
1

A Configurable Hardware Scheduler for Real-Time Systems

Pramote Kuacharoen, Mohamed A. Shalan and Vincent J. Mooney III
Center for Research on Embedded Systems and Technology

School of Electrical and Computer Engineering
Georgia Institute of Technology
Atlanta, Georgia 30332, USA

{pramote, shalan, mooney}@ece.gatech.edu

Abstract

Many real-time applications require a high-resolution
time tick in order to work properly. However, supporting
a high-resolution time tick imposes a very high overhead
on the system. In addition, such systems may need to
change scheduling discipline from time to time to satisfy
some user requirements such as Quality of Service (QoS).
The dynamic changing of the scheduling discipline is usu-
ally associated with delays during which some deadlines
might be missed.

 In this paper, we present a configurable hardware
scheduler architecture which minimizes the processor
time wasted by the scheduler and time-tick processing.
The hardware scheduler is flexible and provides three
scheduling disciplines: priority-based, rate monotonic
and earliest deadline first. The scheduler in hardware
also provides accurate timing. The scheduling mode can
be changed at runtime, providing support for a wide
range of applications on the same device. The hardware
scheduler is provided in the form of an Intellectual Prop-
erty (IP) block that can be customized according to the
designer’s input, to suite a certain application, by a tool
we have developed.

Keywords: configurable hardware scheduler, hardware
scheduler, real-time systems, real-time operating system,
scheduling algorithm.

1. Introduction
A Real-Time Operating System (RTOS) allows real-

time applications to be designed and expanded easily.
However, the RTOS introduces overhead, which may
prevent some real-time systems, such as high-speed
packet switches, from working efficiently. As a result,
deadlines may be missed. The overhead can be reduced
by migrating kernel services such as scheduling, time tick
(a periodic interrupt to keep track of time during which
the scheduler makes a decision) processing [7], and inter-
rupt handling to hardware. This will significantly im-

prove the response time and the interrupt latency, provide
accurate timing, and increase the CPU utilization.

An implementation of a hardware scheduler usually
can support only one scheduling algorithm. Conse-
quently, the hardware can support a narrow range of ap-
plications, which work well under the same scheduling
algorithm. Unlike software components, a hardware unit
is less flexible and more difficult to modify after imple-
mentation. As a result, hardware solutions are frequently
avoided. However, if the hardware scheduler is configur-
able to support several scheduling algorithms, then the
hardware solutions become more flexible.

Future embedded devices will support a wide range of
applications. The hardware scheduler may need to be
reconfigured at the time of application switching. For
example, suppose the current application on a handheld
device is running under a priority-based scheduling algo-
rithm and suppose that the user presses a button to switch
to another application, which works well under an Earli-
est-Deadline-First (EDF) algorithm. In order to support
the new application efficiently, the hardware scheduler
will be reconfigured from the priority-based mode to the
EDF mode. Furthermore, different classes of applications
will have different numbers of tasks in the system. Once
the hardware scheduler is fabricated or configured into a
Field Programmable Gate Array (FPGA), the maximum
number of tasks is fixed. Therefore, the number of tasks
must be specified for the application class before the
hardware is built. However, the operations of the hard-
ware scheduler should be independent of the number of
tasks. Scalability of the hardware scheduler can be ac-
complished by implementing fixed-cycle operations.
Each operation requires a fixed number of cycles. The
ready queue architecture must be scalable. When the
ready task is inserted to the ready queue, it must be sorted
in a constant time.

Some FPGA vendors have recently released recon-
figurable logic with processors such as PowerPC [13] and
ARM [16]. With chips available containing both recon-
figurable logic and processor(s) together on one die, the

2

hardware scheduler can be easily configured. Further-
more, with a runtime support environment for reconfigur-
able systems, any scheduling algorithm or any RTOS
component implemented in hardware can be downloaded
and reconfigured at runtime. This will enable the hard-
ware solution to be as flexible as the software solution;
for example, an existing part, the Xilinx XC3000 is recon-
figurable in 1.5 ms, and future FPGA products promise to
be reconfigurable in much less time than this [12].

