

A Debugger RTOS for Embedded Systems

Tankut Akgul, Pramote Kuacharoen, Vincent J. Mooney and Vijay K. Madisetti
School of Electrical and Computer Engineering

Georgia Institute of Technology
Atlanta, GA 30332

U.S.A.
Email: {tankut, pramote, mooney, vkm}@ece.gatech.edu

Abstract

In this paper, a software debugging mechanism for
embedded systems is presented. The debugger is a
dynamically loadable and linkable module of the
operating system. The methodology presented in this
paper provides automatic error detection, classification
and location capabilities for a set of algorithmic errors.
An example implementation of our approach is given for
debugging an integer divide-by-zero error.

1. Introduction

Testing and debugging of software constitutes a
significant amount of the development time. Debugging
time itself can account for up to 50% of the total time
required for software development [1]. Experience with
software development has shown that software is often
delivered late, although it is still functionally incorrect.

Today’s debugging is mostly dependent on the
programmer’s experience. In order to remove a bug from
software, the programmer first has to detect the erroneous
behavior in the program and classify the error, i.e., he or
she has to find out what type of error may be the cause of
the abnormal situation. Then, he or she has to locate the
exact place of the error in the code. Finally, the
programmer has to modify the code piece at the error
location to remedy the situation. The problem is that this is
an iterative, trial and error process, that is, more than one
pass through each step may be needed in order to
successfully remove the bug from the program. What is
worse is that clearing a bug may create new bugs in the
code.

Another challenge arises if we consider debugging
embedded software. This is because of the difficulty of
testing the code within the embedded environment in
which the program will eventually be running. Although
the earlier stages of the development can be accomplished
on a separate host machine, the final code development

has to be done on the target embedded system in order be
able to capture the errors related to the target platform,
such as an error which only occurs during collecting
samples from an attached sensor in the embedded system.
It is an unaffordable luxury to run a powerful debugger
together with other application(s) and possibly with a
complex operating system on the target embedded
platform because of the scarceness of the available
resources. On the other hand, if the debugger is run on a
host machine communicating with the target, it is hard to
collect state information with necessary detail from a
deeply embedded target system.

In order to ease the debugging process for the
programmer, several software-debugging techniques have
been researched. One of the efforts is called relative
debugging [2]. This approach relies on the automatic
comparison of the buggy code with a correct reference
code. However, in this method the drawback is that the
correct version of the code may not be always available.

There are also other approaches where the software
developer is forced to avoid errors during coding. This is
provided by constraints defined inside the program code in
the form of assertions [3]. Assertions are linguistic
constructions which allow either run-time checking or
compile-time checking of constraints defined in the
programs. Going one step further, some logic
programming languages have been developed depending
on the assertion methodology such as Godel [4] and
Mercury [5]. Although assertions can get rid of a set of
common user errors, they are not fully efficient as they
still do not cover a large set of errors that cannot be
detected by linguistic constructions. This is also true for
logic languages which also require dedicated compilers.

 Two other related methods for simplifying the job of
locating the error in the program are divide-and-query [6]
and program slicing [7]. The divide-and-query algorithm
recursively searches a computation tree representing the
target program until a bug is found. Program slicing, on
the other hand, is a method which specifies executable
statements (program slices) that can influence a value of a
variable, so that when an incorrect value is attained by that

variable, the error search space is reduced to the relative
program slice. However, these methods do not work well
for multi-threaded applications running on a Real-Time
Operating System (RTOS) where complex interactions
between program parts hinder the process of searching
computation trees and specifying exact program slices.

There are also different techniques that have been
developed for debugging embedded systems. In one
technique, a part of the debugger tool that is called the
debug monitor (which is responsible for providing
debugging features and downloading the executable
program to the target system) and the application program
run on the target system. Since the debug monitor runs on
the target platform, it has the ability to collect information
about the target system internals. However, a debug
monitor is usually burned on a ROM in the target
platform, which prevents the monitor from being updated
later on. Also, it is not easy to remove the ROM monitor
after system testing is done, so that the ROM monitor is
usually kept in the final product at an extra cost. The rest
of the debugger tool, which is the user interface, runs not
on the application platform but instead on a different
platform which is usually a computer with a display
terminal. Since the platforms are separate, a
communication link is needed between the two. A UART
and a suitable line driver in the target platform are often
needed for this [8].

Another technique is to use in-circuit emulators (ICEs),
which are hardware units containing real-time event
detection, real-time tracing and memory emulation, all
integrated behind a unified user interface. The problem
with ICEs, however, is that they lag behind the processor
production time and become useless as the processor
version changes. Furthermore, ICEs are usually expensive.

