
DX-Gt: Memory Management and Crossbar Switch Generator for

Multiprocessor System-on-a-Chip

Abstract: As the number of transistors on a single chip
increases rapidly, there is a productivity gap between the
increasing number of available transistors and the design time.
One solution to reduce this productivity gap is to increase the
use of Intellectual Property (IP) cores. However, an IP core
should be customized/configured before being used in a system
different than the one for which it was designed. Thus, to
reconfigure the IP core, either an engineer must spend
significant effort altering the core by hand or else an enhanced
CAD tool (IP generator) can automatically configure and
customize the core according to the customer specifications.
In this paper, we present an SoCDMMU-crossbar (Xbar) switch
Generator (DX-Gt) tool that automatically configures the
memory and bus subsystems of a multiprocessor SoC to meet
design constraints. Specifically, we show the area results of
configurations for a crossbar switch plus SoCDMMU for 2x2 up
to 12x12. The first contribution of our paper is to provide a
method and tool for automatic generation of a Dynamic
Memory Management Unit for an SoC. The second
contribution is the automatic generation of a crossbar switch.
Both hardware units are generated as synthesizable Verilog
HDL code at the RTL level.

I. Introduction

In a year or so integrated circuits will have close to one
billion transistors on a single chip [1]. Such chips give
designers the opportunity to integrate many functionalities,
each of which used to be implemented on different chips,
into the same chip. In other words, a complete system that
used to be implemented on a printed circuit board will be
integrated into a single chip; i.e., System-on-a-Chip (SoC).
One opportunity for such chips is building a multiprocessor
SoC that has multiple processors of different types, large
memory, custom digital logic and interfaces.

We predict that in next five years multiprocessor SoCs
will be dominated by designs with four to eight processors
and on-chip DRAM of 16Mbytes to 128Mbytes. In such
multiprocessor SoCs, multiple buses may be desired to
provide multiple communication channels to each processor
so that communication among processors does not become a
system bottleneck.

Designers of a multiprocessor SoC with multiple
processors and large on-chip memory must decide whether
the allocation of the on-chip memory among the on-chip
processors will be dynamic or static. Obviously, dynamic
allocation is a desirable feature; however, software

implementation of dynamic memory management is not
usually deterministic and typically consumes thousands of
the processor clock cycles per allocation. A hardware
approach in the form of a hardware intellectual property core
was introduced to provide a multiprocessor SoC with
dynamic yet deterministic memory management
capabilities [2].

As the number of transistors on a single chip increases
rapidly, there is a productivity gap between the increasing
number of available transistors and the design time. One
solution to reduce this productivity gap is to increase the
reusability of Intellectual Property (IP) cores. However, an
IP core should be customized/configured before being used
in a system different than the one for which it was designed.
Thus, to reconfigure the IP core, either an engineer must
spend significant effort altering the core by hand or else an
enhanced CAD tool (IP generator) can automatically
configure and customize the core according to the customer
specifications. For example, memory and I/O generators by
Artisian [10] and processor generators by Tensilica [11] and
ARC [12] supply application specific IP cores that can be
highly tuned for specific applications.

To the best of the authors’ knowledge, this paper presents
the first published work on automatic generation of a
crossbar (Xbar) switch coupled with a memory management
unit. More specifically, reconfiguring an Xbar is more than
reconfiguring bus parameters such as address bus width and
data bus width. An MxN Xbar must be configured to
support an exact number of masters (processors), M, and an
exact number of slaves (memory), N. Thus, to reconfigure
an MxN Xbar, one must generate (i) an arbiter able to handle
the exact number of requests in an Xbar and (ii) wires
(address bus, data bus and some control lines) between
masters and slaves. One evidence of the need for multiple
buses can be found in CoreConnect [21] which is an on-chip
bus from IBM. CoreConnect provides synthesizable Verilog
for eight masters; the CoreConnect bus presumably shows
good performance with up to eight masters. In other words,
the bus itself can be the bottleneck if the number of masters
exceeds eight. Thus, a bus, an Xbar and/or arbiters must be
generated or reconfigured to support an exact number of
masters and an exact number of slaves specified by the user.
CoreConnect requires interfaces for masters and slaves.

Our paper is focused on the design of a CAD tool for the
generation of a memory management unit and an MxN Xbar

Mohamed A. Shalan, Eung S. Shin and Vincent J. Mooney III
Georgia Institute of Technology

School of Electrical and Computer Engineering
777 Atlantic Dr.

Atlanta, Georgia 30332, USA.
{shalan,eung,mooney}@ece.gatech.edu

switch; we name this tool the Dynamic memory management
unit-Xbar Generator (DX-Gt). The first contribution of our
paper is to provide an automatic generation of SoC Dynamic
Memory Management Unit (SoCDMMU). The second
contribution is the automatic generation of a crossbar (Xbar)
switch. The Xbar generation is also integrated with an
arbiter generation tool [4]. Both SoCDMMU and Xbar are
generated in Verilog Hardware Description Language (HDL)
code synthesizable at the RTL level. Our generated IPs
(SoCDMMU and Xbar) require interfaces for masters and
slaves. We assume that the effort to connect a new IP core
to the custom IP generated by DX-Gt is almost the same as
that of IP based design such as adding other IP cores to
CoreConnect.

