
Instruction-level Reverse Execution for Debugging

Tankut Akgul and Vincent J. Mooney III
School of Electrical and Computer Engineering

Georgia Institute of Technology, Atlanta, GA 30332
{tankut, mooney}@ece.gatech.edu

ABSTRACT
The ability to execute a program in reverse is advantageous
for shortening debug time. This paper presents a reverse ex-
ecution methodology at the assembly instruction-level with
low memory and time overheads. The core idea of this ap-
proach is to generate a reverse program able to undo, in
almost all cases, normal forward execution of an assembly
instruction in the program being debugged. The method-
ology has been implemented on a PowerPC processor in a
custom made debugger. Compared to previous work – all
of which use a variety of state saving techniques – the ex-
perimental results show 2.5X to 400X memory overhead re-
duction for the tested benchmarks. Furthermore, the results
with the same benchmarks show an average of 4.1X to 5.7X
time overhead reduction.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Algorithms

Keywords
Reverse code generation, reverse execution, debugging

1. INTRODUCTION
As human beings are quite prone to making mistakes, it

is very difficult for a programmer to write an error-free pro-
gram before testing it. For this reason, debugging is an
important and inevitable part of software development.

Locating bugs by just looking at the source code is quite
difficult. Consequently, a run-time interaction with the pro-
gram is very useful for debugging. Unfortunately, many of
the bugs in programs do not cause errors immediately, but
instead show their effects much later in program execution.
For this reason, even the most careful programmer equipped
with a state of the art debugger might well miss the first oc-
currence of a bug and might have to restart the program.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PASTE’02, November 18–19, 2002, Charleston, SC, USA.
Copyright 2002 ACM 1-58113-479-7/02/0011 ...$5.00.

Furthermore, for difficult to find bugs, this process might
have to be repeated multiple times. Even worse, for inter-
mittent bugs due to rare timing behaviors, the bug might
not reappear right away when the program is restarted.

Reverse execution provides the programmer with the abil-
ity to return to a particular previous state in program exe-
cution. By reverse execution, program re-executions can be
localized around a bug in a program. When the programmer
misses a bug location by over-executing a program, he/she
can roll back to a point where the processor state is known
to be correct and then re-execute from that point on without
having to restart the program. This eliminates the require-
ment to re-execute unnecessary parts of the program every
time a bug location is missed, thus, potentially reducing the
overall debugging time significantly.

In this paper, a novel reverse execution methodology in
software is proposed. The proposed methodology is unique
in the sense that it provides reverse execution at the assem-
bly instruction-level granularity and yet still has reasonable
memory and time overheads when the program is being exe-
cuted. Note that in the rest of this paper, the word “instruc-
tion” refers to an assembly instruction.

2. BACKGROUND AND MOTIVATION
An execution of a program T on a processor P can be rep-

resented by a transition among a series of states
S=(S0, S1, . . . , Sn) where a state Si can be written as a com-
bination of the program counter (PCi), memory (Mi) and
register (Ri) values of P . From this representation, reverse
execution of a program can be defined as follows:

Definition 1. Reverse Execution: Reverse execution of a pro-

gram T running on a processor P can be defined as taking pro-

cessor P from its current state Si=(PCi,Mi, Ri) to a previous

state Sj=(PCj , Mj , Rj), (0 ≤ j < i ≤ n). The closest achiev-

able distance between Si and Sj determines the granularity of the

reverse execution. If state Sj is allowed to be as early as one in-

struction before state Si, then the reverse execution is said to be at

the instruction-level granularity. 2

The simplest method for obtaining a previous state would
be saving that state before it is destroyed. Saving a state
during forward execution of a program introduces two over-
heads: memory and time. Several approaches have been pro-
posed for state saving. In [3, 7], processor states are recorded
periodically at certain checkpoints during forward execution
of the program. Then, a previous state at a checkpoint can
be recovered by restoring that state from the record. How-
ever, a previous state at an arbitrary point cannot imme-
diately be recovered, which results in a coarser granularity

reverse execution. In incremental state saving [10], on the
other hand, instead of recording the whole state, only the
modified parts of a state are recorded. However, if modified
state space is large, memory and time overheads of incre-
mental state saving might again exceed affordable limits.

In program animation [4, 6], a virtual machine with a
reversible set of instructions is constructed. Since these
instructions are reversible, the program can be run back-
wards. However, in program animation, a program can only
be interpreted, which slows down the animation consider-
ably, and makes it impossible to execute the program using
native machine instructions directly, not even in the forward
direction. Moreover, since reversible instructions are usu-
ally constructed as stack operations, a significant amount of
stack memory may be required in program animation.

Another approach introduced is the source transforma-
tion approach [5]. In source transformation, the source code
(e.g., in C) is transformed to a reversible source code version
excluding destructive statements such as direct assignments.
For destructive statements, state saving is applied. Conse-
quently, the execution time and memory requirement of the
transformed code are increased. Source transformation does
not provide reverse execution at the instruction-level gran-
ularity, but instead at the source code (e.g., C) granularity.
Moreover, since the original source code is transformed, the
program being debugged is no longer the original code, but
the transformed code instead. This might be a serious prob-
lem in real-time computing where a small change in program
code can ruin the timing behavior of the code.

Therefore, our goal is to achieve reverse execution at the
native instruction level with low memory and time over-
heads, which will add a missing feature to state of the art
debuggers and will also enable reverse execution of low-level
programs such as device drivers.