Finally, the last technique, which is becoming
increasingly common, is the debugging technique using
dedicated processor pins. Most of the modern processors
support some dedicated pins by which a debugger program
can observe some internal signals of the processor and
extract debug information from interpretation of these
signals. In this technique, the whole debugger software
runs on a host machine and communicates with the target
processor via these dedicated pins. In the latest processors
this type of debugging is done via JTAG pins [9].
However, for deeply embedded cores, it is almost
impossible to reach the internal signals of a processor and
extract detailed debugging information.

Therefore, it is desirable to come up with an efficient
mechanism which solves the problems related with the
debugging of the embedded software. Also, it is highly
desirable to develop an easy method which will take the
burden away from the software engineer by automating
the error detection, classification and location steps not
only for single-threaded applications but also for multi-
threaded ones.

Figure 1. Typical debugging platform for
Debugger RTOS applications

In this paper, we explain a new approach which

addresses the aforementioned issues by automating the
debugging process for multi-threaded applications running
on embedded systems. Specifically, we propose a unique
and novel RTOS based debugging methodology for
embedded systems where the debugger is a dynamically
loadable module of the operating system. For this reason
we give our methodology the name Debugger RTOS. Our
Debugger RTOS brings much more control over errors by
providing both an automatic error detection, classification
and location mechanism as well as complete state
information about the system both at the application level
and the operating system level. Since the debugger runs on
the target system rather than on a host computer, it is
possible to collect information about the internals of the
target system no matter how deeply embedded it is. On
the other hand, since the debugger is dynamically loaded,
it does not consume system resources while not in the
debugging session. However, instrumentation code – i.e.,
code inserted into the kernel to detect errors and then load
the debugger module – must be present at all times. Thus,
during normal operation, the overhead is only due to the
instrumentation code. Moreover, there is a flexibility
brought by a dynamically loadable debugger module:
namely, the debugger module can be improved by
additional functionality and integrated into the system at
any point in time. In other words, our methodology
combines the advantages of ROM based debugging and
JTAG based debugging by providing necessary detail
together with flexibility and low cost.

2. System model

A typical debugging platform for the Debugger RTOS
applications is shown in Figure 1. The Debugger RTOS

Figure 2.

and the applicatio
debugger software
and runs on the ta
the other hand,
communication be
established by any

The debugging
composed of two
monitor) and the
(Figure 2). The
detection of errors
of the debugging pa
inside the RTOS in
debugger module
dynamically by the
is met. The debugg
the user with data a
location), the type
debugging feature
memory dump and
internal RTOS stru

In order to get a
monitor, we shoul
can be defined as a
from its intended f
error (bug), on th
program flow wh
failure. Failures ca
In our model, we
may cause failures

The first type o
trying to execute a
supported by the un
caught by hardwa
exceptions which a
the execution of th
exception is an a

caused by executing a load/store instruction with
misaligned operands. The second type of error in our
model is an algorithmic error which is caused by an
incorrect specification or design of the program and which
cannot be caught by hardware. A typical example for this
type of error is assigning an incorrect value to an intended

D
Ot

Application(s)

RTOS
 Error Monitor

 Debugger RTOS structure

n(s) reside on the target system. The
 is completely inside the RTOS code
rget processor. The host computer, on
runs the user interface only. The
tween the host and the target is

suitable communication interface.
 feature of the Debugger RTOS is
 parts: the monitoring part (error
debugging part (debugger module)

error monitor is responsible for the
in the program and for the instantiation
rt. The error monitor is always resident
 the form of instrumentation code. The
, on the other hand, is loaded
 error monitor when an error condition
er module is responsible for providing
bout the exact place of the error (error

 of error (error classification), and the
s such as displaying register values,
 giving detailed state information about
ctures.
 better view of what composes the error
d first state some definitions. Failure
 deviation of the system or component
unction defined in its specification. An
e other hand, is an unwanted state of

ich does not necessarily result in a
n be caused by a wide variety of errors.
define two main types of errors which
in programs.
f error is the error caused by software
n instruction or a function in a way not
derlying hardware. These errors can be
re assistance in terms of hardware
re instruction-related interrupts during
e program. One typical example of an
lignment exception which is usually

