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ABSTRACT 
 

As embedded applications become more complex, file I/O operations such as 

read and write become increasingly important.  However, file I/O operation latency 

may be significant when the file is located remotely.  File I/O operation latency may 

be reduced by the means of incremental data delivery.  Using this method, the data is 

not necessarily transmitted in a linear order of the data in the file, but is preferably 

transmitted in the order in which the data is used.  Therefore, the application can ob-

tain needed data more quickly.  Furthermore, transmission bandwidth and memory 

usage may be lowered since unneeded data may not be sent.   

In this paper, we present a stream-enabled file I/O method which allows data files 

to be streamed to an embedded device.  The experimental results show that our im-

plementation improves file I/O operation latency; in our examples, the performance 

improves up to 4.95X and 55.83X when compared with network file system and di-

rect download, respectively. 

 

1. INTRODUCTION 

Often an embedded application includes data inside its program file.  For in-

stance, a game application may embed data for rendering a scene in the program 

code.  However, as the data becomes larger, embedding the data in the program file 

becomes impractical.  Moreover, the data may change over time, which obsoletes the 

application embedding the old data.  Therefore, it is preferable to keep the data sepa-



rate from the application code itself and supply on demand the needed data to the 

application.   

Traditionally, many embedded applications perform file I/O operations to re-

quest needed data from a remote server.  However, file I/O operations may take a 

significant amount of time when the file is located remotely.  This may cause the ap-

plication(s) to be suspended for a long time.  Alternatively, only the needed data 

within a data file may be sent to the client device on demand.  In this case, the sus-

pension time may be shorter.  However, if different data in the file is accessed fre-

quently, the application may suffer from the network latency.   

In this paper, we propose a method to send file data incrementally and to al-

low embedded applications to access the file while transmission may still be in pro-

gress.  Similar to media streaming such as audio and video streaming, we allow data 

to be processed before the download of the entire file is completed.  However, unlike 

media streaming, we allow random data accesses and updates.  We also profile the 

data so that it may be more likely to be transmitted in the order in which the data is 

used.  Our objectives are to reduce I/O latency (the time from when an embedded 

application performs a file I/O operation to when the embedded application can con-

tinue running) and to minimize resource utilization such as bandwidth and memory. 

This paper consists of six sections.  Section 2 reviews related work in the 

area of file I/O.  Section 3 describes our stream-enabled file I/O implementation.  

Section 4 discusses experimental results.  Finally, Section 5 concludes the paper. 

2. RELATED WORK 

There are many protocols used to transfer files across a network.  These pro-

tocols are implemented to serve different purposes based on the needs and the limita-

tions of client applications.  In this section, we discuss existing work related to our 

research. 

2.1 DIRECT DOWNLOAD (DD) 

One of the simplest means to transfer files is to use Direct Download (DD).  

In the DD implementation, the server sends the entire file to the client.  Usually, the 



client application waits for the completion of the download before starting to process 

the data.  Downloading a large file takes a significant amount of time via a typical 

network connection.  Hence, the user may have to wait for some time before the data 

can be used.  There are a few variants of the DD implementation.  For example, a 

classic implementation of DD is File Transfer Protocol (FTP) [10].  The FTP client 

downloads the entire file from the server.  Another variant is Java FileInput-

Stream [4].  In FileInputStream, a Java Virtual Machine (JVM) downloads a file 

from a server via HTTP [2]. 

2.2 VIRTUAL FILE SYSTEM (VFS) 

VFS allows a client machine to mount directories located at server machines.  

The client machine can access files in the mounted directories as if they are local 

files.  A typical flow for accessing a remote file is as follows: the user process in-

vokes a system call (e.g., read), the kernel dispatches the command to the VFS and 

the VFS handles the request (for example, if the read command is issued, the VFS 

obtains the data either from the server or local cache and copies the data to user 

memory).  Two well-known virtual file systems are Andrew File System (AFS) [1] 

and Network File System (NFS) [11].  AFS is a distributed file system with a com-

mon name space.  Data are stored in volumes on AFS file server machines and ac-

cessed through a cache manager on AFS client machines.  AFS is a large scale file 

system; there is only one AFS on the Internet.  Every AFS cell is under the same AFS 

root directory.  AFS may be too complex for a small embedded device.  On the other 

hand, NFS is a workgroup file system which is designed to serve a small number of 

clients.  NFS is supported by Linux which has been ported to many embedded de-

vices.  Therefore, NFS can be mounted on embedded devices.  Unlike our method, 

both AFS and NFS use only file caching not profiling.  We explain how file profiling 

can improve file access performance in Section 4. 

2.3 INCREMENTAL SOFTWARE DELIVERY (ISD) 

The ISD technique enables applications to run on a client device without 

having the whole program downloaded.  The program code is incrementally delivered 



while the application is running.  The program code increments may be transmitted 

on demand or in the background.   