3. METHODOLOGY
In order to achieve reverse execution of a program at the

instruction-level, a new term instruction-level reverse pro-
gram is introduced as follows:

Definition 2. Instruction-level Reverse Program: Suppose that

a processor P attains the series of states S = (S0, S1, . . . , Sn)

during its execution of a program T where the distance between two

consecutive states is one instruction. S0 is the initial state before T

executes and Sn is the final state just after T quits. Also, suppose

that another program T ′ exists such that when a specific portion of

T ′ is executed in place of T , when P is at a state Si ∈ S, the state of

P can be brought to a previous state Sj ∈ S (0 ≤ j < i ≤ n). If T ′

contains an executable portion for changing the state of P from any

state Si ∈ S to any other previous state Sj ∈ S (0 ≤ j < i ≤ n),

then T ′ is called the instruction-level reverse program of T . 2

Taking Definition 2 as a basis, suppose that one wants
to generate an instruction-level reverse program T ′ for a
program T . Since the distance between two consecutive
states in S is one instruction, T can be represented by an
ordered completion of a sequence of assembly instructions
I = (i1, i2, . . . , in) where ik ∈ I (1 ≤ k ≤ n) changes the
state of P from Sk−1 to Sk . Now, suppose that one could
write a set of one or more instructions denoted by I ′

k for an
instruction ik ∈ I such that if I ′

k is executed with P being
at state Sk, the state of P can be brought back to Sk−1. In
other words, I ′

k can undo the effect of ik on P ’s state. We
assume that I ′

k consists of a set of instructions rather than

a single instruction because more than one reverse instruc-
tion may need to be generated for reversing the effect of an
instruction in I. Then, the effect of the complete sequence I

can be taken back by an ordered completion of the sequence
of sets I ′ = (I ′

n, I ′
n−1, . . . , I ′

1) where I ′
k ∈ I ′ reverses the

effect of ik ∈ I . Therefore, it is sufficient to perform the
following three steps to generate a reverse program T ′ for a
program T :

1. Extract the completion order of the instructions in T

2. Generate the sets of reverse instructions of the instruc-
tions in T

3. Combine the generated sets of reverse instructions in
a way to make those sets complete in the opposite
completion order of the instructions in T

Given a program T as an input, the reverse code gen-
eration (RCG) algorithm presented in this paper generates
an instruction-level reverse program T ′ for T by perform-
ing the three steps mentioned. Let us call these three steps
the RCG steps. Reverse code is generated for every proce-
dure/function in T separately and reverses of procedures/
functions are combined by a state saving approach [2]. There-
fore, the rest of the paper focuses on the generation of the
reverse procedures/functions.

A procedure/function within a program for which a re-
verse program will be generated is statically analyzed. This
static analysis occurs assembly instruction by assembly in-
struction in the order the instructions are placed by the com-
piler (lexical order). After an instruction is analyzed, the al-
gorithm goes over the RCG steps consecutively to grow the
reverse procedure/function. Some instructions within a loop
are analyzed by more than one pass (at most three passes)
over the loop body before the reverse code is generated for
those instructions.

Note that this paper focuses on assembly level analysis as
a first step to provide reverse execution capabilities. How-
ever, this research can be extended in a straightforward way
to be integrated into a compiler and to connect the reverse
assembly execution to reverse source code execution.

In the following subsections, we will explain how the RCG
steps are handled in the RCG algorithm. We begin with the
explanation of the first RCG step in the next subsection.

3.1 Determining the dynamic control flow in-
formation

The static analysis starts with the construction of a con-
trol flow graph (CFG) for each procedure/function in a pro-
gram T . Each node in a CFG represents a basic block (BB).
A basic block is a single entry, single exit block of a maximal
number of consecutive instructions. The important property
of a BB is that the instructions within a BB complete in lex-
ical order. Therefore, the CFG construction by itself reveals
the completion order of the instructions within the BBs,
which partially handles the first RCG step. To satisfy the
requirement of the first RCG step for a procedure/function
fully, it is necessary to know how control flows dynamically
between the BBs of that procedure/function as well.

The easiest way to obtain the dynamic control flow infor-
mation is via path tracing which is commonly used for va-
riety of dynamic analyses such as dynamic slicing [1]. How-
ever, due to memory and time overheads caused by path
tracing, we follow another approach which employs the use
of control flow predicates. To understand how this is done,

addi: add immediate

lwz: load word

stw: store word

cmpi: compare immediate

blt: branch if less than

bgt: branch if greater than

subi: subtract immediate

b: unconditional branch

cb: conditional branch

BB1

BB2

BB3

BB4

start

addi r2, r1, 8

lwz r4, 0(r2)

cmpi r4, 97

blt exit

cmpi r4, 122

bgt exit

subi r4, r4, 32

stw r4, 0(r2)

addi r2, r2, 4

b loop exit

cb1

cb2
true

false

true

false

Figure 1: An example control flow graph (CFG).

consider the CFG of a function shown in Figure 1. Let us re-
fer to the function of Figure 1 as F . When the RCG analysis
reaches the confluence point of the edges at the entrance of
the exit block, one needs to know along which incoming edge
the exit block is dynamically reached, so that the appropri-
ate reverse instructions for F (that will move the control
backwards along the actually taken path) can be generated.
This is decided by the conditional branch instruction at the
end of BB2 which causes the flow of control to be divided
into two separate paths before reaching the exit block. The
predicate expression for this conditional branch instruction
is r4 < 97. If the value of the predicate expression r4 < 97
is true, then the exit block is reached via one edge (from
BB2), otherwise it is reached via the other edge (from BB3).
Therefore, knowing the final predicate value (as being true
or false) for r4 < 97 attained during the execution of F is
sufficient to determine the necessary dynamic control flow
information to know, in this case, which edge was traversed
to reach the exit block.

To obtain the value of a predicate expression attained dur-
ing forward execution, the RCG algorithm reevaluates the
predicate expression during reverse execution. In Figure 1,
for example, the value of the predicate expression r4 < 97
can be found once again at the entrance point of the exit
block by executing the compare instruction “cmpi r4, 97”
during reverse execution. Then, one or more conditional
branch instructions can be inserted at that point into the
reverse code which will take the control backwards accord-
ing to the reevaluated predicate value. Since the predicate
value is obtained during reverse execution, there is no time
or memory overhead encountered during forward execution
of F . However, in this method, if the value of any variable
used in the predicate expression (the value of r4 in this case)
has already been destroyed before reaching the reevaluation
point, then that destroyed value must be recovered during
reverse execution beforehand. How this recovery is done will
be apparent when we explain the second RCG step.