variable.
In the case of hardware exceptions, the error monitor

does not need to provide a detection mechanism as these
exceptions themselves can be detected by hardware.
Therefore, if there should happen to be a hardware
exception, the error monitor is only responsible for the
dynamic instantiation of the debugger module. On the
other hand, in case of algorithmic errors, the error monitor
is responsible for both the detection of the error and the
instantiation of the debugger module. Algorithmic error
detection is achieved by the probes inserted inside the
RTOS code. The programmer can enable or disable these
probes according to his needs. This monitoring method is
completely different from traditional monitoring
methodologies where probes are inserted directly inside
the application code. Probes inside the RTOS keep the
application code unchanged and brings transparency
between the user and the system. Another advantage of
RTOS probes comes with the concept of RTOS-aware
debugging [10]. RTOS-awareness comprises two basic
sets of resources: RTOS state knowledge and tracking of
code execution on a thread, rather than on a procedural,
basis. RTOS probes can have a complete access to RTOS
internals such as task control blocks (TCBs), the ready
task table, semaphores and mailbox structures. Access to
these RTOS internals allows the Debugger RTOS to have
wider control over the system, therefore providing much
more detailed information in case of a failure condition.
Moreover, by RTOS-aware error monitoring, it is possible
to differentiate between the threads. Conventional
debuggers fail miserably in multi-threaded environments
where there is no way to differentiate between threads:
thus, for instance, a breakpoint set on one thread affects all
instances of the code.

The debugger module is a dynamically loadable and
linkable part of the RTOS. In case of error free execution,
the debugger module is never loaded; this prevents
consumption of extra system resources. When the
debugger module is not activated, it is kept in a storage
unit external to the target system. This storage unit may be
the hard drive of the host computer shown in Figure 1. As
soon as an error condition occurs (either a hardware
exception or an algorithmic error), the error monitor loads
the debugger module from the external storage unit into
the memory of the target system and the debugger module
is dynamically linked to the RTOS. The dynamic loading
and linking mechanism of the debugger module is
explained in the following section. This method is similar
to the method described by Kuacharoen, et al [13].

Processor(s)

ebugger Module

her RTOS Modules

Module Table

Function name Address
Debugger 0xFF000000

Global Variable Table

Global Variable Address
Current_Task_ID 0xFF00A000

TCB_List 0xFFF00B00
… …

Figure 3. Module table and global variable table
structures

2.1. Dynamic addition of the debugger module to
the Debugger RTOS

The loading and linking process of the debugger
module at run-time is composed of three steps as follows:

1. If the debugger module is not already in the memory, it

has to be brought into memory first.
2. There may be external references inside the debugger

module that must be resolved when it is linked to the
kernel executable.

3. The debugger module has to be initialized in order to
completely integrate with the kernel.

In order to make the loading and linking processes

much more flexible, we decided to implement API
functions that take care of the above three steps. These
functions are named load_module_debugger() and
init_module_debugger().

The load_module_debugger() routine handles step 1 of
the loading and linking mechanism by allocating memory
space and loading the pre-compiled debugger module into
this memory location. The first place that is looked for
loading the debugger module is a free memory block in
the heap section of the memory. If there is no such block
available in which to fit the debugger module, another
module of the RTOS such as the scheduler is replaced by
the debugger module. We assume that after an error is
detected, the programmer will not want to continue the
execution but will modify the code in order to remove the
bug reported by the debugger module. Then, he or she will
re-compile the code with the original components and re-
execute the program. Therefore, it is completely safe to
perform a module replacement as described above.

The second step of the loading and linking mechanism
is one of the most important and tricky steps. To achieve
this, we maintain a global variable table (Figure 3) which
holds the addresses of global variables that may be
referenced within the debugger module. Furthermore,
most of the compilers today generate code so that global
variables local to a module are referenced by an
indirection from an absolute address. Therefore, these
references must be updated according to the target
memory space where the module is loaded. However, this
updating degrades performance considerably due to
further processing of binary executable at run-time [11].
Instead, we compile the debugger module so as to generate
position independent code in advance. Consequently, all of
the references inside the debugger module become relative
addresses and thus independent of the memory address
where the module is located.

Finally, the init_module_debugger() function takes care
of the third step of the loading and linking mechanism. We
construct another table, module table (Figure 3), which has
an entry for referencing the debugger module inside the
RTOS kernel. This entry consists of a function pointer.
The init_module_debugger() function updates this pointer
in order to make it point to the debugger module. The
init_module_debugger() function also handles the
initialization necessary for the debugger module to work
properly.