The paper is organized as follows. First, Section 2 gives
an overview of the related work. Section 3 explains the
target architecture for DX-Gt. Section 4 shows how DX-Gt
works. Section 5 gives synthesis results of our generated
SoCDMMU and Xbar. Finally, we conclude our paper in
Section 6.

II. Related Work

A. Crossbar switch design

There are few approaches to reduce design time for an
SoC crossbar switch. Mai et al. propose reconfigurable
crossbar switch and memory blocks [7]. In [7], two integer
clusters and one floating point cluster are connected to
sixteen 8Kbyte SRAMs via the crossbar switch with the
re-configurability feature. However, the authors do not
give details about their crossbar switch design. Compared
with [7], which appears to be designed by hand, our MxN
crossbar (Xbar) switch is automatically generated with bus
parameters specified by a user to support exact number of
masters and slaves. Also, our generated Xbar is
synthesizable at the RTL level resulting in a reduction in
design time. Thus, from the above discussion, DX-Gt
provides the first automated approach to Xbar switch
generation.

B. Hardware based memory management synthesis

Most previous research in memory management for
embedded systems has focused either on static allocation and
how to synthesize memory hierarchies for an SoC [22] or on
designing hardware that accelerates the memory
management function execution.

The literature shows that a hardware implementation of a
simple buddy allocator was first proposed by Knowlton [14]
[17]. It is a simple and fast buddy allocator that can
allocate memory blocks whose sizes are a power of two;
hence, the allocator suffers from internal and external
fragmentation. Puttkamer introduced a hardware buddy
allocator that does not suffer from internal
fragmentation [13]. Chang and Gehringer propose a

modified hardware-based buddy system which eliminates
internal fragmentation and has a constant execution
time [16]. Chang et al. have implemented the malloc(),
realloc() and free() C-Language functions in
hardware [15][16]. Also, they propose a hardware
extension to be a part of future microprocessors to accelerate
dynamic memory management [15]. Although Chang’s
modified binary buddy allocator eliminates internal
fragmentation, the allocator can only detect a free memory
block chunk if it starts at an address which is power of two.
This problem is called the blind spot problem. To
overcome the blind spot problem, Cam et al. propose a
hardware buddy allocator that detects any available free
block of requested size and eliminates internal
fragmentation [14].

The previous research focuses only on the hardware
implementation of specific functionality (e.g., allocation or
de-allocation) but never discusses in detail how to integrate
these functionalities into a system nor how to
synthesize/configure the hardware for a specific system.
Moreover, the use of these hardware allocators for
multiprocessor systems has not been addressed. Also, all of
the hardware allocators introduced are not suitable for small
memory allocations which make them impractical for most
real world applications1.

Our SoCDMMU is synthesizable and has been integrated
into a practical system including porting SoCDMMU
functionality to an RTOS (so that the user can access
SoCDMMU functionality using standard software memory
management APIs) [5]. Also, DX-Gt can configure and
optimize the SoCDMMU to suit a specific system. In this
way, DX-Gt automates the customization and the generation
of the hardware memory management functionalities.

SoCDMMU

PEm

Cache

PE2

Cache

PE1

Cache
.

Configurable
Xbar

. . .

M
em

or
y

M
od

ul
e n

M
em

or
y

M
od

ul
e 2

M
em

or
y

M
od

ul
e 1

. . .

. . .

co
nt

ro
l

Global On-Chip L2 Memory
Figure 1. The SoC Target Architecture

III. Target Architecture

As shown in Figure 1, our target SoC architecture consists
of multiple Processing Elements (PEs) of various types (i.e.,

1 See pp. 7-8 of [30] for more details.

general purpose processors, domain-specific CPUs such as
DSPs, and custom hardware), large configurable global
on-chip memory blocks and the SoC Dynamic Memory
Management Unit (SoCDMMU) to manage the memory
allocation and deallocation among the PEs. An
SoCDMMU remaps processor addresses (virtual addresses)
to physical addresses which are passed to Level 2 (L2)
memory via an MxN Xbar. To achieve the maximum
concurrent transfers between processors and memory blocks,
N should be equal to M. The memory coherency problem
due to concurrent accesses of global memory blocks is
reduced by using the SoCDMMU [2]. The combination of
the SoCDMMU and the Xbar for a multiprocessor SoC
showed an overall speedup of 4.4X during application
transition time when compared to a fully shared memory
system with the same memory organization and number of
processors [5].