A question that should be answered at this point is how
the RCG algorithm determines the predicate expression to
use at a point of confluence of edges. For this purpose,
the RCG algorithm uses special labels assigned to the edges
of the CFG under consideration. As will be explained in
Section 3.2, edge labels also assist in finding reaching defi-
nitions at a certain program point efficiently. Note that we
could also have used a standard control dependency graph

(CDG) [9] analysis to determine the predicate expressions;
however, due to the desire to find the predicate expressions
and reaching definitions together in an efficient way, edge-
labeling is preferred over a CDG analysis. We will now in-
troduce the edge-labeling algorithm and then describe how
the predicate expressions are determined.

3.1.1 Edge-labeling algorithm
The RCG algorithm assigns a special label to every for-

ward edge in the CFG of a procedure/function. Backward
edges are not considered because giving labels to backward
edges helps in the determination of neither the predicate ex-
pressions nor the reaching definitions. Since the CFG con-
struction is performed over assembly instructions, a BB in
the CFG may have at most two outgoing edges, one for
the target path and the other for the fall-through path of a
conditional branch instruction ending that BB (i.e., a multi-
way branch in a high-level programming construct, such as
a C “switch” statement, is expressed by a combination of
two-way branches at the assembly level).

Each label assigned to an edge indicates the union of one
or more closed intervals on a bounded nonnegative integer
number axis. An interval [x,y] is named as a control flow
interval (CFI) and is assigned to an edge according to the
structure of the program (distinct edges can be assigned the
same intervals). As the name CFI implies, each interval
specifies (or encodes) a region of control flow in the CFG
where each region of control flow consists of all the BBs and
forward edges that reside under only one of the branches
(true branch or false branch) out of a conditional branch
instruction in the CFG. Therefore, each conditional branch
instruction (except a conditional branch instruction which
is the source of a backward edge) defines two control flow re-
gions (i.e., true region and false region) which are separated
from one another by that conditional branch instruction.

Example 1. Control flow regions: In Figure 1, the edge from

BB2 to the exit block falls into the true region of the conditional

branch instruction cb1 at the end of BB2. On the other hand, BB3,

BB4 and the edges connected to BB3 fall into the false region of

cb1. As the definition of a control flow region implies, control flow

regions can be nested. For instance, in Figure 1, the false region of

cb2 is nested under the false region of cb1; therefore, the false region

of cb1 constitutes a higher level than the false region of cb2. 2

By separating the CFG of a procedure/function into a
hierarchical structure of control flow regions, the condition
under which a specific edge is dynamically visited can be
bound to the predicates of the conditional branch instruc-
tions that separate those control flow regions.

Figure 2 shows the operations performed on the edges of
the BBs in a CFG. We chose to bound the integer number
axis between zero and 2t−1 where t is an integer that should
be greater than the maximum number of nested conditional
branches in a procedure/function body. An unsigned 4-byte
integer can represent an integer number axis bounded be-
tween zero and 232 − 1. Therefore, within an unsigned 4-
byte integer, a maximum of 31 nested conditional branches
can be accommodated, a level of nestedness which is hardly
ever seen in a procedure/function. Therefore, for all practi-
cal purposes, bounding the integer number axis between zero
and 232−1 will be more than enough for the RCG algorithm
to function correctly. The code for handling greater than 31
nested conditionals is a special case which will rarely, if ever,
be invoked.

�

}
}

],[
}

],2/)1[(
],12/)1(,[

{)2)((
{1

],[

{} ,__{
]12,0[

1,1,

2,2,

1,1,

)(

1
,

1

,,1,1

kk
out
i

out
i

kkk
out
i

out
i

kkk
out
i

out
i

i

BBInFwdEdges

j

in
ji

temp
n

k

kk

i

out
ji

tout

yxLL
else

yyxLL
yxxLL

BBsOutFwdEdgeif
ntokfor

LLyx

doBBstartBBexitCFGBB
LotherallL

i

∪=

++∪=
−++∪=

==
=

==

∧−∈∀
=−=

==

(9)
(8)
(7)

(6)
(5)
(4)

(3)

(2)
(1)

��

φ

Figure 2: Edge-labeling operations.

In Figure 2, the notation Lin
i,j (Lout

i,j) designates the label

of the jth incoming (outgoing) forward edge ∈ InFwdEdges
(∈ OutFwdEdges) of the ith basic block. The edge-labeling
algorithm starts with the start block and traverses all other
BBs in the CFG (except the exit block) in topological order
ignoring any backward edges. Therefore, all predecessors of
a node in the CFG are visited before the node itself. Since
backward edges are ignored, the tail node of a loop (i.e.,
the source node of the backward edge) is excluded from the
predecessors of the header node of that loop.

First, the algorithm assigns to the outgoing edge of the
start block the label [0,2t − 1] which indicates all of the
bounded nonnegative integer number axis and initializes the
labels of all other forward edges in the CFG to empty sets
(line 1 of Figure 2). Then, for any BB in the CFG except
the start block and the exit block, Ltemp is set to be the
union of the labels of the incoming forward edges of that
BB where the union operation is performed on the intervals
indicated by the labels (line 3 of Figure 2). After the union
operation, if the BB has two outgoing forward edges, each
interval designated by Ltemp is divided into two equal por-
tions. Then, the union of the lower portions (coming from
each interval) is assigned as a label to the outgoing forward
edge in the fall-through path (line 6 of Figure 2). The union
of the upper portions, on the other hand, is assigned as a
label to the outgoing forward edge in the target path (line 7
of Figure 2). If the BB has one outgoing edge, Ltemp is as-
signed to that edge without any change (line 9 of Figure 2).

Example 2. Edge-labeling algorithm: Figure 3 shows the CFG

of Figure 1 with its edges labeled. The edge-labeling algorithm starts

labeling the edges with the outgoing edge of the start block. For

this example, the parameter t shown in Figure 2 is chosen as 8.

