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Abstract:  As the number of transistors on a single chip 
increases rapidly, there is a productivity gap between the 
increasing number of available transistors and the design time.  
One solution to reduce this productivity gap is to increase the 
use of Intellectual Property (IP) cores.  However, an IP core 
should be customized/configured before being used in a system 
different than the one for which it was designed.  Thus, to 
reconfigure the IP core, either an engineer must spend 
significant effort altering the core by hand or else an enhanced 
CAD tool (IP generator) can automatically configure and 
customize the core according to the customer specifications.  
In this paper, we present an SoCDMMU-crossbar (Xbar) switch 
Generator (DX-Gt) tool that automatically configures the 
memory and bus subsystems of a multiprocessor SoC to meet 
design constraints.  Specifically, we show the area results of 
configurations for a crossbar switch plus SoCDMMU for 2x2 up 
to 12x12.  The first contribution of our paper is to provide a 
method and tool for automatic generation of a Dynamic 
Memory Management Unit for an SoC.  The second 
contribution is the automatic generation of a crossbar switch.  
Both hardware units are generated as synthesizable Verilog 
HDL code at the RTL level. 
 
 

I. Introduction 
 

In a year or so integrated circuits will have close to one 
billion transistors on a single chip [1].  Such chips give 
designers the opportunity to integrate many functionalities, 
each of which used to be implemented on different chips, 
into the same chip.  In other words, a complete system that 
used to be implemented on a printed circuit board will be 
integrated into a single chip; i.e., System-on-a-Chip (SoC).  
One opportunity for such chips is building a multiprocessor 
SoC that has multiple processors of different types, large 
memory, custom digital logic and interfaces.  

We predict that in next five years multiprocessor SoCs 
will be dominated by designs with four to eight processors 
and on-chip DRAM of 16Mbytes to 128Mbytes.  In such 
multiprocessor SoCs, multiple buses may be desired to 
provide multiple communication channels to each processor 
so that communication among processors does not become a 
system bottleneck.   

Designers of a multiprocessor SoC with multiple 
processors and large on-chip memory must decide whether 
the allocation of the on-chip memory among the on-chip 
processors will be dynamic or static.  Obviously, dynamic 
allocation is a desirable feature; however, software 

implementation of dynamic memory management is not 
usually deterministic and typically consumes thousands of 
the processor clock cycles per allocation.  A hardware 
approach in the form of a hardware intellectual property core 
was introduced to provide a multiprocessor SoC with 
dynamic yet deterministic memory management 
capabilities [2].     

As the number of transistors on a single chip increases 
rapidly, there is a productivity gap between the increasing 
number of available transistors and the design time.  One 
solution to reduce this productivity gap is to increase the 
reusability of Intellectual Property (IP) cores.  However, an 
IP core should be customized/configured before being used 
in a system different than the one for which it was designed.  
Thus, to reconfigure the IP core, either an engineer must 
spend significant effort altering the core by hand or else an 
enhanced CAD tool (IP generator) can automatically 
configure and customize the core according to the customer 
specifications.  For example, memory and I/O generators by 
Artisian [10] and processor generators by Tensilica [11] and 
ARC [12] supply application specific IP cores that can be 
highly tuned for specific applications. 

To the best of the authors’ knowledge, this paper presents 
the first published work on automatic generation of a 
crossbar (Xbar) switch coupled with a memory management 
unit.  More specifically, reconfiguring an Xbar is more than 
reconfiguring bus parameters such as address bus width and 
data bus width.  An MxN Xbar must be configured to 
support an exact number of masters (processors), M, and an 
exact number of slaves (memory), N.  Thus, to reconfigure 
an MxN Xbar, one must generate (i) an arbiter able to handle 
the exact number of requests in an Xbar and (ii) wires 
(address bus, data bus and some control lines) between 
masters and slaves.  One evidence of the need for multiple 
buses can be found in CoreConnect [21] which is an on-chip 
bus from IBM. CoreConnect provides synthesizable Verilog 
for eight masters; the CoreConnect bus presumably shows 
good performance with up to eight masters.  In other words, 
the bus itself can be the bottleneck if the number of masters 
exceeds eight.  Thus, a bus, an Xbar and/or arbiters must be 
generated or reconfigured to support an exact number of 
masters and an exact number of slaves specified by the user.  
CoreConnect requires interfaces for masters and slaves.      