Our SoC configuration tool can generate an architecture
like that of Figure 1 with any number of processors and any
number of memory modules of different types (e.g., SRAM
and DRAM) and different numbers of ports. DX-Gt
automatically configures both the SoCDMMU and the MxN
Xbar. Currently, DX-Gt only supports two kinds of
processors: MPC750 and ARM9TDMI. However, DX-Gt
can be easily extended to additional processors. The
SoCDMMU and the Xbar have a generic bus interface.
Each PE in our target architecture has a wrapper that
converts the PE’s bus interface signals into the SoCDMMU
and Xbar generic bus interface signals. Supporting a new
PE is just a matter of developing a new wrapper for the PE’s
bus interface (which is an easy task).

4x1sw
itch

3
S

R
A

M
3

4x1sw
itch

2
S

R
A

M
2

4x1sw
itch

0
S

R
A

M
0

4x1sw
itch

1
S

R
A

M
1

SoCDMMU

P
E3

P
E2

P
E1

P
E0

4x1sw
itch

3
S

R
A

M
3

4x1sw
itch

3
S

R
A

M
3

4x1sw
itch

2
S

R
A

M
2

4x1sw
itch

2
S

R
A

M
2

4x1sw
itch

0
S

R
A

M
0

4x1sw
itch

0
S

R
A

M
0

4x1sw
itch

1
S

R
A

M
1

4x1sw
itch

1
S

R
A

M
1

SoCDMMU

P
E3

P
E2

P
E1

P
E0

Figure 2. The target architecture of four processors and four memory

blocks each with a single port

Figure 2 shows a system that is generated by DX-Gt.
Note that four 4x1 switches in Figure 2 are grouped together
into the configurable Xbar (4x4 Xbar in this case) in
Figure 1. A PE is connected to four 4x1 switches via an
SoCDMMU (1-to-4 connections) and sends an address and
data and controls (read, write and byte selection) to all four
4x1 switches at the same time. Each 4x1 switch translates

each address to check if the address belongs to the
corresponding address space of the attached SRAM. The
system consists of four processors and four single port
SRAM modules. Each processor block in Figure 2 can be
either MPC750 or ARM9TDMI depending on the user input.
In Figure 2, the generated 4x4 Xbar switch, which consists
of four 4x1 switch blocks, provides four concurrent accesses
to four SRAM modules by four processors. The generated
SoCDMMU manages the dynamic allocation/deallocation of
memory in the four SRAM modules.

The target architecture runs the Atlanta Real-Time
Operating System (RTOS) which is an open source RTOS
developed at the Georgia Institute of Technology for a
shared memory multiprocessor SoC [3]. DX-Gt can
configure Atalanta to support the SoCDMMU – if used – and
tune its different modules to reflect the user settings.

A. The SoCDMMU

The SoC Dynamic Memory Management Unit
(SoCDMMU) is a hardware unit, to be a part of the SoC, that
allows a fast and deterministic dynamic way to
allocate/de-allocate global memory between PEs [2]. The
PEs are connected to the on-chip memory via the
SoCDMMU as shown in Figure 1 which allows the
SoCDMMU to control all of the global memory accesses.
This feature enables the SoCDMMU to convert the PE
address (virtual address) to a physical address. The
SoCDMMU is mapped into a location in the I/O space of
each PE. This memory mapped address or I/O port to
which the SoCDMMU is mapped is used to send commands
to the SoCDMMU (writing data to the port or
memory-mapped location) and to receive the status of the
command execution (reading from the port or
memory-mapped location).

The SoCDMMU assumes that the global on-chip memory
is divided into small global memory blocks called G_blocks.
The SoCDMMU can allocate a page of one or more
G_blocks to a PE upon request. Each G_block has one
physical address and one or more virtual addresses (PE
addresses). The base virtual address a particular PE assigns
to a G_block may differ from one PE to another.

The introduction of the SoCDMMU introduces a new
memory management hierarchy we call Two-Level Memory
Management. Level Two, in Two-Level Memory
Management, is the management of the global on-chip
memory blocks among the on-chip Processing Elements,
while Level One is the management of memory allocated to
a particular on-chip Processing Element, e.g., an operating
system’s management of memory allocated to a particular
processor.

The SoCDMMU allocation/deallocation of the memory
G_blocks is completely deterministic, which makes the
SoCDMMU suitable for real-time SoC applications. Using
the SoCDMMU speeds up the system; in [5], we showed an
example where our approach gives a 4.4X overall speedup in

memory management during the application transition time
when compared to a fully shared memory system with the
same memory organization and number of processors.

B. The Xbar

Our generated MxN Xbar switch consists of N Mx1
switches. M is equal to the number of PEs and N equals the
number of memory blocks. An Mx1 switch chooses one
processor out of M processors to which to grant access to the
attached memory block [4]. Figure 3 shows the internal
structure of a 4x1 switch; in Figure 3, prev_ indicates wires
from an SoCDMMU. Also, a number appended to the
signal name identifies a signal from the corresponding
processor. The operation of the switch block is as follows.
First, a comparator (comp) compares the addresses from the
SoCDMMU (prev_addresses) only if prev_req signals are
asserted. If a prev_address input belongs to the address
space of the attached memory block, mem_req is asserted.
The mem_req signal asks an arbiter to grant a single bus
attached to the corresponding memory block. An arbiter
handles M requests from M processors and grants one
request in round-robin order by asserting the appropriate
mem_on signal [4]. A mem_on signal turns on switch
blocks (addr bus switch, data bus switch, wire switches for
read and write signals and wire_ta switch for memory
transfer acknowledgement) in a 4x1 switch.

prev_req[0]

prev_req[3]

arbiter

comp
.
.
.

prev_addr0

prev_addr3

addr
bus

switch

mem_on[0]

mem_on[3]

mem_data

mem_req[3]

...