Therefore, the outgoing edge of the start BB is given the label

[0,255]. Since BB1 has only one outgoing forward edge, [0,255] is

assigned to BB1’s outgoing forward edge without any change. BB2

has two outgoing forward edges, therefore, [0,255] is divided into two

equal portions [0,127] and [128,255] and each portion is assigned to

one of the outgoing edges. The same process is repeated for the

other BBs as well. All the CFIs formed are shown in Figure 4. Note

that in this example, each label consists of a single interval. 2

3.1.2 Extracting the control flow predicates
A confluence point P in a CFG is dynamically reached

along an incoming edge e if the innermost control flow re-
gion in which e resides is dynamically visited. Therefore,
the predicate expression which, when true, causes P to be
reached via e will simply be an appropriate combination of
the predicates of the relevant conditional branch instruc-

[0,255]

[128,255] [0,127]

[0,255]

(1)

(2), (11)

(4), (13)

(6), (15)

(7), (16)

(8), (17)

(9), (18)

(3), (12)

(5), (14)

(20)

(#): a timestamp in the analysis

cb: conditional branch

BB1

BB2

BB3

BB4

cb2

cb1

start

addi r2, r1, 8

lwz r4, 0(r2)

cmpi r4, 97

blt exit

cmpi r4, 122

bgt exit

subi r4, r4, 32

stw r4, 0(r2)

addi r2, r2, 4

b loop
exit

[64,127] [0,63]

(10), (19)

(0)

Figure 3: The example CFG with labeled edges.

63 64 127 128 0 255

cb1

cb2 true

false true

false cb: conditional branch

CFI 3 CFI 2 CFI 1

Figure 4: The control flow intervals.

tions which cause the innermost control flow region of e to
be visited. Since the edge labels encode control flow regions,
determination of the hierarchy of the control flow regions in
which e resides and thus the relevant conditional branch in-
structions to use can be accomplished very easily by using
the edge labels (for more information, please refer to [2]).

Example 3. Control flow predicate determination: Suppose

that we want to find the predicate expression that controls via which

incoming edge the exit block in Figure 3 will be reached dynamically.

We expect this predicate expression will be found to be r4 < 97. The

incoming edge labels of the exit block are [64,127] and [128,255]

for the left and the right incoming edges, respectively. As seen

in Figure 4, [64,127] corresponds to the CFI where the predicate,

r4 < 97, of the conditional branch “blt exit” is false and the pred-

icate, r4 > 122, of the conditional branch “bgt exit” is true. On

the other hand, within [128,255], only the predicate r4 < 97 is true.

Therefore, the exit block will dynamically be reached via the left

incoming edge if the predicate r4 < 97 is false and the predicate

r4 > 122 is true. On the other hand, the exit block will dynami-

cally be reached via the right incoming edge if the predicate r4 < 97

is true. Since the CFI which corresponds to the false value of the

predicate r4 > 122 is not spanned by any of the incoming edge labels,

the value of predicate r4 > 122 is irrelevant in this case. Therefore,

the value of the predicate expression r4 < 97 alone distinguishes the

dynamically taken edge. 2

Note that since backward edges are not labeled, the pred-
icate expression which determines whether a loop header
block will dynamically be reached via an incoming backward
edge or a forward edge cannot be found by the method ex-
plained. Therefore, for loop header blocks only, we insert
a loop counter into the original code by which we can dif-
ferentiate the first iteration of the loop from the rest of the
iterations (see the end of Example 6 in Section 3.3).

3.2 Reverse code generation
As stated in the beginning of Section 2, the processor state

consists of the program counter, registers and memory. The
recovery of the program counter value is already covered by

the first RCG step by which the dynamic control flow infor-
mation of a procedure/function is obtained. Therefore, the
remaining parts of the state to recover are the register and
memory values modified by the instructions of the proce-
dure/function under consideration. The second RCG step,
which will be explained in this section, involves the gener-
ation of a set of one or more reverse instructions for every
instruction which modifies a register or a memory location
in a procedure/function.

To recover a destroyed value D of a variable (a register or
a memory location) V modified by an instruction α in a pro-
cedure/function, first of all one needs to know at what point
in the procedure/function D might be assigned to V . This is
exactly the same problem as finding the statically reaching
definitions of V at a point just above the instruction α.

To determine the statically reaching definitions at a pro-
gram point, the RCG algorithm employs a very efficient
method called value renaming which refers to giving a differ-
ent name to every value attained by a register or a memory
location. Value renaming is same as the renaming operation
in static single assignment (SSA) form generation [9]. Then,
as mentioned before in Section 3.1, the RCG algorithm uses
the labels on the edges of the CFG to efficiently find the
reaching definitions at each procedure/function point.

After determining the reaching definitions of variable V

which was modified by instruction α, the RCG algorithm
generates the set of instructions which undo the effect of
α. For this purpose, the RCG algorithm uses a directed
acyclic graph (DAG) that is separately built for each pro-
cedure/function. This DAG keeps the data dependency in-
formation about which variables a definition of V uses and
by which variables a definition of V is used. Then, the de-
stroyed value D of V can be recovered by using this data
dependency information as will be explained in Section 3.2.3.

Therefore, in the following three subsections, we will de-
scribe value renaming, determination of the statically reach-
ing definitions and finally the operations on a DAG. More
detailed descriptions of these processes can be found in [2].

3.2.1 Value renaming
In our approach, different renamed values are designated

by r
j
i and m

j

k for registers and memory locations, respec-
tively. Here, i indicates a specific register, k indicates a
specific memory location, and j (j = 0, 1, 2, . . .) indicates
the unique index of a particular renamed value (renamed
during program analysis). Index ‘0’ is always used to refer
to the initial value of a register or a memory location.