Our paper is focused on the design of a CAD tool for the 
generation of a memory management unit and an MxN Xbar 
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switch; we name this tool the Dynamic memory management 
unit-Xbar Generator (DX-Gt).  The first contribution of our 
paper is to provide an automatic generation of SoC Dynamic 
Memory Management Unit (SoCDMMU).  The second 
contribution is the automatic generation of a crossbar (Xbar) 
switch.  The Xbar generation is also integrated with an 
arbiter generation tool [4].  Both SoCDMMU and Xbar are 
generated in Verilog Hardware Description Language (HDL) 
code synthesizable at the RTL level.  Our generated IPs 
(SoCDMMU and Xbar) require interfaces for masters and 
slaves.  We assume that the effort to connect a new IP core 
to the custom IP generated by DX-Gt is almost the same as 
that of IP based design such as adding other IP cores to 
CoreConnect. 

The paper is organized as follows.  First, Section 2 gives 
an overview of the related work.  Section 3 explains the 
target architecture for DX-Gt.  Section 4 shows how DX-Gt 
works.  Section 5 gives synthesis results of our generated 
SoCDMMU and Xbar.  Finally, we conclude our paper in 
Section 6. 

 
II. Related Work 

 
A. Crossbar switch design 
 

There are few approaches to reduce design time for an 
SoC crossbar switch.  Mai et al. propose reconfigurable 
crossbar switch and memory blocks [7].  In [7], two integer 
clusters and one floating point cluster are connected to 
sixteen 8Kbyte SRAMs via the crossbar switch with the 
re-configurability feature.  However, the authors do not 
give details about their crossbar switch design.  Compared 
with [7], which appears to be designed by hand, our MxN 
crossbar (Xbar) switch is automatically generated with bus 
parameters specified by a user to support exact number of 
masters and slaves.  Also, our generated Xbar is 
synthesizable at the RTL level resulting in a reduction in 
design time.  Thus, from the above discussion, DX-Gt 
provides the first automated approach to Xbar switch 
generation. 

B. Hardware based memory management synthesis 
 

Most previous research in memory management for 
embedded systems has focused either on static allocation and 
how to synthesize memory hierarchies for an SoC [22] or on 
designing hardware that accelerates the memory 
management function execution. 

The literature shows that a hardware implementation of a 
simple buddy allocator was first proposed by Knowlton [14] 
[17].  It is a simple and fast buddy allocator that can 
allocate memory blocks whose sizes are a power of two; 
hence, the allocator suffers from internal and external 
fragmentation.  Puttkamer introduced a hardware buddy 
allocator that does not suffer from internal 
fragmentation [13].  Chang and Gehringer propose a 

modified hardware-based buddy system which eliminates 
internal fragmentation and has a constant execution 
time [16].  Chang et al. have implemented the malloc(), 
realloc() and free() C-Language functions in 
hardware [15][16].  Also, they propose a hardware 
extension to be a part of future microprocessors to accelerate 
dynamic memory management [15].  Although Chang’s 
modified binary buddy allocator eliminates internal 
fragmentation, the allocator can only detect a free memory 
block chunk if it starts at an address which is power of two.  
This problem is called the blind spot problem.  To 
overcome the blind spot problem, Cam et al. propose a 
hardware buddy allocator that detects any available free 
block of requested size and eliminates internal 
fragmentation [14]. 

The previous research focuses only on the hardware 
implementation of specific functionality (e.g., allocation or 
de-allocation) but never discusses in detail how to integrate 
these functionalities into a system nor how to 
synthesize/configure the hardware for a specific system.  
Moreover, the use of these hardware allocators for 
multiprocessor systems has not been addressed.  Also, all of 
the hardware allocators introduced are not suitable for small 
memory allocations which make them impractical for most 
real world applications1. 