...

.

.

.

...

prev_data0

prev_data3

data
bus

switch

.

.

.

prev_re0

prev_re3

wire
switch

.

.

.

...

prev_we0

prev_we3

wire
switch

.

.

.

...

prev_ta0

prev_ta3

wire_ta
switch

.

.

.

...

mem_we mem_ta

mem_req[0]

mem_addr mem_re

prev_req[0]

prev_req[3]

arbiter

comp
.
.
.

prev_addr0

prev_addr3

addr
bus

switch

mem_on[0]

mem_on[3]

mem_data

mem_req[3]

...

...

.

.

.

...

prev_data0

prev_data3

data
bus

switch

.

.

.

prev_re0

prev_re3

wire
switch

.

.

.

...

prev_we0

prev_we3

wire
switch

.

.

.

...

prev_ta0

prev_ta3

wire_ta
switch

.

.

.

...

mem_we mem_ta

mem_req[0]

mem_addr mem_re
Figure 3. Internal Structure of a 4x1 Switch

Example 1: Suppose PE0 and PE3 both try to access SRAM0,
PE1 tries to access SRAM2, and PE2 tries to access SRAM1 in
Figure 2. Then, prev_addr0 through prev_addr3 from the
SoCDMMU are compared in the comparator of 4x1 switch0.
Consider Figure 3 to describe 4x1 switch0. Then, in this
case as described so far, only prev_addr0 and prev_addr3 are
matched to the address space of SRAM0 resulting in the
assertion of mem_req[0] and mem_req[3]. Likewise, only
mem_req[1] and mem_req[2] are asserted in 4x1 switch2 and
4x1 switch1, respectively. In this case, the arbiter of
4x1switch0 grants the request mem_req[0]; mem_req[3] will

be next in round-robin order. Thus, PE0’s request is granted.
Then, mem_on[0] turns on the corresponding switch blocks so
that prev_addr0 is connected to mem_addr, prev_data0 to
mem_data, prev_re0 to mem_re, prev_we0 to mem_we, and
prev_ta0 to mem_ta.
At the same time, only mem_req[2] is asserted for 4x1 switch1
since only prev_addr2 is matched to SRAM1. Likewise, only
mem_req[1] is asserted for 4x1 switch2 since only prev_addr1
is matched to SRAM2. Thus, PE2’s and PE1’s memory
access requests to SRAM1 and SRAM2 are both granted.
Thus, in this example, three concurrent memory transfers are
supported.

IV. Methodology

Figure 4 gives an overview of the flow of our
configuration tool. A Graphical User Interface (GUI),
which consists of a set of HTML forms, captures the user’s
inputs and passes them to the Dynamic memory management
unit and crossbar (Xbar) switch Generator (DX-Gt)
application (developed in C-Language). DX-Gt processes
the user inputs, validates them and generates the SoC
hardware files in RTLVerilog. Moreover, DX-Gt generates
Synopsys DCTM [8] synthesis scripts and a Mentor Graphics
Seamless CVETM [18] configuration file for simulation of the
resulting SoC design.

DX-Gt

H
/W D
B

R
T

O
S

D
B

V
P

P Config.
SoC H/W

(*.v)

Config.
RTOS

(*.c, *.S)

DCTM Script
CVE *.cve

Report *.rpt

Figure 4. The SoC Configuration Tool Flow

The following is a partial list of the user specified
parameters:

• System wide parameters

• The number of PEs which determines M in an
MxN Xbar and the number of the SoCDMMU
ports

• The number of the global on-chip memory
G_blocks which determines the size of the
SoCDMMU memory allocator

• The sizes of the global on-chip memory G_blocks
which determines the address bus widths between
Mx1 switches and memory blocks

• The number of memory ports which determines
N in an MxN Xbar

• The PE types which determines processor
interfaces to SoCDMMU chosen from a
hardware database

• The memory type which determines the memory
controller chosen from a hardware database

• The choice of use of SoCDMMU, Xbar, both or
none

• SoCDMMU related parameters

• The scheduling scheme to resolve concurrent
memory requests from different PEs (first come
first served scheme or priority scheme)

• Memory G_blocks initially assigned to the PEs
(initial memory assignment for the PEs)

• Xbar related parameters

• The data bus width of each PE (determined by
the PE type)

• The address bus width connected to each PE
(determined by the global memory size)

• The number of memory modules determined by
the number of G_blocks parameter

User Input

Validation

Is The
SoCDMMU
Selected?