A memory store local to a procedure/function can be
expressed as a summation of the fixed value of the frame
pointer (or the stack pointer if the frame pointer is not avail-
able as a dedicated register) during a procedure/function ex-
ecution and the offset used for the store. Global stores can
be expressed in a similar way, but by using the fixed base
address of the data section in place of the frame pointer.
Note that if an offset of a store cannot be determined stat-
ically, the stored value is given a distinct name, and, to be
conservative, that ambiguous store is assumed to be able to
modify any other memory location.

Example 4. Value Renaming: Consider the following instruc-
tion sequence from the function F shown in Figure 3:

addi r2, r1, 8 //r2 = r1 + 8
stw r4, 0(r2) //mem[r2 + 0] = r4

addi r2, r2, 4 //r2 = r2 + 4

The initial values in registers are given the names r0
2 , r0

1 and

r0
4 . Then, the first instruction generates a new value designated by

r1
2 for register r2 and the third instruction generates another value

designated by r2
2 for the same register. The second instruction, on

the other hand, writes the contents of r4 into the memory location

to which r2 points. Note that the code in Figure 3 is compiled for

a PowerPC target (the PowerPC does not have a dedicated register

for the stack pointer) with register r1 holding the stack pointer.

Therefore, the compiler ensures that the value of r1 is fixed during

the execution of F . As seen in Figure 3, r2 is set to r1+8 in BB1

before the first iteration of the loop and is incremented by ‘4’ in

BB4 at each iteration of the loop. Therefore, the target addresses

of the memory stores (stores made by stw r4, 0(r2) in BB4) at

each iteration of the loop can be expressed relative to the stack

pointer as follows: r1+8, r1+12, r1+16,. . . . Since these locations

are known to be distinct locations due to the fixed value of r1 in F ,

the corresponding renamed memory values for the memory stores at

different loop iterations will be m1
0, m1

1, m1
2, 2

3.2.2 Determination of the reaching definitions
Statically reaching definitions at a point in a procedure/

function are found by the labels on the forward edges of
the CFG of that procedure/function. Therefore, the RCG
algorithm labels all the forward edges of the CFG under
consideration prior to reaching definition determination.

Since the algorithm determines reaching definitions while
analyzing the instructions, loop carried definitions cannot be
determined before the whole loop is analyzed, which requires
at least one analysis pass over the loop body. Therefore,
during the first traversal of the loop, the RCG algorithm
generates reverse code by using the definitions that come
from outside of the loop only (i.e., reverse code is generated
for the first iteration of the loop only) and during the next
traversal, the loop carried definitions are used. However,
passes over the loop body might not be limited to two due
to a loop constraint which will be explained in Section 3.2.4.

To determine the statically reaching definitions, a table
called the renaming table is kept by the RCG algorithm
(see Figure 5 for an example). The renaming table has a
record for every physical location (e.g., r1, r2, m1, . . .) that
has been modified in a procedure up to the instruction cur-
rently being analyzed. As more locations are modified, more
records are dynamically added to the renaming table. Ev-
ery record in the renaming table has a field for each CFI
produced in a procedure/function body. Initially, all the
fields in a newly added record in the renaming table contain
the initial value of the corresponding physical location. The
field(s) to be used for an entry when analyzing a basic block
BBi is (are) determined by applying the following rule:

[x1, y1] ∪ [x2, y2] ∪ . . . [xn, yn] =

|InFwdEdges(BBi)|⋃

j=1

L
in
i,j

Fields 7→ {c|xk ≤ L(c) ∧ U(c) ≤ yk, 1 ≤ k ≤ n, c ∈ CFIs}

L(c) and U(c) designate, respectively, the lower and upper
bounds of a CFI (as stated at the beginning of this section,
CFI calculation has been done already by an initial pass
over the procedure/function). According to the above rule,
a renamed value generated within a BB is written into the
renaming table fields that correspond to the CFIs spanned
by the labels on all incoming forward edges of that BB.

In addition to the rule above, the RCG algorithm per-
forms three more actions. First, as stated in Section 3.2.1,

we assume that an ambiguous memory store (e.g., using an
ambiguous pointer) may change any memory location. Due
to this assumption, a renamed value generated for an am-
biguous memory store and entered into some renaming ta-
ble field(s) according to the rule above deletes the entries in
the same field(s) of the records belonging to other memory
locations. Second, as mentioned in Section 3.1.1, distinct
edges can be assigned the same labels. If not properly an-
ticipated, this could result in an incorrect determination of
reaching definitions within a BB in some special situations
(for an explanation of these special situations, please refer
to [2]). To deal with these special situations, the RCG al-
gorithm merges distinct definitions of a variable reaching a
confluence point in the CFG under a pseudo definition. The
pseudo definition is renamed as any other ordinary defini-
tion and the renaming table entries that correspond to the
combined reaching definitions are overwritten by the value
given to the pseudo definition. As will be described in the
next subsection, the combined reaching definitions are not
thrown away, but are represented in the DAG. Third, since
backward edges are not labeled, edge labels cannot be used
directly to find the loop carried reaching definitions. There-
fore, at the end of each pass over a loop body, the RCG al-
gorithm carries the definitions reaching the end of the loop
tail block to the beginning of the loop header block [2].

Finally, the statically reaching definitions at a point P

during the analysis can be determined simply by querying
the renaming table fields at P . If P is the entrance of a basic
block BBi, the statically reaching definition of a variable V

along an incoming forward edge ej of BBi is the definition in
the renaming table fields corresponding to the CFIs that are
spanned by the label on ej . If P is inside BBi, on the other
hand, statically reaching definition of V is the definition
in the renaming table fields which correspond to the CFIs
spanned by the labels on all of the incoming forward edges of
BBi (there will be only one statically reaching definition of
V along an ej or within a BBi because multiple definitions
are merged under a pseudo definition at confluence points).