Our SoCDMMU is synthesizable and has been integrated 
into a practical system including porting SoCDMMU 
functionality to an RTOS (so that the user can access 
SoCDMMU functionality using standard software memory 
management APIs) [5].  Also, DX-Gt can configure and 
optimize the SoCDMMU to suit a specific system.  In this 
way, DX-Gt automates the customization and the generation 
of the hardware memory management functionalities. 
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Figure 1.  The SoC Target Architecture 

III. Target Architecture 
 

As shown in Figure 1, our target SoC architecture consists 
of multiple Processing Elements (PEs) of various types (i.e., 

                                                        
1 See pp. 7-8 of [30] for more details. 



general purpose processors, domain-specific CPUs such as 
DSPs, and custom hardware), large configurable global 
on-chip memory blocks and the SoC Dynamic Memory 
Management Unit (SoCDMMU) to manage the memory 
allocation and deallocation among the PEs.  An 
SoCDMMU remaps processor addresses (virtual addresses) 
to physical addresses which are passed to Level 2 (L2) 
memory via an MxN Xbar.  To achieve the maximum 
concurrent transfers between processors and memory blocks, 
N should be equal to M.  The memory coherency problem 
due to concurrent accesses of global memory blocks is 
reduced by using the SoCDMMU [2].  The combination of 
the SoCDMMU and the Xbar for a multiprocessor SoC 
showed an overall speedup of 4.4X during application 
transition time when compared to a fully shared memory 
system with the same memory organization and number of 
processors [5].  

Our SoC configuration tool can generate an architecture 
like that of Figure 1 with any number of processors and any 
number of memory modules of different types (e.g., SRAM 
and DRAM) and different numbers of ports.  DX-Gt 
automatically configures both the SoCDMMU and the MxN 
Xbar.  Currently, DX-Gt only supports two kinds of 
processors: MPC750 and ARM9TDMI.  However, DX-Gt 
can be easily extended to additional processors.  The 
SoCDMMU and the Xbar have a generic bus interface.  
Each PE in our target architecture has a wrapper that 
converts the PE’s bus interface signals into the SoCDMMU 
and Xbar generic bus interface signals.  Supporting a new 
PE is just a matter of developing a new wrapper for the PE’s 
bus interface (which is an easy task).      

4x1sw
itch

3
S

R
A

M
3

4x1sw
itch

2
S

R
A

M
2

4x1sw
itch

0
S

R
A

M
0

4x1sw
itch

1
S

R
A

M
1

SoCDMMU

P
E3

P
E2

P
E1

P
E0

4x1sw
itch

3
S

R
A

M
3

4x1sw
itch

3
S

R
A

M
3

4x1sw
itch

2
S

R
A

M
2

4x1sw
itch

2
S

R
A

M
2

4x1sw
itch

0
S

R
A

M
0

4x1sw
itch

0
S

R
A

M
0

4x1sw
itch

1
S

R
A

M
1

4x1sw
itch

1
S

R
A

M
1

SoCDMMU

P
E3

P
E2

P
E1

P
E0

 
Figure 2.  The target architecture of four processors and four memory 

blocks each with a single port 

Figure 2 shows a system that is generated by DX-Gt.  
Note that four 4x1 switches in Figure 2 are grouped together 
into the configurable Xbar (4x4 Xbar in this case) in 
Figure 1.  A PE is connected to four 4x1 switches via an 
SoCDMMU (1-to-4 connections) and sends an address and 
data and controls (read, write and byte selection) to all four 
4x1 switches at the same time.  Each 4x1 switch translates 

each address to check if the address belongs to the 
corresponding address space of the attached SRAM.  The 
system consists of four processors and four single port 
SRAM modules.  Each processor block in Figure 2 can be 
either MPC750 or ARM9TDMI depending on the user input.  
In Figure 2, the generated 4x4 Xbar switch, which consists 
of four 4x1 switch blocks, provides four concurrent accesses 
to four SRAM modules by four processors.  The generated 
SoCDMMU manages the dynamic allocation/deallocation of 
memory in the four SRAM modules. 