Fetch the required
verilog files from
the HW database

Fetch Atlanta
Sources from the
SW database and
configure them to

support the
SoCDMMU

Is Atlanta
Selected

Change the
parameters of each file

to reflect the user
inputs and send them
to VPP for processing

Yes

Is The XBAR
Selected?

No

Yes

No

gen_xbar()
Yes

Send the
compressed
files to the

user

Generate:
-HW top file
-DC Scripts
-CVE configuration
-SW Makefile

Compress the files

No

Figure 5. Flowchart of DX-Gt

In order to generate the hardware files, a “hardware
database (HW DB)” of parameterized Verilog files of each
system component − SoCDMMU sub-modules, processor
bus wrappers, memory controller and Xbar switches and
comparators in Figure 3 − is being used. The Xbar arbiter
in Figure 3 is generated in a way that described in [4]. The
Verilog files in the database are written in such a way that a
custom version of the file can be generated using a Verilog
preprocessor.

Once the user configurations and settings are captured
using a set of HTML forms, DX-Gt selects from the database
the hardware components that satisfy the user specified
configurations. Next, DX-Gt sets the parameters of each

component to reflect the user input. The hardware
components (preprocessed Verilog files) are passed to the
Verilog PreProcessor (VPP) [6] which processes them and
generates new customized Verilog files. Figure 5 shows
the flowchart of DX-Gt.

As shown in Figure 5, the Xbar hardware is generated by
calling the function gen_xbar(). The function gen_xbar(bus
parameters) (as shown in Figure 6) generates N (number of
memory blocks) Mx1 switches where M is equal to the
number of processors.

Example 2: Consider an SoC with four ARM9TDMI
processors and global on-chip memory of 16Mbytes. Now
suppose that the user chooses to use the SoCDMMU. Also,
suppose that the user requests the on-chip memory to be
divided into 128 G_blocks and the use of first come first come
first served (FCFS) scheduler to resolve concurrent accesses
to the SoCDMMU. To generate a custom SoCDMMU that
reflects the user’s input, DX-Gt fetches from the HW DB an
ARM9TDMI bus wrapper for the SoCDMMU and the required
SoCDMMU sub-modules (the Allocation Unit, Allocation Table,
Address Converter and FCFS Scheduler [30]) preprocessed
Verilog files. Then, Dx-Gt sets the variables on the top of the
preprocessed Verilog files to reflect the user’s configurations.
For example in Figure 6 Dx-Gt sets the variables n to 128
(number of G_blocks), p to 4 (number of PEs) and sch to 1
(FCFS scheduler) in the SoCDMMU top preprocessed Verilog
file (socdmmu.vpp). The modified socdmmu.vpp is then
processed by VPP to generate the customized socdmmu.v file
as shown in Figure 6. Please note that because the variable
sch is set to “1” in the socdmmu.vpp file, as shown in Figure 6,
the customized SoCDMMU (socdmmu.v in Figure 6) uses the
FCFS scheduler.

`let n = 128
`let p = 4
`let sch = 1

module SoCDMMU (. . . .);
.
.
.

`if (sch == 1)
FCFS scheduler(. . . .);
`else
PRIORITY scheduler(. . . .);
`endif

.

.

.
endmodule

socdmmu.vpp

VPP

Module SoCDMMU (. . . .);

.

.

.

FCFS scheduler(. . . .);

.

.

.

endmodule

socdmmu.v

`let n = 128
`let p = 4
`let sch = 1

module SoCDMMU (. . . .);
.
.
.

`if (sch == 1)
FCFS scheduler(. . . .);
`else
PRIORITY scheduler(. . . .);
`endif

.

.

.
endmodule

socdmmu.vpp
`let n = 128
`let p = 4
`let sch = 1

module SoCDMMU (. . . .);
.
.
.

`if (sch == 1)
FCFS scheduler(. . . .);
`else
PRIORITY scheduler(. . . .);
`endif

.

.

.
endmodule

socdmmu.vpp

VPP

Module SoCDMMU (. . . .);

.

.

.

FCFS scheduler(. . . .);

.

.

.

endmodule

socdmmu.v
Module SoCDMMU (. . . .);

.

.

.

FCFS scheduler(. . . .);

.

.

.

endmodule

socdmmu.v

Figure 6. sub-module customization for Example 2

The function gen_xbar() makes use of a linked-list to store
the wire names for processors, memory blocks and bus lines.
To generate an MxN Xbar, first the function gen_xbar() calls
the function gen_Mx1() N times to generate N Mx1 switches;
then, gen_xbar() integrates these N Mx1 switches
(submodules in Verilog) into an Xbar by generating a top
file.