We implement a configurable hardware scheduler in
the Verilog Hardware Description Language (HDL) and
an RTOS in C. Our implementation is scalable. We mi-
grated the software scheduler and the time tick back-
ground processing to the hardware. Therefore, the soft-
ware overhead from these services is eliminated.

The paper consists of seven sections. The next section,
Section 2, describes related work in the area of scheduling
algorithms implemented in hardware. In the third and the
fourth sections, the configurable hardware scheduler ar-
chitecture and software support are presented. In the fifth
section, we discuss automatic customization of the hard-
ware scheduler. In the sixth section, experiments and
results are discussed. Finally, the seventh section con-
cludes the paper.

2. Related work
Several previous papers deal with scheduling algo-

rithms implemented in hardware. Most of them are in the
field of packet scheduling in real-time net-
works [1], [2], [8]. Scheduling in such systems is based
on priorities. Therefore, a key aspect is to implement
priority queues. Many hardware architectures for the
queues have been proposed: binary tree comparators,
FIFO queues plus a priority encoder, and a systolic array
priority queue [1]. Most of the hardware proposed ad-
dresses the implementation of only one scheduling algo-
rithm (e.g., Earliest Deadline First) [8].

In the field of real-time processing, there have been
few proposals of hardware implementations. In the
Spring kernel project [3], [10], a coprocessor was built to
enhance the multiprocessing scheduling [9]. This coproc-
essor was able to perform feasibility checks and calculate
a complete feasible schedule. FASTHARD [4] and
FASTCHART [5] are two approaches to implement a
hardware kernel for single or multiprocessor systems.
The FASTCHART approach used a special purpose CPU
to execute the scheduling algorithm running in parallel to
the main CPU. In FASTHARD, the author implemented
custom hardware in an FPGA to perform the functional-
ities of the priority scheduler [11].

The previous research on the hardware implementation
of real-time schedulers focused only on implementing
only one scheduling algorithm, thus making them ineffi-

cient and not suitable for systems where the required
scheduling discipline changes during runtime. We, on the
other hand, introduce a configurable scheduler that sup-
ports three scheduling disciplines. The scheduler can
switch from one scheduling discipline to another on the
fly during runtime to adapt to changes in the system. Our
hardware scheduler was designed to support multiple
scheduling disciplines using minimum area overhead.
The implemented scheduling disciplines share the same
hardware components and use the maximum amount of
common logic and minimum amount of multiplexers to
select a scheduling discipline. Our implementation is
entirely different from having three independent hardware
schedulers running in parallel.

3. Configurable Scheduler Hardware
A programmable hardware system is designed to han-

dle the scheduling of tasks in complex systems. The goal
of the hardware design is to minimize the processor time
wasted by the scheduler and by interrupt handling. His-
torically, designers have avoided hardware solutions be-
cause they have been considered to be inflexible and hard
to modify after implementation in contrast to software
solutions. However, with recent FPGA technology, this is
no longer the case, with hardware reconfigurable in
1.5 ms and less (e.g., hundred of microseconds) [12].
Therefore, in this paper we take advantage of advances in
FPGA technology by placing part of an RTOS in hard-
ware, reducing, for example, scheduling and time-tick
processing by thousands of assembly instructions (execut-
ing in tens of thousands of clock cycles if there are cache
misses) for a system with 50 tasks.

The hardware scheduler provides three different types
of scheduling algorithms: Priority (PI), Earliest Deadline
First (EDF), and Rate Monotonic (RM). Also, the hard-
ware scheduler supports preemption at the scheduler level
and at the process level. The hardware scheduler supports
up to eight levels of interrupts and provides accurate tim-
ing. The hardware was designed to minimize the proces-
sor overhead while maintaining flexibility and extensibil-
ity. In the following section, we will describe the hard-
ware scheduler architecture, commands and interfacing.