A Java applet is an example of an on-demand ISD implementation; a Java 

applet can be run without obtaining all of the classes used by the applet.  Java class 

files can be downloaded on demand from a server.  If a Java class is not available to a 

JVM when an applet attempts to invoke the class functionality, the JVM may dy-

namically retrieve the class file from the server [4],[7].  The drawback of the on-

demand ISD implementation is that the program code increments are only sent when 

the client requests them.  Therefore, the application may suffer from being suspended 

due to missing program code.  However, this issue can be mitigated by using a 

streamed ISD implementation which allows program code increments to be transmit-

ted in the background.  In the streamed ISD implementations [3],[5],[6],[12], the pro-

gram is broken up into parts (increments) and then is profiled for transmission.  The 

program code increments are sent according to the profile without waiting for the 

client to make a request.  The program data is usually embedded in the program code 

and must be transmitted before the program code.  As mentioned previously, when 

the data is large, embedding the data in the program is impractical.   

Our method, on the other hand, enables data to be streamed to the client de-

vice while allowing an application to access data concurrently with transmission, in-

stead of embedding data inside program file.  Moreover, the application may need to 

update its data files. 

3. STREAM-ENABLED FILE I/O 

In some applications, data can be much larger than executable code.  For an 

application using a large amount of data, the application usually reads data from files 

instead of embedding the data in the program file.  Downloading the entire data be-

fore the application can start reading would cause the application to be suspended for 

a long time.  Furthermore, the application may use only a subset of the data at one 

time.  Therefore, requiring all data to be available to the application at once is typi-

cally unnecessary.  Example 1 shows a quantitative comparison between download-

ing the entire file versus just downloading the needed data. 



Example 1: Assume that a game application contains a 4 MB data file.  However, the 

game application needs to process only 1 MB of the data (a single scene) before the 

user can begin to play the game.  If we transfer the entire file over a 128-Kbps link, it 

will take over 262 seconds (approximately 4 minutes and 22 seconds).  On the other 

hand, if we transfer 1 MB of data and allow the game application to start processing 

the data, it will take only approximately 65 seconds.  Therefore, in this case, the game 

application can utilize the data needed for the scene 4X faster when compared to 

transferring the entire file.  � 

In addition, an application may also take some time to process the input data.  

By enabling the application to process part of the needed data while the rest of the 

data is concurrently being downloaded, the total amount of time required to access 

and process the needed data can be reduced.  This is because the application usually 

has to wait for transmission.  While waiting for transmission, the application can per-

form some computation on the data already loaded.  Interleaving the transmission and 

the computation of data is faster than serializing data transmission and the computa-

tion. 

Using the quantitative comparisons from Example 1, we propose a Stream-

enabled file I/O (SIO) implementation which transfers files in blocks and allows the 

application to access files while transmission may still be in progress.  The block 

transmission is not necessarily performed in a linear order of the blocks in the file, 

but is preferably performed in the order in which the blocks are used.  Therefore, the 

application can obtain the needed data more quickly.  Moreover, the transmission 

bandwidth and memory usage may be lowered since unneeded data may not be 

transmitted.  We describe our implementation in the following subsections.  

3.1 SIO PROTOCOL 

SIO implements network file I/O using a client-server model.  The design 

goal is to enable applications running on a client device to perform file I/O opera-

tions on files stored at a server.  At the server, we divide files into blocks which we 

call data blocks and then create a transmission profile (information how to transmit 

data blocks) for each file.  Please note that we assign an ID to each data blocks se-

quentially the same as the order in which they appear in the file, starting from 0.  



When a client requests a file, the SIO server sends the file information (e.g., file size 

and block size) and streams data blocks to the client according to the transmission 

profile.  At the client, when the application opens a file, the SIO client sends a re-

quest to receive the file from the server and uses the file information to construct file 

status information.  The file status information contains a data block table.  Each en-

try in the data block table is an address field for storing the location of the data block.  

However, if the address is invalid (i.e., the address value of 0xFFFFFFFF), the data 

block is not yet loaded; otherwise, the data block is in memory.  The offset of the 

address field is the block ID of the data block.  Figure 1 shows an example of a data 

block table.  When the SIO client receives a data block, the corresponding address 

field entry is updated to the location where the data block is stored.  For example, in 

Figure 1, when data block with an ID of 1 is received, the SIO client loads the block 

into memory starting at 0x00010400 and updates the address field of the entry at off-

set 1 with the starting location of the data block. 

 

Figure 1. Data block table. 