To generate Mx1 switches, the function gen_Mx1() first
fills the wire names linked-list with the processors’ wire
names, the memory blocks’ wire names and the bus lines’

wire names by calling the functions: gen_proc_wires(),
gen_mem_wires() and gen_bus_wires(), respectively. Then,
gen_Mx1() invokes a set of functions to generate address bus
switches, data bus switches, wire switches and wire_ta
switches (defined in Section III.B) in Figure 3. These
switches are hand-coded beforehand. Finally, gen_Mx1()
calls gen_arbiter(M) to generate the appropriate arbiter using
the algorithm described in [20]. Note that specific user
input for the arbiter is not required because the arbiter type is
set to a bus arbiter and the number of masters is set to
M [20].

gen_xbar(bus parameters) {
n=0;
while (n<N)

gen_Mx1(bus parameters);
integrate();

}
gen_Mx1(bus parameters) {

gen_proc_wires(M) ;
gen_mem_wires(N);
gen_bus_wires(M);
gen_addr_bus_switch(M);
gen_data_bus_switch(M);
gen_wire_switch(M);
gen_wire_ta_switch(M);
gen_arbiter(M);
gen_comp(M);

}

gen_proc_wires(M) {
m=0;
while (m<M) { /* M = number of processors */

fill in data structure for processor wire names;
}

}
gen_mem_wires(N) {

n=0;
while (n<N) { /* N = number of memory blocks */
fill in data structure for memory wire names;

}
}
gen_bus_wires(M) {

m=0;
while (m<M) { /* M = number of processors */

fill in data structure for processor wire names;
}

Figure 7. Pseudo Code for the MxN Xbar generation.

Example 3: Suppose a user wants to build a system with two
MPC750s and two ARM9TDMIs and four memory blocks with
sizes 2Mbytes, 2Mbytes, 4Mbytes and 8Mbytes. DX-Gt,
shown in Figure 5, first determines the data bus widths to be
64 bits for MPC750 and 32 bits for ARM9TDMI. Also, the
address bus widths are set to be 32 bits for both processors.
The memory address bus widths of the four memory blocks
are set to 21 bits, 21 bits, 22 bits and 23 bits. The order of
memory blocks attached to the generated Xbar is clock-wise
as shown in Figure 2. Next, DX-Gt, as indicated by the
rightmost box in Figure 5, calls gen_xbar(). gen_xbar() calls
gen_Mx1() which, as shown in Figure 7, fills the data structure
for wire names by gen_proc_wires(), gen_mem_wires() and

gen_bus_wires(). Then, gen_Mx1() generates the switch
blocks shown in Figure 3. gen_Mx1(), as seen in Figure 6,
also invokes RAG [20] to generate an arbiter handling 4
requests and generating a comparator comparing 4
addresses. The arbiter parameters (the number of
requestors and the arbiter type) are passed to RAG. All
generated submodules are connected together by wire names
in gen_Mx1(). For example, prev_req signals are input
signals to an Xar, the top module, from an SoCDMMU. Also,
prev_req signals are input signals to four 4x1 switches and
are input signals to the comparator as well, the submodule of
4x1 switches as shown in Figure 3. Thus, prev_req signals
are connected to all four 4x1 switches (submodules of an
Xbar) in the top module and are connected to a comparator
(the submodule of a 4x1 switch) in each 4x1 switch. In this
way, the same wire names are connected. After M=4
iterations, four 4x1 switches are generated with
corresponding bus parameters. Finally, the function
integrate() creates the top file so that the generated four 4x1
switches are wired together by bus wire names.

For the software part, the d framework does the required
modification to the Atalanta RTOS to support the generated
hardware according to the user inputs[28][29]. Then the d
framework generates the modified source files (in C and
assembly), also the d framework generates the makefile
required to compile the RTOS.

V. Synthesis Results

This section presents the synthesis results of the
SoCDMMU and the Xbar. We use the Synopsys Design
Compiler [8] with a .25µm TSMC technology library [19]
from LEDA Systems [9].

A. Xbar

We use the TSMCWIRE model (lec25dscc25_FF) for a
wire load to provide more accurate area results. Figure 7
shows the synthesis results of the area of Mx1 switches for
increasing number of processors. The total area of an MxN
Xbar can be easily calculated by N times the area of an Mx1
switch, where N is the number of memory ports.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 2 4 6 8 10 12 14

M: number of processors

M
x1

 s
w

itc
h

 a
re

a
in

 t
h

e
n

u
m

b
er

 o
f

N
A

N
D

 g
at

es
 e

qu
iv

al
en

t
w

ith

T
S

M
C

 .2
5u

m

Figure 8. Area of Mx1 Switches.

As shown in Figure 8, the area of an Mx1 switch
increases almost linearly with the number of PEs.
However, as shown in Figure 9, the area of Xbar increases
sub-quadratically as the number of PEs and the number of
memory ports increases for an MxN Xbar configuration.

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 2 4 6 8 10 12 14

N: number of processors and number of memory ports

N
xN

 X
b
ar

 a
re

a
in

 th
e

n
u
m

b
er

 o
f N

A
N

D
 g

at
es

eq
u
iv

al
en

ts
 w

ith
 T

S
M

C
 .2

5u
m

Figure 9. Area of MxM Xbar Switches

B. SoCDMMU

Figure 10 shows how the SoCDMMU area scales with the
number of PEs (2, 4, 8 and 12) and G_blocks (128, 256, 512
and 1024). The area (represented by number of equivalent
NAND gates) scales linearly with the number of processors.
Please note that the results were obtained using a clock
frequency of 100MHz.

