RTOS modules in terms of the number of C lines.  
 

Table 1. Debugger RTOS modules 
 

 Number of C lines 
Error monitor 273 
Debugger module 168 
Other RTOS modules 2686 

 
 
4.  Conclusion 
 

Debugging software is an inevitable and arduous task.  
Embedded systems provide the additional challenges of 
limited visibility of the system through a small number of 
inputs and outputs. Today’s debugging methodologies for 
embedded systems can be inadequate for overcoming this 
problem with a low cost and flexible solution. The 
Debugger RTOS brings an efficient and flexible software 
mechanism for debugging embedded systems. The 
capability of automatic detection, classification and 
location of an extensible set of algorithmic errors adds 
intelligence to the debugger, including errors thought of 
after writing the application code. Our Debugger RTOS 
migrates the debugger from the application level to the 
operating system level. This eases the job of gathering 
program state information for the debugger in terms of 
RTOS level entities such as threads or interrupts. Since the 
error monitor resides inside the RTOS, the error detection 
mechanism is completely transparent to the application 
programmer. Furthermore, by the help of dynamic loading 
and linking mechanism of the debugger module, more 
efficient use of memory can be achieved. This also helps 
to update the debugger module separate from the other 
parts of the RTOS and integrate it with the system easily 
in the future.  

The first step as a future work is to improve the 
debugger module with more sophisticated debugging 
features such as program tracing, breakpoint insertion and 
variable query. In order to be able to do that, the debugger 
module has to be run concurrently with the application(s) 
and other RTOS modules during the debugging session. 
Therefore, an intelligent selection scheme is necessary to 
determine which other RTOS module(s) can be replaced 
by the debugger module if there is not enough memory 
available on the embedded system until the debugger 
session completes.  
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