The target architecture runs the Atlanta Real-Time 
Operating System (RTOS) which is an open source RTOS 
developed at the Georgia Institute of Technology for a 
shared memory multiprocessor SoC [3]. DX-Gt can 
configure Atalanta to support the SoCDMMU – if used – and 
tune its different modules to reflect the user settings.  

A. The SoCDMMU 
 

The SoC Dynamic Memory Management Unit 
(SoCDMMU) is a hardware unit, to be a part of the SoC, that 
allows a fast and deterministic dynamic way to 
allocate/de-allocate global memory between PEs [2].  The 
PEs are connected to the on-chip memory via the 
SoCDMMU as shown in Figure 1 which allows the 
SoCDMMU to control all of the global memory accesses.  
This feature enables the SoCDMMU to convert the PE 
address (virtual address) to a physical address.  The 
SoCDMMU is mapped into a location in the I/O space of 
each PE.  This memory mapped address or I/O port to 
which the SoCDMMU is mapped is used to send commands 
to the SoCDMMU (writing data to the port or 
memory-mapped location) and to receive the status of the 
command execution (reading from the port or 
memory-mapped location).   

The SoCDMMU assumes that the global on-chip memory 
is divided into small global memory blocks called G_blocks.  
The SoCDMMU can allocate a page of one or more 
G_blocks to a PE upon request.  Each G_block has one 
physical address and one or more virtual addresses (PE 
addresses).  The base virtual address a particular PE assigns 
to a G_block may differ from one PE to another. 

The introduction of the SoCDMMU introduces a new 
memory management hierarchy we call Two-Level Memory 
Management. Level Two, in Two-Level Memory 
Management, is the management of the global on-chip 
memory blocks among the on-chip Processing Elements, 
while Level One is the management of memory allocated to 
a particular on-chip Processing Element, e.g., an operating 
system’s management of memory allocated to a particular 
processor. 

The SoCDMMU allocation/deallocation of the memory 
G_blocks is completely deterministic, which makes the 
SoCDMMU suitable for real-time SoC applications.  Using 
the SoCDMMU speeds up the system; in [5], we showed an 
example where our approach gives a 4.4X overall speedup in 



memory management during the application transition time 
when compared to a fully shared memory system with the 
same memory organization and number of processors.  

B. The Xbar 
 

Our generated MxN Xbar switch consists of N Mx1 
switches.  M is equal to the number of PEs and N equals the 
number of memory blocks.  An Mx1 switch chooses one 
processor out of M processors to which to grant access to the 
attached memory block [4].  Figure 3 shows the internal 
structure of a 4x1 switch; in Figure 3, prev_ indicates wires 
from an SoCDMMU.  Also, a number appended to the 
signal name identifies a signal from the corresponding 
processor.  The operation of the switch block is as follows.  
First, a comparator (comp) compares the addresses from the 
SoCDMMU (prev_addresses) only if prev_req signals are 
asserted.  If a prev_address input belongs to the address 
space of the attached memory block, mem_req is asserted.  
The mem_req signal asks an arbiter to grant a single bus 
attached to the corresponding memory block.  An arbiter 
handles M requests from M processors and grants one 
request in round-robin order by asserting the appropriate 
mem_on signal [4].  A mem_on signal turns on switch 
blocks (addr bus switch, data bus switch, wire switches for 
read and write signals and wire_ta switch for memory 
transfer acknowledgement) in a 4x1 switch.   
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Figure 3.  Internal Structure of a 4x1 Switch 