Figure 10. The Area of the SoCDMMU (w/o the Allocation Table and the

Address Converter) for different number of PEs and G_blocks

SoCDMMU Address Converter and Allocation
Table Area

0

10

20

30

40

50

60

70

0 2 4 6 8 10 12 14

Number of PEs

6T
-S

R
A

M
 w

ith
 t

he
 S

am
e

ar
ea

 (
K

B
)

1024

512

256

128

Figure 11. The Area of the Address Converter and the Allocation Table for

different number of PEs and G_blocks

Figure 11 shows the area of the Address Converter and the
Allocation Table, which are mainly memory elements and
are both part of the SoCDMMU, for different numbers of
processors (2, 4, 8 and 12) and G_blocks (128, 256, 512 and
1024). The area is represented in equivalent 6T-Static
Random Access Memory (SRAM) area.

 VI. SoCDMMU and Xbar Layout

ARM9tdmi
+

Caches

DRAM
bank 0

ARM9tdmi
+

Caches

MPC750
 +

Caches

MPC750
+

Caches

SoCDMMU

Addr. Conv. Addr. Conv. Addr. Conv. Addr. Conv.

Memory
CTRL

Peripherals

DRAM
bank 1

DRAM
bank 2

DRAM
bank 3

Xbar

Figure 12. The floorplan of an SoC that utilizes the SoCDMMU and

the Xbar
Creating a high clock rate working chip containing

millions of logic gates, whose functionality used to be
implemented by multiple chips, is a time consuming task for
Integrated Circuits (IC) designers. Usually designers start
with floorplanning the chip by partitioning it into portions
each of which presents a functional entity in the SoC (e.g.,
CPU, DRAM, caches or custom peripheral logic). Also,
this step involves pin assignment, global routing and global
clock tree generation. Tools such as Synopsys Chip
Architect [24] can help the SoC designer to accomplish such
tasks. The floorplanning and global routing provides useful
timing information required for the RTL logical and physical
synthesis of each functional entity using tools such as
Synopsys Design/Physical Compiler [25][26] and Cadence
Silicon Ensemble (SE) [27]. Finally the layout of each unit
is integrated into the SoC floorplan.

Dx-Gt generates the RTL Verilog of the SoCDMMU and
the Xbar which are parts of the SoC presented in Figure 1.
These RTL models with the RTL models of the other system
components can be used to generate the layout of the SoC IC
using the design flow described in the previous paragraph.
As a sample effort to show part of the methodology
described in the previous paragraph, we synthesized the RTL
Verilog of the SoCDMMU (customized for 256 G_blocks
and 4 PEs) and the Xbar and then placed and routed the
layout using a 0.25µm TSMC technology library.
Figure 12 shows the floorplan of the system with four
processors and four memory blocks of Example 3 including
the layouts of the SoCDMMU and the Xbar. Since DRAM
cores are not available, Figure 12 presumably describes how
4x4 Xbar is interleaved into DRAM modules. From our
layout of a subset of Figure 12 (i.e., SoCDMMU plus Xbar),
the area of 4x4 Xbar is 0.23 mm2 and the area of
SoCDMMU is 1.43 mm2.

VII. Conclusion

In this paper, we described a System-on-a-Chip IP
generation tool that enables an SoC designer to design a
multiprocessor SoC and configure its memory and bus
subsystems to meet the design constraints with ease.

Our paper is focused on the provision of a CAD tool for a
memory management unit and an MxN Xbar switch which
we named Dynamic memory management unit and Xbar
Generator (DX-Gt). The first contribution of our paper is
to provide an automatic generation of SoC Dynamic
Memory Management Unit (SoCDMMU). The second
contribution is the automatic generation of crossbar (Xbar)
switch and its arbiter as well. Both hardware units are
synthesizable at the RTL level.

Also, we showed the integration of the SoCDMMU and
the Xbar into one system. The combination of the
SoCDMMU and the Xbar for a multiprocessor SoC has been
shown to have an overall speedup of 4.4X during the
application transition time when compared to a fully shared
memory system with the same memory organization and
number of processors [5]. DX-Gt automatically generates
in RTL Verilog hardware files required to build the system.
Also, DX-Gt generates the files required to enable standard
EDA tools to implement the system.

Acknowledgments

This research is funded by NSF under INT-9973120,

CCR-9984808 and CCR-0082164. We also acknowledge
donations received from Denali, Hewlett-Packard, Intel,
LEDA, Mentor Graphics, Sun and Synopsys.

References

[1] The International Technology Roadmap for Semiconductors,

edited by SIA Semiconductor Industry Association, 2002.
[2] M. Shalan and V. Mooney, “A Dynamic Memory

Management Unit for Embedded Real-Time
System-on-a-Chip,” Proceedings of the International
Conference on Compilers, Architecture and Synthesis for
Embedded Systems (CASES’00), November 2000, pp.
180-186.