3.1. Architecture
The proposed architecture for the hardware scheduler

is shown in Figure 1. The main components of the sched-
uler are:

• The Sleep Queue (SQ),
• The Priority Queue (PQ),
• The Task Table,
• The Interrupt Controller and
• The Control Unit

which will be described in the following sections.

3

Control Unit

Current Task

Interrupt
Controller

Task
TablePQSQ

In
t.

0
In

t.
1

In
t.

2

In
t.

7

...

Bus Signals

Control Signals

...

...

Figure 1. The configurable hardware scheduler
micro-architecture.

3.1.1. Priority Queue (PQ)

The priority queue is a sorted queue used to store the
active tasks in a sorted order (ready queue). The queue
entry is shown in Figure 2. The REG field is a 32-bit
register that is used to hold either the priority in the case
of a priority-based scheduler or the period in the case of
an RM scheduler. The counter field holds either the pe-
riod for RM or priority-based schedulers, or the time to
the deadline for an EDF scheduler. The queue can be
sorted according to either the REG field in the priority-
based or RM scheduler mode or the counter field in EDF
scheduler mode.

ID REG Counter
Figure 2. The PQ entry format.

We are using a priority queue very similar to the prior-
ity queue described in [8]. When a task is inserted, the
queue automatically re-orders itself. Figure 3 shows the
architecture of the basic cell of the queue.

REG + Counter

MUX

Data from
the left cell

Data from
the right cell

ControlComparator

Comparison
results

Comparison results
from the right block

New
data

Figure 3. The PQ cell architecture.

Each cell consists of a storage element, a multiplexer,
a comparator and control logic. During the en-queue op-
eration, the new entry is broadcast to all the cells. Each
cell makes a local decision as to what action to take, with
only one of the cells latching the new entry. The others
will either keep their current entry or latch the right
neighbor’s entry. The net effect is to have the new entry
force all entries with lower priority to shift one cell to the
left, while the new entry places itself to the left of the
entries with higher and equal priority. A de-queue opera-
tion shifts all entries one cell to the right. The insertion
and the ordering process takes only one clock cycle in all
cases [8].

3.1.2. Sleep Queue (SQ)

The sleep queue is used to hold the sleeping tasks, ei-
ther by issuing the SLEEP or YIELD commands. The
sleep queue uses an architecture similar to that of the PQ.
However, the SQ entries are sorted according to their
sleep time, specified by the SLEEP command or the re-
maining time to the end of the period when the YIELD
command is issued. Figure 4 shows the data format of the
SQ entry.

ID Counter
Figure 4. The SQ entry format.

3.1.3. Task Table

The Task Table is a lookup table indexed by the task
ID. The format of the entry is shown in Figure 5: the PRI,
Period, and WCET fields are used to hold the task prior-
ity, period, and worst-case execution time, respectively.
The TYPE field is used to hold the task type: periodic or
aperiodic. The PRE field indicates if the task can be pre-
empted by other tasks. The STATUS field holds the task
status: active, suspended, or deleted. Every time a task is
activated, the scheduler fetches the task information from
the task table.

PRI Period WCET TYPE PRE STATUS
Figure 5. The task table entry format.

3.1.4. Interrupt Controller

This module is used to handle external interrupts. The
module supports up to eight interrupt levels. Each inter-
rupt can be assigned to a task to handle the associated
interrupt level. Each interrupt can be configured to be
either fast interrupt (the interrupt handling task will run
right away by preempting the current task) or slow inter-
rupts (the handling task will be inserted to the PQ).

4

3.1.5. Control Unit

The control unit is used to interface the hardware
scheduler to the external host. The control unit accepts a
command, decodes the command and generates proper
control signals to the rest of the hardware to execute the
command.