Example 5. Determination of the reaching definitions: Con-

sider the CFG in Figure 3. The renaming table generated for this

CFG after two passes over the loop (excluding the first pass over the

whole program to generate the CFGs and the CFIs) is shown in Fig-

ure 5. The renaming table shows the analysis timestamps adjacent

to a renamed value when that value is generated (timestamps are

shown in parentheses in Figure 3). The timestamp value increments

by one after each instruction in a procedure/function is scanned. For

clarity, overwritten entries are also shown in the renaming table (Fig-

ure 5). Recall that the RCG algorithm finds the reaching definitions

separately for different iterations of a loop. Therefore, assume that

the loop is being traversed the very next time after generation of the

CFG and the CFIs. Suppose that we want to determine the reach-

ing definitions of register r4 at the entrance of BB3 at timestamp

‘4’. For this purpose, the RCG algorithm queries the renaming table

fields that correspond to the CFIs spanned by the label [0,127] of

the incoming forward edge to BB3. As seen in Figure 4, the label

[0,127] spans CFI1 and CFI2, and the renaming table fields in Fig-

ure 5 corresponding to these CFIs hold the value r1
4 : the value r1

4

has been generated by the instruction “lwz r4, 0(r2)” at timestamp

‘2’ and has been written into the renaming table fields corresponding

to the CFIs spanned by the incoming forward edge label of BB2 –

the BB which holds the instruction “lwz r4, 0(r2).” The value r1
4

is indeed the reaching definition of r4 at the entrance of BB3 at the

first iteration of the loop. 2

 r1 r2 r4 m0 m1

CFI 1
0

1r (0)

0
2r (0)

1
2r (1)

2
2r (9)

3
2r (18)

4
2r (19)

0
4r (0)

1
4r (2)

2
4r (7)

3
4r (11)

4
4r (16)

0
0m (0)

1
0m (8)

2
0m (19)

0
1m (0)

1
1m (17)

2
1m (19)

CFI 2
0

1r (0)

0
2r (0)

1
2r (1)

2
2r (10)

4
2r (19)

0
4r (0)

1
4r (2)

2
4r (10)

3
4r (11)

4
4r (19)

0
0m (0)

1
0m (10)

2
0m (19)

0
1m (0)
2
1m (19)

CFI 3
0

1r (0)

0
2r (0)

1
2r (1)

2
2r (10)

4
2r (19)

0
4r (0)

1
4r (2)

2
4r (10)

3
4r (11)

4
4r (19)

0
0m (0)

1
0m (10)

2
0m (19)

0
1m (0)
2
1m (19)

Figure 5: The renaming table for the code example.

3.2.3 Operations on a DAG
In this section, we will describe how a DAG is used to

recover a destroyed value at a procedure/function point.
After the RCG algorithm generates a new renamed value

(either for an instruction or for a pseudo definition), a new
node for that renamed value is added to the DAG, G=(N ,E),
which is constructed for the procedure/function under con-
sideration. Moreover, to recover a destroyed value, the RCG
algorithm should specify the relationship of the destroyed
value with the other values generated in the procedure/
function. Therefore, the RCG algorithm adds edges to the
DAG to connect the nodes that have a data dependency
inbetween. N and E include the following:

• N={R,M} where R and M are the sets of renamed
register and memory values, respectively.

• There is a directed edge eij ∈ E from node ni ∈ N to
node nj ∈ N designated by ni → nj if (1) ni and nj

are the renamed values for target and source operands
of an instruction α, respectively, or (2) ni is a renamed
memory value and nj is a renamed register value de-
termining the location of ni, or (3) ni and nj are the
renamed values for a pseudo definition and a combined
definition under that pseudo definition, respectively.

We also apply some annotations on particular nodes and
edges in the DAG to obtain the necessary information for
the recovery of a destroyed value: in cases (1) and (2) above,
node ni is annotated with the address of α to show for which
instruction ni is generated. In case (3) above, node ni is an-
notated by a special select (S) operator to show that ni is
generated for a pseudo definition. Also, since a pseudo def-
inition cannot be directly used to recover a destroyed value
(but one of the combined definitions represented by that
pseudo definition can be), in case (3) above, the condition
(or the predicate expression) under which the pseudo defi-
nition ni will be equal to the renamed value nj is attached
as an annotation to the edge eij from node ni to node nj .

A node ni in the DAG can have at most one of the follow-
ing attributes at a point P : killed, available and partially-
available. Node ni is killed at P if the value of ni does
not reach P ; ni is available at P if the value of ni reaches P

along all paths; and ni is partially available at P if the value
of ni reaches P along some path controlled by a predicate
expression (i.e., ni is the value of a combined definition).

Suppose that an instruction αdest destroys the value D of
a variable V at a procedure/function point. Let us name the
point just before and after αdest as P and P ′, respectively.
In order to recover D, the RCG algorithm tries to find the
reaching definition of V at point P using the renaming ta-
ble (remember that there exists only one reaching definition
of a variable within a BB due to the merging operation).
A definition cannot be found only if the corresponding en-
try/entries was/were deleted in the renaming table due to

an ambiguous memory store (see Section 3.2.2). In this case,
D is recovered by state saving. If a definition can be found,
on the other hand, the RCG algorithm finds in the DAG
the node that corresponds to the found reaching definition.
Suppose that the found node is ni. Since D is destroyed by
αdest, node ni is killed at point P ′. Now, if one or both of
the following are true at P ′, we can recover ni by generating
the appropriate reverse instructions.

(a) All nj ’s, where there exists an edge ni → nj , are
available and ni and nj ’s are the values of the operands
of an instruction α.

(b) An nj , for which there exists an edge nj → ni, is
available and all nk’s, nk 6= ni, for which there exists
an edge nj → nk, are available as well. Moreover, ni,
nj and all nk’s are the values of the operands of an
instruction β which allows ni to be extracted out of β.