By using a data block table, SIO function calls can determine whether or not 

the data block is available.  If the block is missing, the SIO client sends a request to 

the SIO server for the needed block.  Otherwise, the application can access the data 

in the block.  For limited storage devices, unneeded data blocks can be removed by 

changing the address fields of the blocks to an invalid address and freeing the mem-

ory occupied by the unneeded data blocks.  If a block is later needed, it will be re-

quested for retransmission. 



In our current implementation, we only allow a server to transmit fixed size 

blocks.  However, the data block containing the end of file can be smaller than oth-

ers. 

4. DATA PROFILING 

Data profiling is used to predict the runtime file access behavior of the appli-

cation in order to stream data accordingly.  Data which are most likely to be used 

first should be streamed first.  Using data profiling, the data miss rate and application 

suspension time due to missing data can be significantly reduced.  Furthermore, data 

which is not needed by the application may not be sent at all, saving memory and 

bandwidth.  In this section, we discuss profiling of data files. 

A data file is profiled at the block level.  However, we do not rearrange data 

within a block or across multiple blocks; we leave the data structure inside the file 

unchanged.  Thus, since block boundaries are at points dictated by the fixed sizes 

(e.g., all blocks of size 4 KB), a data structure may be split across two blocks.  In this 

case, in order to obtain the entire data structure, both blocks must be streamed.  After 

the file is divided into blocks, we predict the order that the program uses the data 

blocks and then we create a flow graph for data transmission.  A node (vertex) of the 

graph represents the data block and an edge linking two nodes indicates the possible 

flow of the transmission.  We also assign a weight to each edge of the flow graph; the 

higher the weight is, the higher probability that the block corresponding to the next 

node will be sent.  Then, we create a transmission profile of the file by traversing the 

flow graph.  Data blocks are sent according to the profile.  The profile of the file may 

be dynamically or statically updated based on the statistical usage of the file col-

lected from the actual file access pattern of the application.   

One of the simplest access patterns is a sequential access pattern; the applica-

tion reads the data file sequentially from start to finish.  Profiling a sequentially-

accessed file is still beneficial.  For instance, as mentioned in Example 1, the game 

application needs to process only  1 MB of data to allow the user to play the game; 

therefore we can profile the data in such a way that the first scene is sent to the client 

with a higher data rate from the subsequent scenes.  In this way, the subsequent 



scenes will be sent while the user is playing the first scene without utilizing resources 

at such high rate as the first scene.  When the user advances to the next scene, the 

data may be ready at the client device. 

When the data access pattern is unordered and unpredictable, profiling may 

be difficult or impossible.  However, if the data access pattern is known or has a cer-

tain characteristics, we profile the file so that the data will be sent in a similar fashion 

to the data access pattern or the characteristics.  Therefore, the application would 

have access to data more quickly.   

5. EXPERIMENTAL RESULTS 

We implemented a stream-enabled file I/O method in C.  We tested our im-

plementation on an MBX860 board [8] running Linux version 2.4.21 [14].  As shown 

in Figure 2, the MBX860 board is connected to a local area network via a 10-Mbps 

Ethernet port.  However, the server is located in a different subnet which means the 

traffic is routed through network devices such as routers and switches.   

 

Figure 2. Experimental setup. 

We also used the Linux Traffic Shaper (shapercfg version 2.2.12) to regulate 

the connection speed.  In all experiments, we configured the connection speed to 128 

Kbps.  Then, we measured the performance of our SIO and compared the results with 

the results obtained by NFS and DD.  For the DD, we implement a version of DD 

using a TCP socket to download the entire file first and then allow the application to 

access the data. 

Experiment 1: Reading data file using various benchmarks.  In this ex-

periment, we created four benchmarks, namely, Seq, Rand 1K, Stat and BSearch to 

test the performance of SIO, NFS and DD.  These four benchmarks simulate typical 



activities for reading data from files.  The Seq benchmark sequentially reads a 1-MB 

data file with a minimal amount of data processing; the data is read and assigned to a 

variable.  This benchmark simulates applications which read an entire file into mem-

ory.  The Rand 1K benchmark randomly reads 1 KB of data from a 1-MB data file.  

Since data access is random, this benchmark tests the performance under such cir-

cumstances when the application’s data accesses are unordered and unpredictable.  

The Stat benchmark calculates various statistical values of data in a 1-MB data file.  

This benchmark simulates applications which interleave reading and processing data.  

Finally, the BSearch benchmark finds a specific value in a 1-MB file whose data is 

sorted in ascending order.  This benchmark tests the performance of reading data 

files which have a known, non-sequential data access characteristic.   
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Figure 3. File I/O Performance Comparisons 

The performance comparison of SIO, NFS and DD using these four bench-

marks is shown in Figure 3.  Figure 3 shows the time taken to stream and process a 

1-MB data file used by each benchmark.  For the Seq benchmark, SIO is 1.31X faster 

than NFS.  However, SIO performs almost the same as DD since the whole file is 

transmitted and data processing is minimal.  For Rand 1K benchmark, SIO is 1.83X 

and 2.16X faster than NFS and DD, respectively.  In this benchmark, a subset of the 

data is required at the client.  Obviously, downloading the whole file takes longer.  