3. Experimental setup

We implemented an experimental setup similar to the
setup shown in Figure 1 for testing our methodology. The
setup consists of the Debugger RTOS which runs on a

Figure 4. Diagram of th
detection m

INT a,b,c;
c = a/b;
…
}

int_check a,b,c;

--
class int_check {
…
if (b == 0)
trap(…);
else c = a/b;
…
foo {

In Application
Code

e d
ec
In RTOS

trap(…) {
- load_module_debugger(…);
- init_module_debugger(…);
}
ivide-by-zero error
hanism

Figure 5. A snapshot of an example application

for testing Debugger RTOS with the detection
of the divide-by-zero error

PowerPC 860 processor. We instrumented the Debugger
RTOS with the error monitor code. The debugger module
is a custom made small program which reports the cause
of an error, the location of the error in the program, and
dumps the state information to the screen. The
communication between the host computer and the target
board is established by a JTAG interface. Note that the
JTAG interface is not used for JTAG based debugging in
its original way; rather, it is used only for data exchange
between the host and the target in our experimental setup.
Therefore, we are not subject to the disadvantages of the
JTAG based debugging as outlined before. The reason we
chose JTAG is that we wanted to show that our
methodology can work fine with the latest available
technology. In the following paragraphs we show an
example of detecting an integer divide-by-zero algorithmic
error1 in the application code.

The probe for the detection of a divide-by-zero error is
implemented in the following way. Class types of
int_check, float_check and double_check are defined for
all data types in the RTOS, which include an overloading
of the division operator (“/”) using the C++ language.
Thus, the ordinary division operator gains a functionality
of checking for the divide-by-zero condition. Then, these
class types are mapped into the corresponding generic data
types such as INT, FLOAT and DOUBLE. Thus, when the
application programmer uses a division operator (“/”) with
operands of these generic data types, he or she actually
uses the modified division operator, which detects the
divide-by-zero error condition.

1 This error has hardware support on PowerPC processors in terms of a

hardware exception which is generated for floating point division
only.

The integer divide-by-zero error detection mechanism
is summarized in the diagram in Figure 4. The generic data
type INT is converted into int_check class type (which is
defined in the RTOS code) during the compilation of the
source code. When a divide-by-zero error condition occurs
(which is checked by the int_check class type implicitly),
a trap() function is called, which in turn calls the
load_module_debugger() and init_module_debugger()
functions.

We ran a multi-threaded graphics application to test the
Debugger RTOS. We used the CrossView Pro Tool [12]
as our user interface on the host. The experiment
application consists of three threads. Two threads read two
different sets of floating-point voltage samples from a file
record and display the waveforms on the screen. The third
thread rounds the voltage values by assigning them to
integer variables and computes the ratio of them by
dividing one of the rounded samples by the other. When
one of the divisor voltage samples is between –1 and +1, it
is rounded to zero, so that a divide-by-zero error condition
occurs. A snapshot of the user interface running on the
host and a sample output from the debugger module are
shown in Figure 5 and Figure 6, respectively. Note that the
fourth thread, of which status is shown as “ready” in the
sample output, is the idle thread created by the operating
system in the system initialization phase.

Figure 6. A sample output from the debugger
module

Error occurred in program at address: 0x35f10
Error type: Divide by zero

R0: 0x35f10 R11: 0x0 R22: 0x0
R1: 0x9160 R12: 0x0 R23: 0x0
R2: 0x4080 R13: 0x4000 R24: 0x0
R3: 0x4074 R14: 0x0 R25: 0x0
R4: 0x0 R15: 0x0 R26: 0x0
R5: 0x0 R16: 0x0 R27: 0x0
R6: 0x0 R17: 0x0 R28: 0x0
R7: 0x0 R18: 0x0 R29: 0x0
R8: 0x0 R19: 0x0 R30: 0x0
R9: 0x0 R20: 0x0 R31: 0x0
R10: 0x0 R21: 0x0
MSR: 0x9002 SRR0: 0x35f10 SRR1: 0x9002
CR: 0xe0e1e2e3 LR: 0x35f2c IAR : 0x3f0c

Current thread ID: 3
Current thread stack address: 0xd0f0

Thread states

Thread 1 : Waiting
Thread 2 : Waiting
Thread 3 : Running
Thread 4 : Ready

The current version of the debugger module is capable
of classifying the error, indicating its location in the
program code and dumping state information. As it can be
seen from Figure 6, it is very easy to acquire valuable state
information about RTOS internals even by a simplistic
first version of the debugger module. Table 1 shows the
sizes of the error monitor, the debugger module and the
other RTOS modules in terms of the number of C lines.