3.2. Hardware Scheduler Commands
The hardware scheduler implements the time-tick han-

dling and the execution of the chosen scheduling algo-
rithm, while the context switching is done in software.
The hardware scheduler has a set of commands to allow
the software portion to configure the hardware and to per-
form operations. The commands are issued through a
memory mapped I/O port, which can be done in one or
two clock cycles depending on the size of the command
word. For example, since the SLEEP command
uses 32 bits for the sleep time, it uses two words (64 bits)
overall and thus takes two clock cycles to execute. The
SSLEEP (Short SLEEP) command, on the other hand,
uses 22 bits for the sleep time and can fit the overall
command in 32 bits; thus, SSLEEP can execute in one
clock cycle. Table 1 lists the commands that can be exe-
cuted by the hardware scheduler.

Table 1. Hardware Scheduler Commands.
 Command # of Cycles

STOP 1
RUN 1 Scheduler Related
CONFIGURE 1
CREATE Task 1
MODIFY Task 2
SLEEP 2
SSLEEP 1
YIELD 1
SUSPEND 1
RESUME 1

Task Related

DELETE 1

These commands are standard RTOS task crea-
tion/deletion and scheduling APIs. The STOP, RUN and
CONFIGURE commands are used for disabling, enabling
and configuring the hardware scheduler. The CREATE
command creates a new task. The task’s parameters (e.g.,
task priority and task worst-case execution time) can be
modified using the MODIFY command. To delay a task,
SLEEP or SSLEEP can be used. The YIELD command
will insert a task to the SQ for the remaining time in the
period. The SUSPEND command suspends a task while
the RESUME command resumes a suspended task. A
task can be deleted using the DELETE command.

Example 1: Consider a 32-bit system that utilizes the
hardware scheduler which is configured to work in a prior-
ity scheduling mode and supports up to 64 tasks. The
time tick resolution for schedule is set to 10 µs. To create

a task, the real-time operating system must issue the
CREATE command which requires the task ID and the
task priority. The CREATE command is a 32 bit command
where the task id and the task priority occupy 6 bits each.
Therefore, the CREATE command can be issued in one
cycle. One of the tasks is a periodic task which reads an
input every 45 s. The task needs to idle (sleep) for 45 s
after reading each input value. In order to idle, the task
calls an API function that utilizes the SLEEP and SSLEEP
commands. Since 45 s are equivalent 4.5 million ticks
which need more than 22 bits to be represented, the API
call uses the SLEEP command which takes two cycles to
execute. �

3.3. Hardware Scheduler Interfacing
The hardware is designed to be able to interface easily

with any microprocessor. The hardware scheduler can be
connected to a bus to act as a memory mapped port, or it
may be connected to the processor as a co-processor. In
addition, if the processor (such as the StarCore SC140
DSP core [14]) supports instruction-set accelerators, the
hardware scheduler can be used to extend the processor
instruction-set to manage the system processes with cus-
tomized assembly instructions such as the YIELD and
RESUME commands explained in Section 3.2.

Figure 6 shows the hardware scheduler connected to a
processor as an I/O port.

CPU

Memory

Hardware
Scheduler

Interrupt

Address/Data Bus

Figure 6. The hardware scheduler connected as

an I/O device.

In this configuration, the hardware scheduler has one
address to which the commands can be written and from
which the status can be read. The hardware scheduler
directs the processor to switch to another task when a
higher priority task is ready by sending an interrupt signal
to the CPU. When the CPU is interrupted, it transfers the
control to the context switcher, which reads the task ID
from the hardware scheduler, stores the context of the
current task, and switches the context to the task with the
ID read from the hardware.

4. Software Support
The RTOS consists of processor-independent code and

processor-specific code. Therefore, the RTOS for the
hardware scheduler can be easily ported by modifying the

5

processor-specific code. Since the hardware scheduler
cannot directly access the registers of the processor, the
context switching is done in software. During context
switching, the contents of the registers are stored in the
stack of the current task, and the contents of the registers
of the new task are restored. The context switching time
depends on the number of registers of the processor. The
APIs of the hardware scheduler are provided as the kernel
services. The following steps show a pseudo code for a
typical application: (a) configure scheduler, (b) initialize
the RTOS, (c) create tasks and (d) start multitasking.