Example 1: Suppose PE0 and PE3 both try to access SRAM0, 
PE1 tries to access SRAM2, and PE2 tries to access SRAM1 in 
Figure 2.  Then, prev_addr0 through prev_addr3 from the 
SoCDMMU are compared in the comparator of 4x1 switch0.  
Consider Figure 3 to describe 4x1 switch0.  Then, in this 
case as described so far, only prev_addr0 and prev_addr3 are 
matched to the address space of SRAM0 resulting in the 
assertion of mem_req[0] and mem_req[3].  Likewise, only 
mem_req[1] and mem_req[2] are asserted in 4x1 switch2 and 
4x1 switch1, respectively.  In this case, the arbiter of 
4x1switch0 grants the request mem_req[0]; mem_req[3] will 

be next in round-robin order.  Thus, PE0’s request is granted.  
Then, mem_on[0] turns on the corresponding switch blocks so 
that prev_addr0 is connected to mem_addr, prev_data0 to 
mem_data, prev_re0 to mem_re, prev_we0 to mem_we, and 
prev_ta0 to mem_ta. 
At the same time, only mem_req[2] is asserted for 4x1 switch1 
since only prev_addr2 is matched to SRAM1.  Likewise, only 
mem_req[1] is asserted for 4x1 switch2 since only prev_addr1 
is matched to SRAM2.  Thus, PE2’s and PE1’s memory 
access requests to SRAM1 and SRAM2 are both granted.  
Thus, in this example, three concurrent memory transfers are 
supported.  

IV. Methodology 
 

Figure 4 gives an overview of the flow of our 
configuration tool.  A Graphical User Interface (GUI), 
which consists of a set of HTML forms, captures the user’s 
inputs and passes them to the Dynamic memory management 
unit and crossbar (Xbar) switch Generator (DX-Gt) 
application (developed in C-Language).  DX-Gt processes 
the user inputs, validates them and generates the SoC 
hardware files in RTLVerilog.  Moreover, DX-Gt generates 
Synopsys DCTM [8] synthesis scripts and a Mentor Graphics 
Seamless CVETM [18] configuration file for simulation of the 
resulting SoC design.   
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Figure 4.  The SoC Configuration Tool Flow 

The following is a partial list of the user specified 
parameters: 

• System wide parameters 

• The number of PEs which determines M in an 
MxN Xbar and the number of the SoCDMMU 
ports 

• The number of the global on-chip memory 
G_blocks which determines the size of the 
SoCDMMU memory allocator 

• The sizes of the global on-chip memory G_blocks 
which determines the address bus widths between 
Mx1 switches and memory blocks 

• The number of memory ports which determines 
N in an MxN Xbar 

• The PE types which determines processor 
interfaces to SoCDMMU chosen from a 
hardware database 



• The memory type which determines the memory 
controller chosen from a hardware database  

• The choice of use of SoCDMMU, Xbar, both or 
none 

• SoCDMMU related parameters 

• The scheduling scheme to resolve concurrent 
memory requests from different PEs (first come 
first served scheme or priority scheme)  

• Memory G_blocks initially assigned to the PEs 
(initial memory assignment for the PEs)  

• Xbar related parameters 

• The data bus width of each PE (determined by 
the PE type) 

• The address bus width connected to each PE 
(determined by the global memory size) 

• The number of memory modules determined by 
the number of G_blocks parameter 
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Figure 5.  Flowchart of DX-Gt 

In order to generate the hardware files, a “hardware 
database (HW DB)” of parameterized Verilog files of each 
system component − SoCDMMU sub-modules, processor 
bus wrappers, memory controller and Xbar switches and 
comparators in Figure 3 − is being used.  The Xbar arbiter 
in Figure 3 is generated in a way that described in [4].  The 
Verilog files in the database are written in such a way that a 
custom version of the file can be generated using a Verilog 
preprocessor.   

Once the user configurations and settings are captured 
using a set of HTML forms, DX-Gt selects from the database 
the hardware components that satisfy the user specified 
configurations.  Next, DX-Gt sets the parameters of each 

component to reflect the user input.  The hardware 
components (preprocessed Verilog files) are passed to the 
Verilog PreProcessor (VPP) [6] which processes them and 
generates new customized Verilog files.  Figure 5 shows 
the flowchart of DX-Gt. 