Table 1. Debugger RTOS modules

 Number of C lines
Error monitor 273
Debugger module 168
Other RTOS modules 2686

4. Conclusion

Debugging software is an inevitable and arduous task.
Embedded systems provide the additional challenges of
limited visibility of the system through a small number of
inputs and outputs. Today’s debugging methodologies for
embedded systems can be inadequate for overcoming this
problem with a low cost and flexible solution. The
Debugger RTOS brings an efficient and flexible software
mechanism for debugging embedded systems. The
capability of automatic detection, classification and
location of an extensible set of algorithmic errors adds
intelligence to the debugger, including errors thought of
after writing the application code. Our Debugger RTOS
migrates the debugger from the application level to the
operating system level. This eases the job of gathering
program state information for the debugger in terms of
RTOS level entities such as threads or interrupts. Since the
error monitor resides inside the RTOS, the error detection
mechanism is completely transparent to the application
programmer. Furthermore, by the help of dynamic loading
and linking mechanism of the debugger module, more
efficient use of memory can be achieved. This also helps
to update the debugger module separate from the other
parts of the RTOS and integrate it with the system easily
in the future.

The first step as a future work is to improve the
debugger module with more sophisticated debugging
features such as program tracing, breakpoint insertion and
variable query. In order to be able to do that, the debugger
module has to be run concurrently with the application(s)
and other RTOS modules during the debugging session.
Therefore, an intelligent selection scheme is necessary to
determine which other RTOS module(s) can be replaced
by the debugger module if there is not enough memory
available on the embedded system until the debugger
session completes.

5. Acknowledgements

This research is funded by the State of Georgia under
the Yamacraw initiative and by NSF under INT-9973120,
CCR-9984808 and CCR-0082164.

We also acknowledge software donations from Mentor
Graphics and Synopsys as well as hardware donations
from Sun and Intel.

6. References

[1] H. Agrawal, R. A. DeMillo, and E. H. Spafford, “Efficient
Debugging With Slicing and Backtracking”, Software Practice &
Experience, June 1993, 23(6), pp. 589-616.

[2] D. Abramson, I. Foster, J. Michalakes, and R. Sosic,
“Relative Debugging: A new paradigm for debugging scientific
applications”, The Communications of the Association for
Computing Machinery, November 1996, 39(11), pp. 67-77.

[3] G. Puebla, F. Bueno, and M. Hermenegildo, “A Framework
for Assertion-based Debugging in Constraint Logic
Programming”, Proceedings of the International Conference on
Principles and Practice of Constraint Programming, number
1520 in LNCS, June 1993, pp. 472-473.

[4] P. Hill, and J. Lloyd, The Godel Programming Language,
MIT Press, Cambridge MA, 1994.

[5] Z. Somogyi, F. Henderson, and T. Conway, “The Execution
Algorithm of Mercury: An efficient purely declarative logic
programming language”, JLP 29, October 1996, pp. 1-3.

[6] Shapiro, E. Y., Algorithmic Program Debugging, MIT Press,
Cambridge MA, 1983, (Ph.D Thesis).

[7] H. Agrawal, R. A. DeMillo, and E. H. Spafford, “Dynamic
Slicing in the Presence of Unconstrained Pointers”, Proceedings
of the 4th ACM Symposium on Testing Analysis and Verification,
October 1991, pp. 60-73.

[8] Diab-SDS web page,
http://www.sdsi.com/developers/debugging.php3

[9] Joint Test Action Group (JTAG) web page.
http://www.jtag.com/

[10] D. Shear, “Real-time operating systems”, EDN (European
Edition), April 1994, 39(8), pp. 84-96.

[11] Levine, J. R., Linkers and Loaders, Morgan Kaufmann
Publishers, October 1999.

[12] Tasking, Inc. web page. http://www.tasking.com

[13] P. Kuacharoen, T. Akgul, V. J. Mooney, V. K. Madisetti,
“Adaptability, Extensibility, and Flexibility in Real-Time
Operating Systems”, Euromicro Symposium on Digital System
Design, September 2001.

http://www.sdsi.com/developers/debugging.php3
http://www.jtag.com/
http://www.tasking.com/

	A Debugger RTOS for Embedded Systems
	Abstract
	1. Introduction
	In this paper, we explain a new approach which addresses the aforementioned issues by automating the debugging process for multi-threaded applications running on embedded systems. Specifically, we propose a unique and novel RTOS based debugging methodolo

	2. System model
	
	Figure 2. Debugger RTOS structure