If (a) holds, ni can be recovered at P ′ by executing α with-
out any change. On the other hand, if (b) holds, ni can be
recovered at P ′ by extracting ni out of β. In addition, if any
node nj that is needed for recovering ni is partially-available
(i.e, nj is the value of a combined definition), controlled by a
predicate expression Υ, then ni might be partially recovered
at P ′ (the predicate expression Υ is obtained by the anno-
tations on the edges coming to nj in the DAG). To recover
ni totally, ni must be partially-recoverable for all values of
Υ. In this case, the reverse code for recovering ni will be
gated by Υ. If Υ is destroyed itself, the nodes determin-
ing Υ’s value must be recovered as well. Finally, note that
these actions can be applied recursively, that is, if a node
nj that is required to recover ni is killed, then ni might still
be recovered by recovering nj first. If the number of recur-
sions exceeds a predetermined number which is set by the
user, or the recovery of a node requires the knowledge of the
value of an external input of the procedure/function under
consideration, we save state to recover the killed node.

3.2.4 Handling loops
There is a constraint for the generation of the reverse code

within loops: A killed node during the analysis of a loop
must be recovered only by using (or manipulating) the in-
structions within the loop. If an external instruction to the
loop is used instead, the killed node will be recovered only
for a single iteration of the loop. In this case, another pass
over the loop body is necessary to construct additional nodes
(associated with the internal instructions to the loop) to be
used in the recovery of the killed node. The passes over the
loop are limited to three to limit the time cost of the RCG
algorithm. If a suitable internal instruction cannot be found
within three passes, we save state to recover the killed node.

3.3 Putting it all together
The next example illustrates reverse code generation.

Example 6. Reverse code generation: Figure 6 shows the DAG

that is constructed after analyzing (with two passes over the loop)

all the instructions in the function F of Figure 3. We will again use

the timestamps shown in Figure 3 to refer to the analysis instances.

As an example, consider the analysis point reached after scanning

“lwz r4, 0(r2)” at timestamp ‘2’. The analysis first finds the reach-

ing definition of r4, r0
4 , by querying the renaming table fields spanned

by the incoming edge label [0,255] (the renaming table is shown in

Figure 5). Then, the newly generated value of r4, r1
4 , is entered into

the same fields according to the rule described in Section 3.2.2: the

result can be seen in all the r1
4(2) entries in Figure 5. Next, a node

0
4r

0
0m

1
4r

2
4r

1
0m

3
4r

4
4r

3
2r

2
0m 2

1m 4
2r

S: Annotation for the select operator (address annotations are not shown).
Nodes generated within the loop are encircled (dotted: first pass, solid: second pass).

1
2r

0
1r

2
2r

S S S

2
2r

rLC = = 0

rLC = = 0

rLC = = 0

rLC > 0

rLC > 0

rLC > 0

0
2r

1
1m

0
1m

2
2r is drawn as two separate nodes for clarity (i.e., those two nodes are the same node).

Figure 6: The DAG for the code example.

for r1
4 is constructed in the DAG and is connected to the node m0

0

(m0 designates the memory location at r1+8). Finally, r0
4 should

be recovered. Since r0
4 is an input to F and F has no instruction

associated with r0
4 , r0

4 has to be recovered by state saving. There-

fore, r0
4 can be recovered by the load instruction “lwz r4, mem2”

where mem2 is the location where r0
4 is saved in F . However, since

“lwz r4, mem2” is not an instruction within the loop, the loop

condition mentioned in Section 3.2.4 is violated (i.e., r4 is recovered

only for the first iteration of the loop); therefore, another pass over

the loop body is necessary. When the analysis reaches the same

point at timestamp ‘11’, the value of r4 to be recovered is now r2
4 .

Fortunately, r2
4 can be recovered by using internal instructions this

time: r2
4 has an incoming edge from m1

0. Although, m1
0 is avail-

able, r1
2 , the other node m1

0 is connected to, is killed. However,

condition (b) given in Section 3.2.3 holds for r1
2 and thus r1

2 can be

recovered into a temporary register rt by using the available node

r2
2 and with staying in the loop (rt is used instead of r2 to preserve

the value r2
2 of r2). The instruction for recovering r1

2 will then be

“subi rt, r2, 4” which extracts r1
2 out of the addition instruction

“addi r2, r2, 4” (“addi r2, r2, 4” is found by the address annota-

tion on r2
2). Now, condition (b) holds for r2

4 as well, and r2
4 can be

recovered for the rest of the iterations of the loop by executing the

instruction “lwz r4, 0(rt).” A loop counter (rLC) inserted into the

original code is used for differentiating between the loop iterations.

Note that if no free registers are available to be used as rLC and/or

rt, any occupied registers can be freed up by state saving [2]. 2

The final step of the RCG algorithm is to combine the
sets of reverse instructions to generate the reverse proce-
dure/function. This process is illustrated in Figure 7. Since
instructions within a BB complete in lexical order, for every
BB in function F (shown on the left in Figure 7), the RCG
algorithm places the generated sets of reverse instructions
into F ′ (shown on the right in Figure 7) in reverse lexical
order. Reverse lexical order implies that the sets of reverse
instructions within the BBs of F ′ are placed in bottom-up
order (i.e., the first generated reverse set is placed at the
very bottom, the second set is placed above the first set and
so on). Then, the RCG algorithm combines the reverses of
BBs in such a way that control flows between the BBs of F ′

in the opposite order it flows between the BBs of F . This
is done by inverting the edges of the CFG of F . Conse-
quently, a join point of edges in F typically becomes a fork
point of edges in F ′, and vice versa. Note that since the
reverse of BB3 in F happens to be empty [2], the inverted
versions of the two incoming edges of the exit block in F

go to the same point in F ′. Therefore, these inverted edges
are merged together into a single edge. If this were not the
case, a conditional branch instruction of which predicate is
determined as explained in Section 3.1.2 would be inserted
at the end of the start block in F ′.

start

cmpi r4, 122
bgt exit

subi r4, r4, 32
stw r4, 0(r2)
addi r2, r2, 4

addi rLC,, rLC, 1
b loop

stw r2, mem1
addi r2, r1, 8

li rLC, 0
stw r4, mem2

lwz r4, 0(r2)
cmpi r4, 97

blt exit

exit

subi rLC,, rLC, 1
subi r2, r2, 4
addi rt, r4, 32
stw rt, 0(r2)

addi r4, r4, 32

lwz r2, mem1

cmpi rLC, 0
bne L1

lwz r4, mem2
b L2

subi rt, r2, 4
lwz r4, 0(rt)
cmpi rLC, 0
bne loop

exit

loop

start

L1

L2

BB1

BB2

BB3

BB4

BB1'

BB4'

BB2'

bne: branch if not equal

Figure 7: The forward CFG (left) and the reverse
CFG (right).