For Stat benchmark, SIO outperforms NFS and DD.  Even though the whole file is 



needed, SIO allows computations while the file is being transferred.  For BSearch 

benchmark, SIO is 4.95X and 55.83X faster than NFS and DD.  The performance of 

SIO is much better than both implementations because SIO uses data file profiling as 

described in Section 4.  Data file profiling predicts which data block is needed first.  

Therefore, the server will stream the block accordingly. 

Experiment 2: Data acquisitions.  In this experiment, we measured the 

amount of time the application takes to acquire a certain amount of data from a 1-MB 

file over a 128-Kbps connection and we also compared our implementation with NFS 

and DD.  The data is read sequentially from the beginning of the file until the re-

quired amount of data is acquired.  Note that, in this experiment, we do not process 

data; we read the data and store it in memory.  The results are plotted in Figure 4. 
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Figure 4. Time to acquire data from a 1-MB file. 

For the DD implementation, the amount of time to acquire data varies only 

slightly with data size since the entire file must be downloaded independent of the 

amount of data needed.  In contrast, SIO and NFS implementations allow the applica-

tion to process the data after a subset of the data is loaded.  Therefore, the amount of 

time to acquire a particular amount of data for both implementations depends on the 

size of the data.  In other words, the amount of time the application takes to acquire 

data is proportional to the size of the data.  However, the amount of time to acquire 

data via SIO approaches the amount of time to download the entire file as the size of 



data approaches the size of the file while the amount of time to acquire data via NFS 

is more than the time to download the entire file. 

Experiment 3: Data utilization rate.  In this experiment, we measured the 

amount of time its takes to process a 1-MB file using various data utilization rates 

(the rates that the application uses data) over a 128-Kbps connection.  The intention 

of the experiment is to show the effects of the data utilization rates on the amount of 

time required to process all data when reading a file which must be transferred over a 

certain connection speed.  The results are illustrated in Figure 5. 
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Figure 5. Data Utilization Rate vs. Time 

SIO implementation outperforms both NFS and Download implementation.  

When the data utilization rate is less than connection data rate, the application spends 

more time processing the data after all data is transfer to the client.  However, when 

the data utilization rate is greater than connection data rate, total time is dominated 

by transfer time. 

Experiment 4: Combining stream-enabled file I/O and stream-enabled 

program file.  In this experiment, we combined block streaming for program file 

method (SPG) and block streaming for data file method (stream-enabled file I/O).  

Then, we compared the user perceived application load time (the amount of time 

from when the application is selected to download to when the application can inter-

act with the user) with the user perceived application load times obtained when run-



ning the application via SPG, NFS and DD. In the SPG implementation, we embed-

ded all data in the program code. 

Therefore, all data must be streamed first.  We created a simple game appli-

cation which has a program file of size 512 KB and a data file of size 1 MB.  The 

game application contains four scenes, and each scene is rendered using 256 KB of 

data.  The code needed for rendering the scene occupies 128 KB of memory.  The 

user can start playing the game after the first scene is rendered. The amount of time 

the user has to wait before playing the game is shown in Figure 6. 
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Figure 6. The amount of time the user has to wait before playing the game. 

Using a combination of SIO and SPG (SIO+SPG), the user can start playing 

games 3.18X more quickly than using SPG alone, 1.42X more quickly than using 

NFS, and 4.28X more quickly than using DD.  For the SPG implementation, all data 

must be streamed before the needed program code.  Therefore, the game application 

can start rendering the scene when all data and the needed program code are loaded.  

As a result, SPG significantly underperforms NFS.  If the game application were im-

plemented using SPG for the program file and DD for the data file, the performance 

would still be bounded by file I/O.    



6. CONCLUSION 

File I/O operations may be accelerated using our stream-enabled file I/O 

method.  The application can access the data more quickly since the data is likely to 

be transmitted in the order in which it will be used.  We presented a method for 

transmitting a data file from a server to a client.  We tested our implementation using 

an MBX860 board running an embedded Linux.  The experimental results show that 

our implementation outperforms the other comparative methods; in our examples, the 

performance improves up to 4.95X and 55.83X when compared with network file 

system and direct download, respectively. 

Advantageously, with the combination of program file streaming and the new 

data file streaming techniques introduced in this paper, the user can interact with the 

application more quickly, and small embedded devices can run many more applica-

tions as if they were fully downloaded and installed already.  In addition, the embed-

ded device may overcome memory limitations since unneeded code and data may not 

be sent to the device.   
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