When the multitasking is started, the hardware
scheduler schedules tasks. It interrupts the RTOS to per-
form a context switching to run the first task.

5. Automatic Customization of the Scheduler
Figure 7 gives an overview of the flow of our sched-

uler customization tool.

Figure 7. The Scheduler Customization Flow.

A Graphical User Interface (GUI), which consists of
set of HTML forms, captures the user inputs and passes
them to the scheduler customization application (devel-
oped in C-Language). We call this application Scheduler
Configurator (SCon). SCon processes the user inputs,
validates them and generates the scheduler hardware files
(Verilog format) and the corresponding software that en-
ables a RTOS to use the hardware. Also, SCon generates
the necessary Verilog files (wrapper) to interface the
hardware scheduler to the processor. Moreover, SCon
generates Synopsys DCTM synthesis scripts for the hard-
ware scheduler.

The following is a partial list of the user specified pa-
rameters:

• Number of tasks
• Number of external Interrupts
• Timer Resolution
• Processor Type
In order to generate the hardware files, a database of

parameterized Verilog files of each system component is
being used. The Verilog files in the database are written
in such a way that a custom version of the file can be gen-
erated using a Verilog PreProcessor (VPP) [15].

Once the user configurations and settings are captured,
SCon selects from the hardware database the suitable
scheduler bus interface and the parameterized verilog files
of the hardware scheduler. Next, SCon sets the parame-
ters of each verilog file to reflect the user input. The
hardware components (Verilog files) are passed to VPP
which processes them and generates new customized Ver-
ilog files. Finally, SCon configures the RTOS according
to the user input. The output from SCon is a set of Ver-
ilog files for the hardware, a set of C and assembly files
for the RTOS and Synopsys DC synthesis script file.

6. Experiments and Results
We verified the hardware scheduler and the RTOS us-

ing hardware/software co-design tools, namely, Synopsys
VCS, Mentor Graphics Seamless CVE and Mentor
Graphics XRAY. VCS is used for simulating the hard-
ware in Verilog HDL. Seamless CVE interfaces the
hardware and the software simulators. XRAY is used as
the instruction set simulator and debugger. We simulated
a System-on-Chip (SoC) similar to that illustrated in Fig-
ure 6. The hardware scheduler is set up as an I/O device
as illustrated in Figure 6. We used a PowerPC 750, with
Level 1 instruction and data caches each of 32KB, as the
processor which runs at 400 MHz while the bus runs at
133 MHz and can deliver a peak performance of
733 MIPS [17]. The memory size of the system is 4MB.

6.1. Scheduler Overhead
The simulation results show that for a system that util-

izes the hardware scheduler, the assembly instructions
executed by the scheduler and the background time tick
processing are eliminated as shown in Table 2. In Ta-
ble 2, the programs were compiled using the GCC cross
compiler for PowerPC, and the results are in number of
assembly instructions. MicroC/OS II scheduler is a prior-
ity-based scheduler [7]. For time-tick processing, the
RTOS periodically checks every task and decrements the
delay value if it is not zero. The upper bound of the proc-
essing time is directly proportional to number of tasks in
the system. This overhead is large if there are many tasks
and the time tick resolution is high. As a result, the CPU
utilization is reduced, and tasks may miss their deadlines.

Table 2. The assembly instruction execution
comparison between Micro-C/OS II and the

hardware scheduler.

 Micro C/OS II

Hardware
Scheduler

Scheduler 69 0
Time-tick
processing 47+47*(number of tasks) 0

6

Figure 8 shows the overhead percentage (percentage of
CPU time spent processing the time ticks) as a function of
the time tick resolution. Figure 8 shows that for a system
with 32 processes (tasks) and a time tick of 1 ms, 0.21%
of the CPU time is wasted (i.e., used for time tick process-
ing).