4. EXPERIMENTAL RESULTS
We tested the RCG algorithm on an evaluation board with

a PowerPC (MPC860) processor. Also, to test reverse exe-
cution on a debugging session, we implemented a low-level
debugger tool with a graphical user interface that provides
debugging capabilities such as breakpoint insertion, single
stepping and register/memory display. The debugger runs
on a PC with Windows 2000. The PC is connected to the
PowerPC board via a background debug mode interface [8].

Figures 8 and 9 show memory and time overhead com-
parisons, respectively, between the RCG algorithm, the or-
dinary incremental state saving (ISS) [10] and incremental
state saving for only destructive instructions (ISSDI) [5].
The benchmark programs used are a Fibonacci number gen-
erator (FNG) with 100 iterations, a selection sort (SS) with
10 inputs, a 3 by 3 matrix multiplication (MM), and a ran-
dom number generator (RNG) with 100 iterations. The re-
sults indicate that RCG algorithm achieves from 3.17X to
400X and from 2.5X to 300X reduction in memory overheads
as compared to ISS and ISSDI, respectively (Figure 8). Fur-
thermore, the RCG algorithm achieves an average of 5.7X
and 4.1X reduction in execution time overheads when com-
pared to ISS and ISSDI, respectively (Figure 9).

5. CONCLUSION
In this paper, we introduce a new reverse execution

methodology for programs. To realize reverse execution,
our methodology generates the reverse of a program by a
static analysis at the assembly level. Our methodology is
new because state saving can be largely avoided even with
programs including many destructive instructions. This cuts
down memory and time overheads introduced by state sav-
ing during forward execution of programs. Moreover, the
methodology provides instruction by instruction reverse ex-
ecution at the assembly instruction-level without ever re-
quiring any forward execution of the program. In this way,
a program can be run backwards to a state as close as one
assembly instruction before the current state.

Since the generation of a reverse program is performed by
the analysis at the assembly level, the methodology intro-
duced in this paper provides reverse execution capability for
programs without source code. Also, since both the forward
code and the reverse code are executed in native machine
instructions, these executions can be performed at the full
speed of the underlying hardware.

0

5

10

ISS 1.6 1.9 1.9 8.8

ISSDI 1.2 1.5 1.1 5.6

Our algorithm 0.004 0.6 0.2 0.8

FNG SS MM RNG

1X 1X

1.33X 1.27X 1.73X
400X 3.17X 9.5X 11X

1.9 1.9

 8.8

1.5 1.1

 5.6

 0.6 0.2
 0.8

1.6 1.2
 0.004

1X 1X

1.57X

M
em

or
y

O
ve

rh
ea

d
(k

B
)

RCG algorithm

Figure 8: Memory overhead comparison.

0

50

100

150

200

ISS 109 107.3 132.4 146.4

ISSDI 85.4 90.7 84.3 100.8

RCG algorithm 13.4 38.9 28.6 20.6

FNG SS MM RNG

13.4

109
85.4

107.3
90.7

38.9

132.4

84.3

28.6

146.4

100.8

20.6

8.13X

1.28X
1X

2.76X

1.18X
1X 1X 1X

1.57X
4.63X 7.11X

1.45X

T
im

e
O

ve
rh

ea
d

(%
)

Figure 9: Time overhead comparison.

6. ACKNOWLEDGEMENTS
This research is funded by the State of Georgia under the

Yamacraw initiative and by NSF under INT-9973120, CCR-
9984808 and CCR-0082164. We acknowledge donations re-
ceived from Denali, Hewlett-Packard, Intel, LEDA, Mentor
Graphics, SUN and Synopsys. We also acknowledge helpful
conversations with Dr. Santosh Pande.

7. REFERENCES
[1] H. Agrawal and J. Horgan. Dynamic program slicing.

SIGPLAN Notices, 25(6):246–256, June 1990.
[2] T. Akgul and V. J. Mooney. Instruction-level reverse

execution for debugging. Technical Report GIT-CC-02-49,
Georgia Institute of Technology, September 2002.

[3] S. Bellenot. State skipping performance with the time warp
operating system. In Proceedings of the Sixth Workshop on
Parallel and Distributed Simulation, pages 53–64, 1992.

[4] M. R. Birch et al. Dynalab: A dynamic computer science
laboratory infrastructure featuring program animation.
ACM SIGCSE Bulletin, 27(1):29–33, March 1995.

[5] C. Carothers, K. Perumalla, and R. Fujimoto. Efficient
optimistic parallel simulations using reverse computation.
ACM Transactions on Modeling and Computer
Simulation, 9(3), July 1999.

[6] P. Crescenzi, C. Demetrescu, I. Finocchi, and R. Petreschi.
Reversible execution and visualization of programs with
leonardo. Journal of Visual Languages and Computing
(JVLC), 11(2):125–150, April 2000.

[7] Y.-B. Lin, B. R. Preiss, W. M. Loucks, and E. D.
Lazowska. Selecting the checkpoint interval in time warp
simulation. In Proceedings of the Seventh Workshop on
Parallel and Distributed Simulation, pages 3–10, 1993.

[8] MPC860 Users Manual. Motorola Inc., 1998.
http://e-www.motorola.com/brdata/PDFDB/docs/
MPC860UM.pdf

[9] S. S. Muchnick. Advanced Compiler Design and
Implementation. Morgan Kaufmann, San Francisco, CA,
1997.

[10] D. West and K. S. Panesar. Automatic incremental state
saving. In Proceedings of the Tenth Workshop on Parallel
and Distributed Simulation, pages 78–85, 1996.