As shown in Figure 5, the Xbar hardware is generated by 
calling the function gen_xbar().  The function gen_xbar(bus 
parameters) (as shown in Figure 6) generates N (number of 
memory blocks) Mx1 switches where M is equal to the 
number of processors.   

Example 2: Consider an SoC with four ARM9TDMI 
processors and global on-chip memory of 16Mbytes.  Now 
suppose that the user chooses to use the SoCDMMU.  Also, 
suppose that the user requests the on-chip memory to be 
divided into 128 G_blocks and the use of first come first come 
first served (FCFS) scheduler to resolve concurrent accesses 
to the SoCDMMU.  To generate a custom SoCDMMU that 
reflects the user’s input, DX-Gt fetches from the HW DB an 
ARM9TDMI bus wrapper for the SoCDMMU and the required 
SoCDMMU sub-modules (the Allocation Unit, Allocation Table, 
Address Converter and FCFS Scheduler [30]) preprocessed 
Verilog files.  Then, Dx-Gt sets the variables on the top of the 
preprocessed Verilog files to reflect the user’s configurations.  
For example in Figure 6 Dx-Gt sets the variables n to 128 
(number of G_blocks), p to 4 (number of PEs) and sch to 1 
(FCFS scheduler) in the SoCDMMU top preprocessed Verilog 
file (socdmmu.vpp).  The modified socdmmu.vpp is then 
processed by VPP to generate the customized socdmmu.v file 
as shown in Figure 6.  Please note that because the variable 
sch is set to “1” in the socdmmu.vpp file, as shown in Figure 6, 
the customized SoCDMMU (socdmmu.v in Figure 6) uses the 
FCFS scheduler.  

`let n = 128
`let p = 4
`let sch = 1

module SoCDMMU ( . . . .);
.
.
.

`if (sch == 1) 
FCFS scheduler( . . . .);
`else 
PRIORITY scheduler(. . . .);
`endif

.

.

.
endmodule

socdmmu.vpp

VPP

Module SoCDMMU ( . . . .);

.

.

.

FCFS scheduler( . . . .);

.

.

.

endmodule

socdmmu.v

`let n = 128
`let p = 4
`let sch = 1

module SoCDMMU ( . . . .);
.
.
.

`if (sch == 1) 
FCFS scheduler( . . . .);
`else 
PRIORITY scheduler(. . . .);
`endif

.

.

.
endmodule

socdmmu.vpp
`let n = 128
`let p = 4
`let sch = 1

module SoCDMMU ( . . . .);
.
.
.

`if (sch == 1) 
FCFS scheduler( . . . .);
`else 
PRIORITY scheduler(. . . .);
`endif

.

.

.
endmodule
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Figure 6.  sub-module customization for Example 2  

The function gen_xbar() makes use of a linked-list to store 
the wire names for processors, memory blocks and bus lines.  
To generate an MxN Xbar, first the function gen_xbar() calls 
the function gen_Mx1() N times to generate N Mx1 switches; 
then, gen_xbar() integrates these N Mx1 switches 
(submodules in Verilog) into an Xbar by generating a top 
file. 

To generate Mx1 switches, the function gen_Mx1() first 
fills the wire names linked-list with the processors’ wire 
names, the memory blocks’ wire names and the bus lines’ 



wire names by calling the functions: gen_proc_wires(), 
gen_mem_wires() and gen_bus_wires(), respectively.  Then, 
gen_Mx1() invokes a set of functions to generate address bus 
switches, data bus switches, wire switches and wire_ta 
switches (defined in Section III.B) in Figure 3.  These 
switches are hand-coded beforehand.  Finally, gen_Mx1() 
calls gen_arbiter(M) to generate the appropriate arbiter using 
the algorithm described in [20].  Note that specific user 
input for the arbiter is not required because the arbiter type is 
set to a bus arbiter and the number of masters is set to 
M [20].  

gen_xbar(bus parameters) {
n=0;
while (n<N) 

gen_Mx1(bus parameters);
integrate();