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%

10 100 1000

Time tick resolution (usec)

O
ve

rh
ea

d
%

64 tasks

32 tasks

4 tasks
8 tasks
16 tasks

Figure 8. The scheduler and the time tick proc-

essing overheads in MicroC/OS II.

However, if the time tick resolution becomes 10 us,
21.16% of the CPU time is wasted. Since the hardware
scheduler eliminates such overheads, the response time
and the interrupt latency are improved. The appropriate
task can be executed when the hardware scheduler sends
an interrupt to the processor. If the system has a fast
clock so that the 21.16% overhead does not make the sys-
tem miss any deadlines, the introduction of the hardware
scheduler would make the system run at a clock speed
that is 21.16% less. A reduced clock frequency allows a
lower core voltage which results in a reduction of the
processor power consumption (please note that the power
consumption of the hardware scheduler is negligible when
compared to the processor power consumption since the
hardware scheduler occupies far less area – see Table 4 –
than the processor and has much less transistor switching
activity).

Example 2. It is likely that next generation handheld

devices will support multiple applications such as wireless
communication and a Voice User Interface (VUI). These
applications may work well under different scheduling al-
gorithms. For example, the wireless communication appli-
cation may work well under an EDF scheduler, and the
VUI may work well under a priority-based scheduler. If the
handheld device has only one scheduling algorithm, it
cannot efficiently support both applications. However, if
the handheld device has a configurable hardware sched-
uler, multiple applications can select the scheduling algo-
rithm, which fits their requirements. �

In this experiment, we simulate the scheduler for such
a handheld device using Seamless CVE. Initially, the
handheld device is running a VUI application using a pri-
ority-based scheduling algorithm. When the user
switches to a wireless communication application, the
VUI application must be suspended. The software sends
command to the hardware scheduler to suspend the VUI
application, to configure the hardware scheduler to oper-
ate in the EDF mode, and to create tasks for the wireless
communication application.

Table 3. Number of PowerPC assembly
instructions of the APIs.

API # of PPC Assem-
bly Instructions

WCET (# of
cycles)

configureScheduler 37 230
SuspendTask 21 125

The application-switching overhead is shown in Ta-
ble 3. The values in Table 3 are in number of PowerPC
assembly instructions. The actual commands sent to the
hardware scheduler are one PowerPC assembly instruc-
tion for suspending a task and for configuring the hard-
ware scheduler, and three PowerPC assembly instructions
for creating a task. Moreover, each API has less assembly
instructions than the context switching routine. This dy-
namic change of the scheduler at runtime is not supported
by most commercial RTOSes. Furthermore, even if a
software RTOS were to support such dynamic changing
of the scheduler, such a software RTOS would be an or-
der of magnitude or more slower (especially considering
WCET cache behavior) in changing the scheduler. Ta-
ble 3 assumes that cache misses take at most eight cycles
to fill a cache line.

In our case, due to limited memory in the handheld
device, the software RTOS schedule change causes the
memory buffer in the handheld device to overflow,
whereas the speedy hardware scheduler change takes ef-
fect before the memory overflows. Furthermore, during
actual operation, the software RTOS would cause some
timing constraints to be missed while the hardware RTOS
allows all timing constraints to be met, especially when
considering the memory interface.

6.2. The Hardware Scheduler Synthesis Results
We developed a RTL Verilog model for the hardware

scheduler. As illustrated in Table 4, we synthesized the
hardware scheduler for the HP 0.35µ process. The syn-
thesized hardware supports up to 16 tasks and up to eight
external interrupt sources. The hardware scheduler uses
1115 standard cells and occupied an area of 0.24 mm2.

7

Table 4. Synthesis result using
HP 0.35µµµµ process.

Number of standard cells Area (mm2)
1115 0.24

Table 5 shows the synthesis result using Altera Quar-
tus II for the EP20K family. The hardware scheduler uses
421 logic elements and 564 registers.