[3] D. Sun, D. Blough, and V. Mooney, “Atalanta: A New
Multiprocessor RTOS Kernel for System-on-a-Chip
Applications,” Georgia Institute of Technology, Atlanta,
Georgia, Technical Report GIT-CC-02-19, 2002,
http://www.cc.gatech.edu/tech_reports/.

[4] E. S. Shin, V. J. Mooney and G. F. Riley, "Round-robin
Arbiter Design and Generation," Proceedings of the
International Symposium on System Synthesis (ISSS’02),
October 2002, pp. 243-248.

[5] M. Shalan and V. Mooney, "Hardware Support for Real-Time
Embedded Multiprocessor System-on-a-Chip Memory
Management," Proceedings of the Tenth International
Symposium on Hardware/Software Codesign (CODES'02),
May 2002, pp. 79-84.

[6] VPP, Available HTTP: http://www.surefirev.com/vpp/
[7] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. Dally and M.

Horowitz, “Smart Memories: A Modular Reconfigurable

Architecture,” Proceedings of International Symposium on
Computer Architecture (ISCA’00), June 2000, pp. 161-171.

[8] Synopsys Design Compiler. Available HTTP:
http://www.synopsys.com/products/logic/.

[9] LEDA Systems. Available HTTP: http://ledasys.com.
[10] Artisan Components, Inc. http://www.artisan.com/.
[11] Tensilica, Inc. Available HTTP: http://www.tensilica.com.
[12] ARC Inc. Available HTTP: http://www.arc.com/.
[13] E. V. Puttkamer, “A simple hardware buddy system memory

allocator,” IEEE Transaction on Computers, vol. 24, no. 10,
October 1975, pp. 953-957.

[14] H. Cam et al., “A high-performance hardware-efficient
memory allocation technique and design,” Proceedings of
International Conference on Computer Design (ICCD’99),
October 1999, pp. 274-276.

[15] J. M. Chang et al., “Introduction to DMMX (Dynamic
Memory Management Extension),” Proceedings of ICCD
Workshop on Hardware Support for Objects and Micro
architectures for Java, October 1999, pp. 11-14.

[16] J. M. Chang and E. F. Gehringer, “A High-Performance
Memory Allocator for Object-Oriented Systems,” IEEE
Transactions on Computers, vol. 45, no. 3, March 1996, pp.
357-366.

[17] K.C. Knowlton, “A Fast Storage Allocator,” Communications
ACM, Vol. 8, October 1965, pp. 623-625.

[18] Mentor Graphics Seamless. Available HTTP:
http://www.mentor.com/seamless.

[19] TSMC IP Services. Available HTTP:
http://www.tsmc.com/design/ip.html.

[20] E. S. Shin, V. J. Mooney and G. F. Riley, “Round-robin
Arbiter Design and Generation,” Georgia Institute of
Technology, Atlanta, GA, Technical Report GIT-CC-02-38,
2002, http://www.cc.gatech.edu/tech_reports.

[21] IBM CoreConnect Bus Architecture, Available HTTP:
http://www-3.ibm.com/chips/products/coreconnect.

[22] S. Wuytack et al., “Memory Management for Embedded
Network Applications,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
vol. 18, no. 5, May 1999, pp. 533-544.

[23] Y. Li and W.H. Wolf, “Hardware/Software Co-Synthesis with
Memory Hierarchies,” IEEE Transaction Computer-Aided
Design of Integrated Circuits and Systems, vol. 18, no. 10,
October 1999, pp. 1405-1417.

[24] Synopsys Chip Architect, Available HTTP:
http://www.synopsys.com/products/designplanning/designplan
ning.html.

[25] Synopsys Design Compiler, Available HTTP:
http://www.synopsys.com/products/logic/design_compiler.htm
l

[26] Synopsys Physical Compiler, Available HTTP:
http://www.synopsys.com/products/unified_synthesis/unified_
synthesis.html

[27] Cadence Silicon Ensemble, Available HTTP:
http://www.cadence.com/products/sepks.html

[28] V. Mooney and D. Blough,"A Hardware-Software Real-Time
Operating System Framework for SOCs," IEEE Design and
Test of Computers, November-December 2002, pp. 44-51.

[29] J. Lee, K. Ryu and V. Mooney, "A Framework for Automatic
Generation of Configuration Files for a Custom
Hardware/Software RTOS," Proceedings of the International
Conference on Engineering of Reconfigurable Systems and
Algorithms (ERSA'02), pp. 31-37, June 2002.

[30] M. Shalan and V. Mooney, “Hardware Support for Real-Time
Embedded Multiprocessor System-on-a-Chip Memory
Management,” Georgia Institute of Technology, Atlanta,
Georgia, Technical Report GIT-CC-03-02, 2003,
http://www.cc.gatech.edu/tech_reports/.