}
gen_Mx1(bus parameters) {

gen_proc_wires(M) ;
gen_mem_wires(N);
gen_bus_wires(M);
gen_addr_bus_switch(M);
gen_data_bus_switch(M);
gen_wire_switch(M);
gen_wire_ta_switch(M);
gen_arbiter(M);
gen_comp(M);

}

gen_proc_wires(M) {
m=0;
while (m<M) { /* M = number of processors */

fill in data structure for processor wire names;
}

} 
gen_mem_wires(N) {

n=0;
while (n<N) { /* N = number of memory blocks */
fill in data structure for memory wire names;

}
}
gen_bus_wires(M) {

m=0;
while (m<M) { /* M = number of processors */

fill in data structure for processor wire names;
}

 
Figure 7.  Pseudo Code for the MxN Xbar generation. 

Example 3: Suppose a user wants to build a system with two 
MPC750s and two ARM9TDMIs and four memory blocks with 
sizes 2Mbytes, 2Mbytes, 4Mbytes and 8Mbytes.  DX-Gt, 
shown in Figure 5, first determines the data bus widths to be 
64 bits for MPC750 and 32 bits for ARM9TDMI.  Also, the 
address bus widths are set to be 32 bits for both processors.  
The memory address bus widths of the four memory blocks 
are set to 21 bits, 21 bits, 22 bits and 23 bits.  The order of 
memory blocks attached to the generated Xbar is clock-wise 
as shown in Figure 2.  Next, DX-Gt, as indicated by the 
rightmost box in Figure 5, calls gen_xbar().  gen_xbar() calls 
gen_Mx1() which, as shown in Figure 7, fills the data structure 
for wire names  by gen_proc_wires(), gen_mem_wires() and 

gen_bus_wires().  Then, gen_Mx1() generates the switch 
blocks shown in Figure 3.  gen_Mx1(), as seen in Figure 6, 
also invokes RAG [20] to generate an arbiter handling 4 
requests and generating a comparator comparing 4 
addresses.  The arbiter parameters (the number of 
requestors and the arbiter type) are passed to RAG.  All 
generated submodules are connected together by wire names 
in gen_Mx1().  For example, prev_req signals are input 
signals to an Xar, the top module, from an SoCDMMU.  Also, 
prev_req signals are input signals to four 4x1 switches and 
are input signals to the comparator as well, the submodule of 
4x1 switches as shown in Figure 3.  Thus, prev_req signals 
are connected to all four 4x1 switches (submodules of an 
Xbar) in the top module and are connected to a comparator 
(the submodule of a 4x1 switch) in each 4x1 switch.  In this 
way, the same wire names are connected.  After M=4 
iterations, four 4x1 switches are generated with 
corresponding bus parameters.  Finally, the function 
integrate() creates the top file so that the generated four 4x1 
switches are wired together by bus wire names.  

For the software part, the d framework does the required 
modification to the Atalanta RTOS to support the generated 
hardware according to the user inputs[28][29].  Then the d 
framework generates the modified source files (in C and 
assembly), also the d framework generates the makefile 
required to compile the RTOS. 

V. Synthesis Results 
 

This section presents the synthesis results of the 
SoCDMMU and the Xbar.  We use the Synopsys Design 
Compiler [8] with a .25µm TSMC technology library [19] 
from LEDA Systems [9]. 

 
A. Xbar 
 

We use the TSMCWIRE model (lec25dscc25_FF) for a 
wire load to provide more accurate area results.  Figure 7 
shows the synthesis results of the area of Mx1 switches for 
increasing number of processors.  The total area of an MxN 
Xbar can be easily calculated by N times the area of an Mx1 
switch, where N is the number of memory ports.  
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Figure 8.  Area of Mx1 Switches. 



As shown in Figure 8, the area of an Mx1 switch 
increases almost linearly with the number of PEs.  
However, as shown in Figure 9, the area of Xbar increases 
sub-quadratically as the number of PEs and the number of 
memory ports increases for an MxN Xbar configuration. 
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Figure 9.  Area of MxM Xbar Switches 

B. SoCDMMU 
 

Figure 10 shows how the SoCDMMU area scales with the 
number of PEs (2, 4, 8 and 12) and G_blocks (128, 256, 512 
and 1024).  The area (represented by number of equivalent 
NAND gates) scales linearly with the number of processors.  
Please note that the results were obtained using a clock 
frequency of 100MHz. 