Table 5. Synthesis result using Altera Quartus II
for EP20K

Number of Logic Elements Number of Registers

421 564

7. Conclusion
We implemented a configurable hardware scheduler

and a real-time operating system. Both components are
verified in a hardware/software co-design environment.
The configurable hardware scheduler is flexible; it sup-
ports three scheduling algorithms, namely, priority-based,
rate monotonic, and earliest-deadline-first. The schedul-
ing and the time-tick processing overhead are eliminated
from the real-time operating system. Also, we presented
a tool that can customize the hardware scheduler to suite a
particular system.

8. Acknowledgements
This research is funded by the State of Georgia under

the Yamacraw initiative and by NSF under INT-9973120,
CCR-9984808 and CCR-0082164. We acknowledge do-
nations received from Denali, Hewlett-Packard Company,
Intel Corporation, LEDA, Mentor Graphics Corp., SUN
Microsystems and Synopsys, Inc.

9. References
[1] S. Moon, J. Rexford and K. Shin, “Scalable hardware

priority queue architectures for high-speed packet
switches,” IEEE Transactions on Computer, vol. 49,
no.11, pp.1215 –1227, November 2000.

[2] D. Picker and R. Fellman, “A VLSI priority packet
queue with inheritance and overwrite,” IEEE Trans-
actions on Very Large Scale Integration (VLSI) Sys-
tems, vol. 3 no. 2, pp. 245–253, June 1995.

[3] J. Stankovic, D. Niehaus and K. Ramamritham,
“SpringNet: A Scalable Architecture for High Per-
formance, Predictable and Distributed Real-Time
Computing,” University of Massachusetts, Amherst,
Massachusetts, Tech. Rep. UM-CS-1991-074, 1991.

[4] L. Lindh, “FASTHARD – A Fast Time Deterministic
Hardware Based Real-Time Kernel,” Proceedings of
the Fourth Euromicro Workshop on Real-Time Sys-
tems, pp. 21-25, June 1992.

[5] L. Lindh and F. Stanischewski, “FASTCHART - Idea
and Implementation,” Proceedings of the Interna-
tional Conference on Computer Design (ICCD),
pp. 401-404, January 1991.

[6] J. A. Stankovic et al., Deadline Scheduling for Real-
Time Systems – EDF and Related Algorithms, Kul-
wer Academic Publications, New York, 1998.

[7] Jean Labrosse, Micro C/OS: Real Time Kernal II:
The Real-Time Kernel, R&D Books, Kansas, 1998.

[8] B. Kim and K. Shin, “Scalable hardware earliest-
deadline-first scheduler for ATM switching net-
works,” Proceedings of the Real-time Systems Sym-
posium, pp. 210-218, December 1997.

[9] W. Burleson et al., “The Spring Scheduling Co-
Processor: A Scheduling Accelerator,” Proceedings
of the International Conference on Computer Design
(ICCD), pp. 140-144, October 1993.

[10] J. Stankovic and K. Ramamritham, “The Spring Ker-
nel: A New Paradigm for Real-Time Systems,” IEEE
Software, vol. 8, no. 3, pp. 62-72, May 1991.

[11] J. Adomat et al., “Real-Time Kernel in Hardware
RTU: A Step towards Deterministic and High-
Performance Real-Time Systems,” Proceedings of
the 1996 Euromicro Workshop on Real-Time Sys-
tems, pp. 164-168, June 1996.

[12] Xilinx, “Dynamic Reconfiguration,” Application
Note, 1997, http://www.xilinx.com/xapp/xapp093.pdf

[13] Xilinx Vertex-II Pro platform,
http://www.xilinx.com/virtex2pro

[14] Starcore, SC140 DSP Core Reference Manual,
http://e-www.motorola.com/brdata/PDFDB/docs/
MNSC140CORE.pdf

[15] Verilog PreProcessor, http://www.surefirev.com/vpp/
[16] Altera Excalibur, http://www.altera.com/products/

devices/arm/arm-index.html
[17] MPC750 Fact sheet, http://e-www.motorola.com/

brdata/PDFDB/docs/MPC750FACT.pdf