 
Figure 10. The Area of the SoCDMMU (w/o the Allocation Table and the 

Address Converter) for different number of PEs and G_blocks 
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Figure 11. The Area of the Address Converter and the Allocation Table for 

different number of PEs and G_blocks 

Figure 11 shows the area of the Address Converter and the 
Allocation Table, which are mainly memory elements and 
are both part of the SoCDMMU, for different numbers of 
processors (2, 4, 8 and 12) and G_blocks (128, 256, 512 and 
1024).  The area is represented in equivalent 6T-Static 
Random Access Memory (SRAM) area. 

 
 VI. SoCDMMU and Xbar Layout 
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Figure 12.  The floorplan of an SoC that utilizes the SoCDMMU and 

the Xbar 
Creating a high clock rate working chip containing 

millions of logic gates, whose functionality used to be 
implemented by multiple chips, is a time consuming task for 
Integrated Circuits (IC) designers.  Usually designers start 
with floorplanning the chip by partitioning it into portions 
each of which presents a functional entity in the SoC (e.g., 
CPU, DRAM, caches or custom peripheral logic).  Also, 
this step involves pin assignment, global routing and global 
clock tree generation.  Tools such as Synopsys Chip 
Architect [24] can help the SoC designer to accomplish such 
tasks.  The floorplanning and global routing provides useful 
timing information required for the RTL logical and physical 
synthesis of each functional entity using tools such as 
Synopsys Design/Physical Compiler [25][26] and Cadence 
Silicon Ensemble (SE) [27].  Finally the layout of each unit 
is integrated into the SoC floorplan.  

Dx-Gt generates the RTL Verilog of the SoCDMMU and 
the Xbar which are parts of the SoC presented in Figure 1.  
These RTL models with the RTL models of the other system 
components can be used to generate the layout of the SoC IC 
using the design flow described in the previous paragraph.  
As a sample effort to show part of the methodology 
described in the previous paragraph, we synthesized the RTL 
Verilog of the SoCDMMU (customized for 256 G_blocks 
and 4 PEs) and the Xbar and then placed and routed the 
layout using a 0.25µm TSMC technology library.  
Figure 12 shows the floorplan of the system with four 
processors and four memory blocks of Example 3 including 
the layouts of the SoCDMMU and the Xbar.  Since DRAM 
cores are not available, Figure 12 presumably describes how 
4x4 Xbar is interleaved into DRAM modules.  From our 
layout of a subset of Figure 12 (i.e., SoCDMMU plus Xbar), 
the area of 4x4 Xbar is 0.23 mm2 and the area of 
SoCDMMU is 1.43 mm2.     



VII. Conclusion 
 

In this paper, we described a System-on-a-Chip IP 
generation tool that enables an SoC designer to design a 
multiprocessor SoC and configure its memory and bus 
subsystems to meet the design constraints with ease.   

Our paper is focused on the provision of a CAD tool for a 
memory management unit and an MxN Xbar switch which 
we named Dynamic memory management unit and Xbar 
Generator (DX-Gt).  The first contribution of our paper is 
to provide an automatic generation of SoC Dynamic 
Memory Management Unit (SoCDMMU).  The second 
contribution is the automatic generation of crossbar (Xbar) 
switch and its arbiter as well.  Both hardware units are 
synthesizable at the RTL level. 

Also, we showed the integration of the SoCDMMU and 
the Xbar into one system.  The combination of the 
SoCDMMU and the Xbar for a multiprocessor SoC has been 
shown to have an overall speedup of 4.4X during the 
application transition time when compared to a fully shared 
memory system with the same memory organization and 
number of processors [5].  DX-Gt automatically generates 
in RTL Verilog hardware files required to build the system.  
Also, DX-Gt generates the files required to enable standard 
EDA tools to implement the system. 
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